Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://eps.site-ym.com/resource/rss/news.rss

  1.  
  2. <rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
  3. <channel>
  4. <title>News &amp; Press</title>
  5. <link>https://www.eps.org/news/</link>
  6. <description><![CDATA[ Read about recent events, essential information and the latest community news.  ]]></description>
  7. <lastBuildDate>Tue, 7 May 2024 01:04:02 GMT</lastBuildDate>
  8. <pubDate>Mon, 15 Apr 2024 15:15:00 GMT</pubDate>
  9. <copyright>Copyright &#xA9; 2024 European Physical Society (EPS)</copyright>
  10. <atom:link href="http://www.eps.org/resource/rss/news.rss" rel="self" type="application/rss+xml"></atom:link>
  11. <item>
  12. <title> ProtoDUNE’s argon filling underway</title>
  13. <link>https://www.eps.org/news/670039/</link>
  14. <guid>https://www.eps.org/news/670039/</guid>
  15. <description><![CDATA[<p>12 April, 2024, By Chetna Krishna, CERN</p><hr /><p class="news-node-full-content-caption cern-caption" style="text-align: center;"><img alt="" src="https://www.eps.org/resource/resmgr/news_2024/CERN-protodune-20240412.jpg" style="width: 750px;" /><br /><em>ProtoDUNE begins liquid argon filling (Image: CERN)</em></p><p class="news-node-full-content-caption cern-caption" style="text-align: left;"><strong>
  16.        This will be a significant step towards testing ProtoDUNE for the next era of neutrino research</strong></p><p style="margin-bottom: 15px;" data-mce-style="margin-bottom: 15px;">CERN’s Neutrino Platform houses a prototype of the <a href="https://www.dunescience.org/" data-mce-href="https://www.dunescience.org/">Deep Underground Neutrino Experiment (DUNE</a>)
  17. known as ProtoDUNE, which is designed to test and validate the
  18. technologies that will be applied to the construction of the DUNE
  19. experiment in the United States.</p><p>Recently, ProtoDUNE has entered a
  20. pivotal stage: the filling of one of its two particle detectors with
  21. liquid argon. Filling such a detector takes almost two months, as the
  22. chamber is gigantic – almost the size of a three-storey building.
  23. ProtoDUNE’s second detector will be filled in the autumn.</p><p>ProtoDUNE
  24. will use the proton beam from the Super Proton Synchrotron to test the
  25. detecting of charged particles. This argon-filled detector will be
  26. crucial to test the detector response for the next era of neutrino
  27. research. Liquid argon is used in DUNE due to its inert nature, which
  28. provides a clean environment for precise measurements. When a neutrino
  29. interacts with argon, it produces charged particles that ionise the
  30. atoms, allowing scientists to detect and study neutrino interactions.
  31. Additionally, liquid argon's density and high scintillation light yield
  32. enhance the detection of these interactions, making it an ideal medium
  33. for neutrino experiments.</p><p>Interestingly, the interior of the
  34. partially filled detector now appears green instead of its usual golden
  35. colour. This is because when the regular LED light is reflected inside
  36. the metal cryostat, the light travels through the liquid argon and the
  37. wavelength of the photons is shifted, producing a visible green effect.</p><p>The&nbsp;DUNE
  38. far detector, which will be roughly 20 times bigger than protoDUNE, is
  39. being built in the United States. DUNE will send a beam of neutrinos
  40. from&nbsp;<a href="https://fnal.gov/" data-mce-href="https://fnal.gov/">Fermi National Accelerator Laboratory</a>&nbsp;(Fermilab)
  41. near Chicago, Illinois, over a distance of more than 1300 kilometres
  42. through the Earth to neutrino detectors located 1.5 km underground at
  43. the&nbsp;<a href="https://sanfordlab.org/" data-mce-href="https://sanfordlab.org/">Sanford Underground Research Facility</a>&nbsp;(SURF) in Lead, South Dakota.</p><p>Watch a short time-lapse video of protoDUNE being filled with liquid argon: <strong><a href="https://youtu.be/FweOvhKsqaM">https://youtu.be/FweOvhKsqaM</a></strong><br /></p>]]></description>
  44. <category>News From Europe</category>
  45. <pubDate>Mon, 15 Apr 2024 16:15:00 GMT</pubDate>
  46. </item>
  47. <item>
  48. <title>The CMS experiment at CERN measures a key parameter of the Standard Model</title>
  49. <link>https://www.eps.org/news/669597/</link>
  50. <guid>https://www.eps.org/news/669597/</guid>
  51. <description><![CDATA[<div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><em><span style="font-size: 12px;"><span style="font-family: Arial, Helvetica, sans-serif;"><img alt="" src="https://www.eps.org/resource/resmgr/news_2024/CERN-pr-2024-08.jpg" style="width: 750px;" /></span></span></em></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><em><span style="font-size: 12px;"><span style="font-family: Arial, Helvetica, sans-serif;">The CMS experiment (image: CERN)&nbsp;</span></span></em></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;">&nbsp;</div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><em><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span style="color: black;">With this measurement the LHC is again demonstrating its ability to provide very high-precision measurements and bringing new insights into an old mystery</span></span></span></span></em></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;">&nbsp;</div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;"><p class="Body" style="border: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span><span>Geneva, April 3 2024. Last week, at the annual<span class="Apple-converted-space"></span></span></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.OhNCY5GQPYraX1C7copMHytp6DYxyznM7assJDK3Fq7VlSfxPlmwcuGs-2BK1NE-2F9QIO9D_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREw1Bck7jBKcpoDNGFsbeMSVKcfauOQ6-2FgacBpklRvS2NnNn6JAcXyXUPLy-2BKUrNCFY8-2B-2BpazkBKDvRUaQySRwAan-2FyQNuo6bZxggvK-2B86-2F0n2ntTfIsm-2B-2BAu0Y-2BujWaAgOOr-2BU5Yz3pmXi0mRk9kQdShnnweb4u3jAuXb6VwX-2BUSYM-2BEGk9eTQpEINpEdsvND8PyJgOIIb-2FFDClU8AWDfiyHtbGKyotdRdO4ztye-2BsLNgKGLZxoK9tLVPXwblbVfcu3iQjS1TnNVCs4bJGrqMCBrmZtCGKUQam5Qj9qQ-2FRZeU-3D" style="text-decoration: underline;"><span><span class="Hyperlink0"><em style="font-style: italic;"><u style="text-decoration: underline;"><span style="line-height: 16.100000381469727px;"><span>Rencontres de Moriond</span></span></u></em></span></span></a><span><span><span class="Apple-converted-space"></span>conference, the CMS collaboration presented a measurement of the effective leptonic electroweak mixing angle. The result is the most precise measurement performed at a hadron collider to date and is in good agreement with the prediction from the Standard Model.</span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>The Standard Model of Particle Physics is the most precise description to date of particles and their interactions. Precise measurements of its parameters, combined with precise theoretical calculations, yield spectacular predictive power that allows phenomena to be determined even before they are directly observed. In this way, the Model successfully constrained the masses of the W and Z bosons (discovered at CERN in 1983), of the top quark (discovered at Fermilab in 1995) and, most recently, of the Higgs boson (discovered at CERN in 2012). Once these particles had been discovered, these predictions became consistency checks for the Model, allowing physicists to explore the limits of the theory</span><span dir="RTL" lang="AR-SA"><span>’</span></span><span>s validity. At the same time, precision measurements of the properties of these particles are a powerful tool for searching for new phenomena beyond the Standard Model – so-called “new physics” - since new phenomena would manifest themselves as discrepancies between various measured and calculated quantities.</span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>The electroweak mixing angle is a key element of these consistency checks. It is a fundamental parameter of the Standard Model, determining how the unified electroweak interaction gave rise to the electromagnetic and weak interactions through a process known as electroweak symmetry breaking. At the same time, it mathematically ties together the masses of the W and Z bosons that transmit the weak interaction. So, measurements of the W, the Z or the mixing angle provide a good experimental cross-check of the Model.<span class="Apple-converted-space"></span></span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>The two most precise measurements of the weak mixing angle were performed by experiments at the CERN LEP collider and by the SLD experiment at the Stanford Linear Accelerator Center (SLAC). The values disagree with each other, which had puzzled physicists for over a decade. The new result is in good agreement with the Standard Model prediction and is a step towards resolving the discrepancy between the latter and the LEP and SLD measurements.<span class="Apple-converted-space"></span></span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span dir="RTL" lang="AR-SA"><span>“</span></span><span>This result shows that precision physics can be carried out at hadron colliders,” says Patricia McBride, CMS spokesperson.<span class="Apple-converted-space"></span></span><span dir="RTL" lang="AR-SA"><span>“</span></span><span>The analysis had to handle the challenging environment of LHC Run 2, with an average of 35 simultaneous proton-proton collisions. This paves the way for more precision physics at the High-Luminosity LHC, where five times more proton pairs will be colliding simultaneously.”</span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>Precision tests of the Standard Model parameters are the legacy of electron-positron colliders, such as CERN</span><span dir="RTL" lang="AR-SA"><span>’</span></span><span>s LEP, which operated until the year 2000 in the tunnel that now houses the LHC. Electron-positron collisions provide a perfect clean environment for such high-precision measurements. Proton-proton collisions in the LHC are more challenging for this kind of studies, even though the ATLAS, CMS and LHCb experiments have already provided a plethora of new ultra-precise measurements. The challenge is mainly due to huge backgrounds from other physics processes than the one being studied and to the fact that protons, unlike electrons, are not elementary particles. For this new result, reaching a precision similar to that of an electron-positron collider seemed like an impossible task, but it has now been achieved.<span class="Apple-converted-space"></span></span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>The measurement presented by CMS uses a sample of proton-proton collisions collected from 2016 to 2018 at a centre-of-mass energy of 13 TeV and corresponding to a total integrated luminosity of 137 fb</span><sup><span lang="EN-US"><span>−1</span></span></sup><span>, meaning about 11.000 million million collisions!&nbsp;<span class="Apple-converted-space"></span></span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>The mixing angle is obtained through an analysis of angular distributions in collisions where pairs of electrons or muons are produced. This is the most precise measurement performed at a hadron collider to date, improving on previous measurements from ATLAS, CMS and LHCb.</span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>Read more:</span></span></span></span></span></p><ul><li class="Body" style="border: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rCyD3W7V5JK-2FD6LZBvV1dOg2Q9uDpneUh-2BvEs-2Fq9bfFfbfIC11iqbPK72kuSW70uKyA-3D-3DR40-_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREw1Bck7jBKcpoDNGFsbeMSVKcfauOQ6-2FgacBpklRvS2NnNn6JAcXyXUPLy-2BKUrNCFY8-2B-2BpazkBKDvRUaQySRwAan-2FyQNuo6bZxggvK-2B86-2F0n2ntTfIsm-2B-2BAu0Y-2BujWaAgOOr-2BU5Yz3pmXi0mRk9kQdSkbuyNwBD6t092WgUQP-2FRbi3kwNCr3NX3VpSoJor6m5aHIBorqZoSTjb2pm9qUT58maXQgz-2BPsd7d9Ais8P-2BD2fMbasaMKaYnQJVZ0Z0GTd8LAbP5GOBau6m1s1Qqkrt2nJVQSeq5zx2nBz8BNdHBZw-3D" style="text-decoration: underline;"><span><span>CMS Physics Analysis Summary</span></span></a></span></span></span></li><li class="Body" style="border: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC-2FUmLjoBQ-2BSajoECp7oCxfFBK6fqK7ac-2BGInwGs4ZekOio7MmMzBIaMx-2Be3SKSUWNUDTAUlHKl-2FAPDw3lmJdk82jsAgffOTOGywyUzg4QhJONCJ2_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREw1Bck7jBKcpoDNGFsbeMSVKcfauOQ6-2FgacBpklRvS2NnNn6JAcXyXUPLy-2BKUrNCFY8-2B-2BpazkBKDvRUaQySRwAan-2FyQNuo6bZxggvK-2B86-2F0n2ntTfIsm-2B-2BAu0Y-2BujWaAgOOr-2BU5Yz3pmXi0mRk9kQdSoV5S4NCMA-2Bq7AvcgaQmo0ldfNX6YLRlEMtXoDK6EQJuqBa2KtzFVIA1RBov-2F0WnwaEliHI5uul3ttAK33aL-2F7-2BLV-2F0l207t1ZAx3k6FaJZBZJQvqhBrhImGwzFcVU7LvYKze2twh4UZCKztZxWm18o-3D" style="text-decoration: underline;"><span><span class="Hyperlink2"><u style="text-decoration: underline;"><span>CMS Physics Briefing</span></u></span></span></a></span></span></span></li></ul></div>]]></description>
  52. <category>News From Europe</category>
  53. <pubDate>Tue, 9 Apr 2024 15:55:00 GMT</pubDate>
  54. </item>
  55. <item>
  56. <title> Groundbreaking survey reveals secrets of planet birth around dozens of stars</title>
  57. <link>https://www.eps.org/news/667048/</link>
  58. <guid>https://www.eps.org/news/667048/</guid>
  59. <description><![CDATA[<p style="text-align: center;"><strong><img alt="" src="https://www.eps.org/resource/resmgr/news/eso2405a.jpg" style="width: 750px;" /></strong></p><p style="text-align: center;"><em><span style="font-size: 11px;">Planet-forming discs in three clouds of the Milky Way - image credit: ESO</span><br /></em></p><p><strong>ESO, 5th March 2024. In a series of studies, a team of
  60. astronomers has shed new light on the fascinating and complex process of
  61. planet formation. The stunning images, captured using the European
  62. Southern Observatory's Very Large Telescope (ESO’s VLT) in Chile,
  63. represent one of the largest ever surveys of planet-forming discs. The
  64. research brings together observations of more than 80 young stars that
  65. might have planets forming around them, providing astronomers with a
  66. wealth of data and unique insights into how planets arise in different
  67. regions of our galaxy.
  68. </strong></p><p dir="ltr">“<em>This is really a shift in our field of study</em>,”
  69. says Christian Ginski, a lecturer at the University of Galway, Ireland,
  70. and lead author of one of three new papers published today in <em>Astronomy &amp; Astrophysics</em>. “<em>We’ve gone from the intense study of individual star systems to this huge overview of entire star-forming regions.</em>”</p>
  71. <p dir="ltr">To date more than 5000 planets have been discovered
  72. orbiting stars other than the Sun, often within systems markedly
  73. different from our own Solar System. To understand where and how this
  74. diversity arises, astronomers must observe the dust- and gas-rich discs
  75. that envelop young stars — the very cradles of planet formation. These
  76. are best found in huge gas clouds where the stars themselves are
  77. forming.</p>
  78. <p dir="ltr">Much like mature planetary systems, the new images showcase the extraordinary diversity of planet-forming discs. “<em>Some of these discs show huge spiral arms, presumably driven by the intricate ballet of orbiting planets,</em>” says Ginski. “<em>Others
  79. show rings and large cavities carved out by forming planets, while yet
  80. others seem smooth and almost dormant among all this bustle of activity</em>,”
  81. adds Antonio Garufi, an astronomer at the Arcetri Astrophysical
  82. Observatory, Italian National Institute for Astrophysics (INAF), and
  83. lead author of one of the papers.</p>
  84. <p dir="ltr">The team studied a total of 86 stars across three different
  85. star-forming regions of our galaxy: Taurus and Chamaeleon I, both
  86. around 600 light-years from Earth, and Orion, a gas-rich cloud about
  87. 1600 light-years from us that is known to be the birthplace of several
  88. stars more massive than the Sun. The observations were gathered by a
  89. large international team, comprising scientists from more than 10
  90. countries.</p>
  91. <p dir="ltr">The team was able to glean several key insights from the
  92. dataset. For example, in Orion they found that stars in groups of two or
  93. more were less likely to have large planet-forming discs. This is a
  94. significant result given that, unlike our Sun, most stars in our galaxy
  95. have companions. As well as this, the uneven appearance of the discs in
  96. this region suggests the possibility of massive planets embedded within
  97. them, which could be causing the discs to warp and become misaligned.</p>
  98. <p dir="ltr">While planet-forming discs can extend for distances
  99. hundreds of times greater than the distance between Earth and the Sun,
  100. their location several hundreds of light-years from us makes them appear
  101. as tiny pinpricks in the night sky. To observe the discs, the team
  102. employed the sophisticated Spectro-Polarimetric High-contrast Exoplanet
  103. REsearch instrument (<a href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/sphere/">SPHERE</a>) mounted on ESO’s <a href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/">VLT</a>. SPHERE’s state-of-the-art extreme <a href="https://www.eso.org/public/teles-instr/technology/adaptive_optics/">adaptive optics</a>
  104. system corrects for the turbulent effects of Earth’s atmosphere,
  105. yielding crisp images of the discs. This meant the team were able to
  106. image discs around stars with masses as low as half the mass of the Sun,
  107. which are typically too faint for most other instruments available
  108. today. Additional data for the survey were obtained using the VLT’s <a href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/x-shooter/">X-shooter</a>
  109. instrument, which allowed astronomers to determine how young and how
  110. massive the stars are. The Atacama Large Millimeter/submillimeter Array (<a href="https://www.eso.org/public/teles-instr/alma/">ALMA</a>),
  111. in which ESO is a partner, on the other hand, helped the team
  112. understand more about the amount of dust surrounding some of the stars.</p>
  113. <p dir="ltr">As technology advances, the team hopes to delve even deeper
  114. into the heart of planet-forming systems. The large 39-metre mirror of
  115. ESO’s forthcoming Extremely Large Telescope (<a href="https://elt.eso.org/">ELT</a>),
  116. for example, will enable the team to study the innermost regions around
  117. young stars, where rocky planets like our own might be forming.&nbsp;</p>
  118. <p dir="ltr">For now, these spectacular images provide researchers with a
  119. treasure trove of data to help unpick the mysteries of planet
  120. formation. “<em>It is almost poetic that the processes that mark the
  121. start of the journey towards forming planets and ultimately life in our
  122. own Solar System should be so beautiful</em>,” concludes Per-Gunnar
  123. Valegård, a doctoral student at the University of Amsterdam, the
  124. Netherlands, who led the Orion study. Valegård, who is also a part-time
  125. teacher at the International School Hilversum in the Netherlands, hopes
  126. the images will inspire his pupils to become scientists in the future.</p>
  127.  
  128. <h3>More information</h3><p dir="ltr">This research was presented in three papers to appear in <em>Astronomy &amp; Astrophysics</em>. The data presented were gathered as part of the SPHERE consortium guaranteed time programme, as well as the <a href="https://www.christian-ginski.com/home/destinys">DESTINYS</a> (Disk Evolution Study Through Imaging of Nearby Young Stars) ESO Large Programme.</p>
  129. <ol><li dir="ltr">
  130. <p dir="ltr">“The SPHERE view of the Chamaeleon I star-forming region:
  131. The full census of planet-forming disks with GTO and DESTINYS programs” (<a href="https://www.aanda.org/10.1051/0004-6361/202244005">https://www.aanda.org/10.1051/0004-6361/202244005</a>)</p>
  132. </li></ol>
  133. <p dir="ltr">The team is composed of C. Ginski (University of Galway,
  134. Ireland;&nbsp;Leiden Observatory, Leiden University, the Netherlands
  135. [Leiden]; Anton Pannekoek Institute for Astronomy, University of
  136. Amsterdam, the Netherlands [API]), R. Tazaki (API), M. Benisty (Univ.
  137. Grenoble Alpes, CNRS, IPAG, France [Grenoble]), A. Garufi (INAF,
  138. Osservatorio Astrofisico di Arcetri, Italy), C. Dominik (API), Á. Ribas
  139. (European Southern Observatory, Chile [ESO Chile]), N. Engler (ETH
  140. Zurich, Institute for Particle Physics and Astrophysics, Switzerland),
  141. J. Hagelberg (Geneva Observatory, University of Geneva, Switzerland), R.
  142. G. van Holstein (ESO Chile), T. Muto (Division of Liberal Arts,
  143. Kogakuin University, Japan), P. Pinilla (Max-Planck-Institut für
  144. Astronomie, Germany [MPIA]; Mullard Space Science Laboratory, University
  145. College London, UK), K. Kanagawa (Department of Earth and Planetary
  146. Sciences, Tokyo Institute of Technology, Japan), S. Kim (Department of
  147. Astronomy, Tsinghua University, China), N. Kurtovic (MPIA), M. Langlois
  148. (Centre de Recherche Astrophysique de Lyon, CNRS, UCBL, France), J.
  149. Milli (Grenoble), M. Momose (College of Science, Ibaraki University,
  150. Japan [Ibaraki]), R. Orihara (Ibaraki), N. Pawellek (Department of
  151. Astrophysics, University of Vienna, Austria), T. O. B. Schmidt
  152. (Hamburger Sternwarte, Germany), F. Snik (Leiden), and Z. Wahhaj (ESO
  153. Chile).</p>
  154. <ol start="2"><li dir="ltr">
  155. <p dir="ltr">“The SPHERE view of the Taurus star-forming region: The full census of planet-forming disks with GTO and DESTINYS programs” (<a href="https://www.aanda.org/10.1051/0004-6361/202347586">https://www.aanda.org/10.1051/0004-6361/202347586</a>)</p>
  156. </li></ol>
  157. <p dir="ltr">The team is composed of A. Garufi (INAF, Osservatorio
  158. Astrofisico di Arcetri, Italy [INAF Arcetri]), C. Ginski (University of
  159. Galway, Ireland), R. G. van Holstein (European Southern Observatory,
  160. Chile [ESO Chile]), M. Benisty (Laboratoire Lagrange, Université Côte
  161. d’Azur, Observatoire de la Côte d’Azur, CNRS, France; Univ. Grenoble
  162. Alpes, CNRS, IPAG, France [Grenoble]), C. F. Manara (European Southern
  163. Observatory, Germany), S. Pérez (Millennium Nucleus on Young Exoplanets
  164. and their Moons [YEMS]; Departamento de Física, Universidad de Santiago
  165. de Chile, Chile [Santiago]), P. Pinilla (Mullard Space Science
  166. Laboratory, University College London, UK), A. Ribas (Institute of
  167. Astronomy, University of Cambridge, UK), P. Weber (YEMS, Santiago), J.
  168. Williams (Institute for Astronomy, University of Hawai‘i, USA), L. Cieza
  169. (Instituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias,
  170. Universidad Diego Portales, Chile [Diego Portales]; YEMS), C. Dominik
  171. (Anton Pannekoek Institute for Astronomy, University of Amsterdam, the
  172. Netherlands [API]), S. Facchini (Dipartimento di Fisica, Università
  173. degli Studi di Milano, Italy), J. Huang (Department of Astronomy,
  174. Columbia University, USA), A. Zurlo (Diego Portales; YEMS), J. Bae
  175. (Department of Astronomy, University of Florida, USA), J. Hagelberg
  176. (Observatoire de Genève, Université de Genève, Switzerland), Th. Henning
  177. (Max Planck Institute for Astronomy, Germany [MPIA]), M. R. Hogerheijde
  178. (Leiden Observatory, Leiden University, the Netherlands; API), M.
  179. Janson (Department of Astronomy, Stockholm University, Sweden), F.
  180. Ménard (Grenoble), S. Messina (INAF - Osservatorio Astrofisico di
  181. Catania, Italy), M. R. Meyer (Department of Astronomy, The University of
  182. Michigan, USA), C. Pinte (School of Physics and Astronomy, Monash
  183. University, Australia; Grenoble), S. Quanz (ETH Zürich, Department of
  184. Physics, Switzerland [Zürich]), E. Rigliaco (Osservatorio Astronomico di
  185. Padova, Italy [Padova]), V. Roccatagliata (INAF Arcetri), H. M. Schmid
  186. (Zürich), J. Szulágyi (Zürich), R. van Boekel (MPIA), Z. Wahhaj (ESO
  187. Chile), J. Antichi (INAF Arcetri), A. Baruffolo (Padova), and T. Moulin
  188. (Grenoble).</p>
  189. <ol start="3"><li dir="ltr">
  190. <p dir="ltr">“Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): The SPHERE view of the Orion star-forming region” (<a href="https://www.aanda.org/10.1051/0004-6361/202347452">https://www.aanda.org/10.1051/0004-6361/202347452</a>)</p>
  191. </li></ol>
  192. <p dir="ltr">The team is composed of P.-G. Valegård (Anton Pannekoek
  193. Institute for Astronomy, University of Amsterdam, the Netherlands
  194. [API]), C. Ginski (University of Galway, Ireland), A. Derkink (API), A.
  195. Garufi (INAF, Osservatorio Astrofisico di Arcetri, Italy), C. Dominik
  196. (API), Á. Ribas (Institute of Astronomy, University of Cambridge, UK),
  197. J. P. Williams (Institute for Astronomy, University of Hawai‘i, USA), M.
  198. Benisty (University of Grenoble Alps, CNRS, IPAG, France), T. Birnstiel
  199. (University Observatory, Faculty of Physics,
  200. Ludwig-Maximilians-Universität München, Germany [LMU]; Exzellenzcluster
  201. ORIGINS, Germany), S. Facchini (Dipartimento di Fisica, Università degli
  202. Studi di Milano, Italy), G. Columba (Department of Physics and
  203. Astronomy "Galileo Galilei" - University of Padova, Italy; INAF –
  204. Osservatorio Astronomico di Padova, Italy), M. Hogerheijde (API; Leiden
  205. Observatory, Leiden University, the Netherlands [Leiden]), R. G. van
  206. Holstein (European Southern Observatory, Chile), J. Huang (Department of
  207. Astronomy, Columbia University, USA), M. Kenworthy (Leiden), C. F.
  208. Manara (European Southern Observatory, Germany), P. Pinilla (Mullard
  209. Space Science Laboratory, University College London, UK), Ch. Rab (LMU;
  210. Max-Planck-Institut für extraterrestrische Physik, Germany), R. Sulaiman
  211. (Department of Physics, American University of Beirut, Lebanon), A.
  212. Zurlo (Instituto de Estudios Astrofísicos, Facultad de Ingeniería y
  213. Ciencias, Universidad Diego Portales, Chile; Escuela de Ingeniería
  214. Industrial, Facultad de Ingeniería y Ciencias, Universidad Diego
  215. Portales, Chile; Millennium Nucleus on Young Exoplanets and their
  216. Moons).</p>
  217. <p dir="ltr">The European Southern Observatory (ESO) enables scientists
  218. worldwide to discover the secrets of the Universe for the benefit of
  219. all. We design, build and operate world-class observatories on the
  220. ground — which astronomers use to tackle exciting questions and spread
  221. the fascination of astronomy — and promote international collaboration
  222. for astronomy. Established as an intergovernmental organisation in 1962,
  223. today ESO is supported by 16 Member States (Austria, Belgium, Czechia,
  224. Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands,
  225. Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom),
  226. along with the host state of Chile and with Australia as a Strategic
  227. Partner. ESO’s headquarters and its visitor centre and planetarium, the
  228. ESO Supernova, are located close to Munich in Germany, while the Chilean
  229. Atacama Desert, a marvellous place with unique conditions to observe
  230. the sky, hosts our telescopes. ESO operates three observing sites: La
  231. Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large
  232. Telescope and its Very Large Telescope Interferometer, as well as survey
  233. telescopes such as VISTA. Also at Paranal ESO will host and operate the
  234. Cherenkov Telescope Array South, the world’s largest and most sensitive
  235. gamma-ray observatory. Together with international partners, ESO
  236. operates ALMA on Chajnantor, a facility that observes the skies in the
  237. millimetre and submillimetre range. At Cerro Armazones, near Paranal, we
  238. are building “the world’s biggest eye on the sky” — ESO’s Extremely
  239. Large Telescope. From our offices in Santiago, Chile we support our
  240. operations in the country and engage with Chilean partners and society.&nbsp;</p>
  241. <p dir="ltr">The Atacama Large Millimeter/submillimeter Array (ALMA), an
  242. international astronomy facility, is a partnership of ESO, the U.S.
  243. National Science Foundation (NSF) and the National Institutes of Natural
  244. Sciences (NINS) of Japan in cooperation with the Republic of Chile.
  245. ALMA is funded by ESO on behalf of its Member States, by NSF in
  246. cooperation with the National Research Council of Canada (NRC) and the
  247. National Science and Technology Council (NSTC) in Taiwan and by NINS in
  248. cooperation with the Academia Sinica (AS) in Taiwan and the Korea
  249. Astronomy and Space Science Institute (KASI). ALMA construction and
  250. operations are led by ESO on behalf of its Member States; by the
  251. National Radio Astronomy Observatory (NRAO), managed by Associated
  252. Universities, Inc. (AUI), on behalf of North America; and by the
  253. National Astronomical Observatory of Japan (NAOJ) on behalf of East
  254. Asia. The Joint ALMA Observatory (JAO) provides the unified leadership
  255. and management of the construction, commissioning and operation of
  256. ALMA.&nbsp;</p>
  257. <h3>Links</h3><ul><li dir="ltr">Research papers: <a href="https://www.aanda.org/articles/aa/pdf/forth/aa44005-22.pdf">Chamaeleon</a>, <a href="https://www.aanda.org/articles/aa/pdf/forth/aa47586-23.pdf">Taurus</a>, <a href="https://www.aanda.org/articles/aa/pdf/forth/aa47452-23.pdf">Orion</a></li><li dir="ltr"><a href="http://www.eso.org/public/images/archive/category/paranal/">Photos of the VLT</a></li><li dir="ltr">Find out more about ESO's Extremely Large Telescope on our <a href="https://elt.eso.org">dedicated website</a>&nbsp;and <a href="https://www.eso.org/public/archives/brochures/pdfsm/brochure_0079.pdf">press kit</a></li><li dir="ltr">For journalists: <a href="https://www.eso.org/public/outreach/pressmedia/#epodpress_form">subscribe to receive our releases under embargo in your language</a></li><li>For scientists: got a story? <a href="https://www.eso.org/public/news/pitch-your-research/">Pitch your research</a></li></ul>]]></description>
  258. <category>News From Europe</category>
  259. <pubDate>Mon, 11 Mar 2024 09:35:00 GMT</pubDate>
  260. </item>
  261. <item>
  262. <title>EPS Divisions and Groups prize calls</title>
  263. <link>https://www.eps.org/news/664314/</link>
  264. <guid>https://www.eps.org/news/664314/</guid>
  265. <description><![CDATA[<p>Please visit the EPS Divisions and Groups websites to see the latest calls for prizes.&nbsp; </p><h3 id="divisions">Divisions</h3><a target="_blank" href="https://www.eps.org/members/group.aspx?id=85184" title="EPS Atomic, Molecular and Optical physics Division">Atomic, Molecular and Optical Physics Division</a><span style="font-style: italic;"> </span><p class="text-left">
  266.            <a target="_blank" href="https://www.eps.org/members/group.aspx?id=85187" title="EPS Condensed Matter Division">Condensed Matter Division</a><span style="font-style: italic;"> </span><br />
  267.            <a href="https://www.eps.org/group/PED" target="_blank" title="EPS Physics Education Division" rel="external">Physics Education Division</a><br />
  268.            <br />
  269.            <a href="http://www.eps.org/group/EPD" rel="external">
  270.            Environmental Physics Division<br />
  271.            </a><a href="http://www.eps.org/group/GPD">
  272.            Gravitational Physics Division</a><br />
  273.            <a href="http://eps-hepp.web.cern.ch/eps-hepp/" target="_blank" title="EPS High Energy &amp; Particle Physics Division" rel="external">High Energy &amp; Particle Physics Division</a><br />
  274.            <a target="_blank" href="http://eps.site-ym.com/members/group.aspx?id=85199" title="EPS Nuclear Physics Division">Nuclear Physics Division</a><br />
  275.            <a href="http://www.eps.org/group/DPL" target="_blank" title="EPS Physics in Life Sciences Division" rel="external"><br />
  276.            Division of Physics in Life Sciences</a><br />
  277.            <a href="http://plasma.ciemat.es/eps/" target="_blank" title="EPS Plasma Physics Division" rel="external">Plasma Physics Division</a>
  278.            <span style="font-style: italic;"> </span><br />
  279.            <a href="http://qeod.epsdivisions.org/" target="_blank" title="EPS Quantum Electronics &amp; Optics Division" rel="external">Quantum Electronics &amp; Optics Division</a><br />
  280.            <a href="https://www.eps.org/members/group.aspx?id=85203" target="_blank" title="EPS European Solar Physics Division" rel="external"><br />
  281.            European Solar Physics Division</a><br />
  282.            <a target="_blank" href="https://www.eps.org/members/group.aspx?id=85204" title="EPS Statistical &amp; Nonlinear Physics Division">Statistical &amp; Nonlinear Physics Division</a>
  283.            </p><h3 id="groups">Groups</h3><a target="_blank" href="https://www.eps-ag.org/" title="EPS Accelerator Group">Accelerator Group</a><p class="text-left">
  284.            <a href="https://www.eps.org/computational_physics">Computational Physics Group</a><br />
  285.            <a target="_blank" href="http://epsenergygroup.eu/" title="EPS Energy Group">Energy Group</a><br />
  286.            <a href="http://www.ehphysg.eu/" title="History of Physics Group">History of Physics Group</a><br />
  287.            <a href="http://www.physdev.org">Physics for Development Group</a><br />
  288.            <a href="https://www.eps.org/members/group.aspx?id=85233">Technology and Innovation Group</a>
  289.            </p><p><a href="https://www.eps.org/members/member_engagement/groups.aspx?id=85199"></a><br /></p>]]></description>
  290. <category>News From Prizes</category>
  291. <pubDate>Tue, 6 Feb 2024 15:50:00 GMT</pubDate>
  292. </item>
  293. <item>
  294. <title>Nuclear fusion: European joint experiment achieves energy record</title>
  295. <link>https://www.eps.org/news/665348/</link>
  296. <guid>https://www.eps.org/news/665348/</guid>
  297. <description><![CDATA[<p><strong>8th February 2024, Press release from&nbsp;Max-Planck-Institut für Plasmaphysik </strong></p>
  298. <hr />
  299. <p><strong>At the Joint European Torus (JET) in the UK, a European research team
  300. has succeeded in generating 69 megajoules of energy from 0.2 milligrams
  301. of fuel. This is the largest amount of energy ever achieved in a fusion
  302. experiment.</strong></p>
  303. <p>Fusion power plants are designed to fuse light atomic nuclei, following the example of the sun, in order to harness huge amounts of energy for humanity from very small amounts of fuel. The European research consortium EUROfusion is pursuing the concept
  304.    of magnetic fusion, which is considered by experts to be the most advanced. With the large-scale experiments ASDEX Upgrade and Wendelstein 7-X, the Max Planck Institute for Plasma Physics (IPP) is driving forward research into this in Germany.</p>
  305. <p>For experiments with the fuel of future power plants (deuterium and tritium), Europe's scientists operated the JET research facility near Oxford together with the UK Atomic Energy Authority (UKAEA). A new world record was set there on 3 October 2023:
  306.    69 megajoules of fusion energy were released in the form of fast neutrons during a 5.2 second plasma discharge. 0.2 milligrams of fuel were required for this. The same amount of energy would have required about 2 kilograms of lignite – ten million
  307.    times as much. JET thus beat its own record from 2021 (59 megajoules in 5 seconds).</p>
  308. <p>
  309.    "This
  310. world record is actually a by-product. It was not actively planned, but
  311. we were hoping for it," explains IPP scientist Dr Athina Kappatou, who worked for JET as one of nine Task Force Leaders. "This experimental
  312. campaign was mainly about achieving the different conditions necessary
  313. for a future power plant and thus testing realistic scenarios. One
  314. positive aspect, however, was that the experiments from two years ago
  315. could also be successfully reproduced and even surpassed." The latter was the case with the record-breaking experiment. The entire campaign is essential for the future operation of the international fusion plant ITER, which is currently being built
  316.        in southern France, as well as for the planned European demonstration power plant DEMO. Over 300 scientists and engineers from EUROfusion contributed to these landmark experiments.</p>
  317.        <p>The JET record did not achieve a positive energy balance – in other words, more heating energy had to be invested in the plasma than fusion energy was generated. In fact, an "energy gain" is physically impossible with JET and all other current
  318.            magnetic fusion experiments worldwide. For a positive energy balance, these fusion plants must exceed a certain size, which will be the case with ITER.</p>
  319.        <p>The record-breaking experiment (JET pulse #104522) in the autumn was one of the last ever at JET. After four decades the facility ceased operations at the end of 2023.</p>]]></description>
  320. <category>News From Europe</category>
  321. <pubDate>Mon, 19 Feb 2024 13:25:00 GMT</pubDate>
  322. </item>
  323. <item>
  324. <title>Greetings from the island of enhanced stability: The quest for the limit of the periodic table</title>
  325. <link>https://www.eps.org/news/665058/</link>
  326. <guid>https://www.eps.org/news/665058/</guid>
  327. <description><![CDATA[<p>Press release, 13th February 2024</p><p><strong>Review in Nature Review Physics discusses major challenges in
  328. the field of superheavy elements and their nuclei and provides an
  329. outlook on future developments</strong></p><p><strong>Since the turn of
  330. the century, six new chemical elements have been discovered and
  331. subsequently added to the periodic table of elements, the very icon of
  332. chemistry. These new elements have high atomic numbers up to 118 and are
  333. significantly heavier than uranium, the element with the highest atomic
  334. number (92) found in larger quantities on Earth. This raises questions
  335. such as how many more of these superheavy species are waiting to be
  336. discovered, where – if at all – is a fundamental limit in the creation
  337. of these elements, and what are the characteristics of the so-called
  338. island of enhanced stability. In a recent review, experts in theoretical
  339. and experimental chemistry and physics of the heaviest elements and
  340. their nuclei summarize the major challenges and offer a fresh view on
  341. new superheavy elements and the limit of the periodic table. One of them
  342. is Professor Christoph Düllmann from the GSI Helmholtzzentrum für
  343. Schwerionenforschung in Darmstadt, Johannes Gutenberg University Mainz,
  344. and the Helmholtz Institute Mainz (HIM). In its February issue, the
  345. world's leading high-impact journal&nbsp;<em>Nature Review Physics</em>&nbsp;presents the topic as its cover story.</strong></p><p><strong>Visualizing an island of stability of superheavy nuclei</strong></p><p>Already
  346. in the first half of the last century, researchers realized that the
  347. mass of atomic nuclei is smaller than the total mass of their proton and
  348. neutron constituents. This difference in mass is responsible for the
  349. binding energy of the nuclei. Certain numbers of neutrons and protons
  350. lead to stronger binding and are referred to as “magic”. In fact,
  351. scientists observed early on that protons and neutrons move in
  352. individual shells that are similar to electronic shells, with nuclei of
  353. the metal lead being the heaviest with completely filled shells
  354. containing 82 protons and 126 neutrons – a doubly-magic nucleus. Early
  355. theoretical predictions suggested that the extra stability from the next
  356. “magic” numbers, far from nuclei known at that time, might lead to
  357. lifetimes comparable to the age of the Earth. This led to the notion of a
  358. so-called island of stability of superheavy nuclei separated from
  359. uranium and its neighbors by a sea of instability.</p><p>There are
  360. numerous graphical representations of the island of stability, depicting
  361. it as a distant island. Many decades have passed since this image
  362. emerged, so it is time to take a fresh look at the stability of
  363. superheavy nuclei and see where the journey to the limits of mass and
  364. charge might lead us. In their recent paper titled "The quest for
  365. superheavy elements and the limit of the periodic table", the authors
  366. describe the current state of knowledge and the most important
  367. challenges in the field of these superheavies. They also present key
  368. considerations for future development.</p><p>Elements up to oganesson
  369. (element 118) have been produced in experiments, named, and included in
  370. the periodic table of elements in accelerator facilities around the
  371. world, such as at GSI in Darmstadt and in future at FAIR, the
  372. international accelerator center being built at GSI. These new elements
  373. are highly unstable, with the heaviest ones disintegrating within
  374. seconds at most. A more detailed analysis reveals that their lifetimes
  375. increase towards the magic neutron number 184. In the case of
  376. copernicium (element 112), for example, which was discovered at GSI, the
  377. lifetime increases from less than a thousandth of a second to 30
  378. seconds. However, the neutron number 184 is still a long way from being
  379. reached, so the 30 seconds are only one step on the way. Since the
  380. theoretical description is still prone to large uncertainties, there is
  381. no consensus on where the longest lifetimes will occur and how long they
  382. will be. However, there is a general agreement that truly stable
  383. superheavy nuclei are no longer to be expected.</p><p><strong>Revising the map of superheavy elements</strong></p><p>This
  384. leads to a revision of the superheavy landscape in two important ways.
  385. On the one hand, we have indeed arrived at the shores of the region of
  386. enhanced stability and have thus confirmed experimentally the concept of
  387. an island of enhanced stability. On the other hand, we do not yet know
  388. how large this region is – to stay with the picture. How long will the
  389. maximum lifetimes be, with the height of the mountains on the island
  390. typically representing the stability, and where will the longest
  391. lifetimes occur? The&nbsp;<em>Nature Reviews Physics</em>&nbsp;paper discusses
  392. various aspects of relevant nuclear and electronic structure theory,
  393. including the synthesis and detection of superheavy nuclei and atoms in
  394. the laboratory or in astrophysical events, their structure and
  395. stability, and the location of the current and anticipated superheavy
  396. elements in the periodic table.</p><p>The detailed investigation of the
  397. superheavy elements remains an important pillar of the research program
  398. at GSI Darmstadt, supported by infrastructure and expertise at HIM and
  399. Johannes Gutenberg University Mainz, forming a unique setting for such
  400. studies. Over the past decade, several breakthrough results were
  401. obtained, including detailed studies of their production, which led to
  402. the confirmation of element 117 and the discovery of the comparatively
  403. long-lived isotope lawrencium-266, of their nuclear structure by a
  404. variety of experimental techniques, of the structure of their atomic
  405. shells as well as their chemical properties, where flerovium (element
  406. 114) represents the heaviest element for which chemical data exist.
  407. Calculations on production in the cosmos, especially during the merging
  408. of two neutron stars, as observed experimentally for the first time in
  409. 2017, round off the research portfolio. In the future, the investigation
  410. of superheavy elements could be even more efficient thanks to the new
  411. linear accelerator HELIAC, for which the first module was recently
  412. assembled at HIM and then successfully tested in Darmstadt, so that
  413. further, even more exotic and therefore presumably longer-lived nuclei
  414. will also be experimentally achievable. An overview of the element
  415. discoveries and first chemical studies at GSI can be found in the
  416. article “Five decades of GSI superheavy element discoveries and chemical
  417. investigation,” published in May 2022.</p>]]></description>
  418. <category>News From Europe</category>
  419. <pubDate>Thu, 15 Feb 2024 13:06:00 GMT</pubDate>
  420. </item>
  421. <item>
  422. <title>CERN Celebrates 70 Years of Scientific Discovery and Innovation</title>
  423. <link>https://www.eps.org/news/663291/</link>
  424. <guid>https://www.eps.org/news/663291/</guid>
  425. <description><![CDATA[<p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><img alt="" src="https://www.eps.org/resource/resmgr/news_2024/CERN-70-2024.jpg" style="width: 750px;" /></span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">&nbsp;</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">Geneva, January 25, 2024. Today CERN, the European Laboratory for Particle Physics, announced a programme to celebrate its 70th anniversary in 2024. This landmark year honours CERN's remarkable contributions to scientific knowledge, technological innovation and international collaboration in the field of particle physics. Throughout the year, a variety of events and activities will showcase the Laboratory’s rich past as well as its bright future.</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">Leading up to an official high-level ceremony on 1 October, the preliminary anniversary programme, spanning the entire year, offers a rich array of events and activities, aimed at all types of audiences, at CERN and in the Organization’s Member States and Associate Member States and beyond. The<span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUT0fMHswK-2FrLsWwK4iHO74tmccA8lATNho-2FZp8NqON7XljIy_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz44cN8gHzxS-2FJu-2FeVsJ-2F-2Fmch61EbQV-2Br2CIiGCGgYcati9veQBe8D4dy0AEmUozpaFo3KuaUt6oVrE871XvwuBcocTiQiVMxGVV0KcrWKsVx2KxfsyOQPuFo1knTJR2RKRo8ofE-2BUlSCcPLBd3hZYu4-3D"> first public event</a>, scheduled for 30 January, will combine science, art and culture, and will feature a panel of eminent scientists discussing the evolution of particle physics and CERN’s significant contributions in advancing this field. On 7 March and 18 April, special events will showcase the practical applications of high-energy physics research in everyday life. Mid-May will see a focus on the importance of global collaboration in scientific endeavours, while the events in June and July will explore the current unanswered questions in particle physics and the facilities being planned for future breakthroughs. From talks by distinguished scientists and exhibitions showing CERN’s cutting-edge research and the diversity of its science and its people, to public engagement initiatives worldwide, everyone will find something to enjoy in this programme.<span class="Apple-converted-space"></span></span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">“CERN’s achievements over the 70 years of its history show what humanity can do when we put aside our differences and focus on the common good”, says Fabiola Gianotti, CERN Director-General. “Through the celebrations of CERN’s 70<sup>th</sup>anniversary, we will demonstrate how, over the past seven decades, CERN has been at the forefront of scientific knowledge and technological innovation, a model for training and education, collaboration and open science, and an inspiration for citizens around the world. This anniversary is also a great opportunity to look forward: CERN’s beautiful journey of exploration into the fundamental laws of nature and the constituents of matter is set to continue into the future with new, more powerful instruments and technologies.”<span class="Apple-converted-space"></span></span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc4S4iO7LvdCGQv5rqUmndsXryCHpjJJX7T24YONkrm0R2KelTQjCEZQVsJ0Wfy4pQ-3D-3DebZy_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuzwcy8dVSlHyv9Lmk-2B5Hvt6LAXnkXCjmHgz-2BhRg1dIum3z1Tnm1pwR6W3m2-2Fw2BtcxxXXWEU5S51Pja-2BzzssfpQtZ8gVJT89h-2BfMbeIifI0wZ7-2FKO2VUth4dQnj2-2FvoqGxJSHqScYA8wVYJ81gbzCo5s-3D">CERN came to life in 1954</a>, in the aftermath of the Second World War, to bring excellence in scientific research back to Europe and to foster peaceful collaboration in fundamental research. This collective effort has pushed back&nbsp;the frontiers of human knowledge and of technology. As more powerful accelerators and experiments were built, foundational discoveries and innovations were made: among others, Georges Charpak revolutionised detection with his multiwire proportional chamber in 1968, the neutral currents were discovered in the 1970s, the<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvevVOa5fgps7x48Gm2YI1QFVD1vq5-2BVYuYMmqU8m5Fp6n3UhiJJQnOPTyn3xnj-2Fhs-3DaBIu_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz4Hw-2BCsbvoRSHnWbt0mQDk-2BVE1Nuv4hQPkHNzQ8-2FSKPr2r0Dj9NUC-2FmODh7wrbP7RIK-2BAyTX46TPHsgYKKEGcGa1Dy2GoRWLWsc98QC9pDqckhjrPQMaesJthVWwEdPMYMr138n36dl4fz9KM-2BMkKdI-3D"> W</a> and<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xvylfo-2BWv-2FivKsGZWsf2AtA7iu33zhEi1cRFpd59oZGLA-3D-3DddqJ_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz5CjPmrdh9nZ-2Fl-2FkLwQgK5faCZNrHRqJMYIiBAkXGrd4-2FYMGPIceu3cSY3l1Wm2-2FSud6nOaP6-2FMI1O5NCbFn-2BGverioHUTl4lSx66Ry4GmnFkExW7Q879nBpiCHmtzRSouNXLjGFWWwyj4MLQxJDfoE-3D"> Z</a> bosons were discovered in 1983, the precision measurement of the Z boson and of other parameters of the electroweak theory was made in the 1990s thanks to the<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvS8KZZmPynhUVdb07SDKsdtnWthcjgMgsnYGSOR3P4W1e4vlvvAxtog8JAg-2BoPwBU-3D8FKA_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz1O41O6ePbeiLR3dk-2BDvCxQNR7Ij6WoGzrI4nxvAIMCdCzh3d4hiZaUHKcxLpLdcmNalf0B-2B35vTJ8hwf-2FKunJL1YA0ml0vo6R8kMxwzpByEN-2BF0xSwLwbU6eqt9cDOZYNGeZ0z3LiAnHDWqm3ykPNM-3D"> Large Electron Positron</a> (LEP) collider, the<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUWowjZkGEXKUmRbJF9mJnkoMt9gkkG73F26mKuXQ1MptjarV2jQJ2lpiOCILMomFquezmIT2WMy-2BaRox5SmbJwY-3DMKdj_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz0bZYI9tneASVZKTT8fZd9PbXm4vzW7YwVdH6FN01pxFs3EjEU-2F-2B2DzpB4-2FtlzthlrLHjnrxARKrQfTITglDUOb4Lcp88MmhWQTdUmWq7-2BbVGi9wBepIpXj3JFOfP90PPuUK807uT1oIPXcXdq9ezrc-3D"> Large Hadron Collider</a> started up in 2009, and the <a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XswC-2B7NIy-2F8s9eIUhZuqbYWh1V5HItPW6T0-2BS3ZyJmCTQ-3D-3DBxyj_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz6MrAKKLn2kUKJ0CwYZsv1e5vai8JvPa9tSJGuhpPGYzddTCw72k3ooBikcE8eEXOCDl0eWa1DHN-2F5Yy1Zm7Qr0Tdqit6lFiVqUJxcgihgbyGpeAU7dng4I6YEbxAcGWAkepdntP97-2FVs3ueOSXbyW4-3D">Higgs boson </a>was discovered in 2012. CERN is also the birthplace of the&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUWowjZkGEXKUmRbJF9mJnkqg3uD2tRQNFsgXQo9XaYVjogKrODYZMvUufPuSNmF5LQ-3D-3Dt2DQ_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz3K6B-2FSz99hPYRbWWoo63eO-2F6pEaFhCZl9RK6qQLhJVu2YwP-2FbOLqRENoOTBA6EPM9Q2QKxkE4fr9HNjxr7DVT3R-2B6knc8DIqiy1P7t5HGqowbU28q6Ow5qX-2BKdnXKp52MdmReCsPlYBW4OXXr9o6Rk-3D">World Wide Web</a>&nbsp;and has generated technologies that are used in other fields, including medical diagnostics and therapy and environmental protection.</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">Today, CERN counts <span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUTot7xyzcG-2BAEKrQf139OuSxWAvO1NBCcF4CRVB1oLUE6tA3u185h-2BZtl39YZmuDmSaV8zZU5P0mxrWsjTbytZQ-3DPtPQ_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz85qxgka-2F-2F6OquoQ9H5vIxtMlUe4mHhY2us-2BtpySPpjUtltf-2BGShrSv-2BBQ-2FWSApwuXPde0eKGLFtAXw-2FsSKRVvhdDdYfcO-2BPcA548F4FI3gImnxzECXtfMCmbqtgw6a2KKA5deVB36w9SExmmdq-2Bn2c-3D">23 Member States</a>, 10 Associate Member States and a vibrant community of 17,000 people from all over the world, with more than 110 nationalities represented. Currently, the Laboratory is home to the Large Hadron Collider, the world’s most powerful particle accelerator. Building on its remarkable legacy of research and technological development, CERN is already looking to the future, in particular by studying the feasibility of a Future Circular Collider.<span class="Apple-converted-space"></span></span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">“This anniversary year is for everyone and should engage and inspire scientists, policy makers and the public. We are looking forward to welcoming everyone at CERN for the many events being planned, but also to the celebrations in our Member States, Associate Member States and beyond”, says Luciano Musa, coordinator of the CERN 70<sup>th</sup><span class="Apple-converted-space"></span>anniversary. “These international events are a testament to CERN's impact on scientific knowledge, technological development and worldwide collaboration.”<span class="Apple-converted-space"></span></span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">CERN extends an invitation to everyone to take part in these inspiring events, which aim to kindle scientific curiosity, honour scientific progress and collaborative efforts, and underscore the role of science in society.</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">Join us in this year of celebration as we honour our glorious past and shape a bright future for CERN and its community.</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-family: Helvetica;"><span style="font-size: 14px;">For the complete CERN70 anniversary events and programme of activities, please visit: <span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUV0NTwN4Jl3X1sLatnbE9H-2Bn5Esz1nN0hbIwfJJokpsRvE8R_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuzypRa9GDKfiN4dftO-2Bb4b00AhPNwneJAUaOtR-2B4g1mErPC0tFE27YtPHtA7Jfe2BOsyp-2Bp05o9U1rCCkd-2BeTNy1fMbsne85MrYKDhxO9Q6qAslVjidbJg62rHXqYUssuLvrJx0fycehAVc0NHw7hs-2B4-3D">cern.ch/cern70</a>.&nbsp;</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-family: Helvetica;">&nbsp;</span></p>]]></description>
  426. <category>News From Europe</category>
  427. <pubDate>Thu, 25 Jan 2024 14:59:00 GMT</pubDate>
  428. </item>
  429. <item>
  430. <title>EPS Distinctions and Awards: Call for nominations</title>
  431. <link>https://www.eps.org/news/660772/</link>
  432. <guid>https://www.eps.org/news/660772/</guid>
  433. <description><![CDATA[<p>The calls for nominations for the EPS Distinctions and Awards can be found at: <a href="https://www.eps.org/blogpost/751263/495719/">https://www.eps.org/blogpost/751263/495719/</a></p><p><strong>The deadline for nominations is 31st January 2024. </strong><br /></p>]]></description>
  434. <category>News From Prizes</category>
  435. <pubDate>Tue, 19 Dec 2023 07:54:00 GMT</pubDate>
  436. </item>
  437. <item>
  438. <title>Statement by the EPS Executive Committee about the 2024 International Physics Olympiad in Iran</title>
  439. <link>https://www.eps.org/news/660535/</link>
  440. <guid>https://www.eps.org/news/660535/</guid>
  441. <description><![CDATA[<p style="text-align: center;"><img alt="" src="https://cdn.ymaws.com/www.eps.org/resource/resmgr/news/logo_EPS_blue.gif" style="width: 200px; height: 201px;" /></p><h4 style="text-align: center;">Statement by the Executive Committee of the European Physical Society
  442. about the organisation of the 2024 International Physics Olympiad in
  443. Tehran, Iran</h4><p style="text-align: center;"><strong>14th December 2023</strong><br /></p><p>"The European Physical Society (EPS) supports the International
  444. Physics Olympiad, which provides a wonderful opportunity to gather
  445. promising young physicists from around the world to discuss physics and
  446. solve physics problems in a safe, peaceful, and collaborative
  447. atmosphere.</p><p>Nevertheless, the EPS asks the organisers of the
  448. upcoming International Physics Olympiad in 2024 to reconsider Tehran,
  449. Iran, as a suitable location. The EPS is deeply concerned about the
  450. actions of the Iranian regime, particularly its ongoing repression of
  451. women and girls, as well as the recent violent crackdowns on political
  452. protests. Such circumstances, the EPS believes, create an environment
  453. where the safety of future physicists cannot be assured and where the
  454. diversity found among physicists is not respected. <br /> </p><p>Supporting
  455. the International Physics Olympiad in Iran is an endorsement of the
  456. actions of the Iranian government. Consequently, the EPS cannot endorse
  457. the event if it is held in Iran and recommends relocating it to a
  458. country where democratic ideals are respected and all participants will
  459. be welcomed regardless of their nationality, religion, or gender
  460. identity."</p>]]></description>
  461. <category>News from the EPS</category>
  462. <pubDate>Thu, 14 Dec 2023 17:03:00 GMT</pubDate>
  463. </item>
  464. <item>
  465. <title>Job offer - conference manager for the European Physical Society</title>
  466. <link>https://www.eps.org/news/659387/</link>
  467. <guid>https://www.eps.org/news/659387/</guid>
  468. <description><![CDATA[<p>The European Physical Society is seeking a new <strong>conference manager</strong>. <br />Deadline for applications 18th December 2023. </p><p>Details about the position and the application procedure can be found at: <a href="https://fr.indeed.com/job/responsable-de-conf%C3%A9rences-hf-bef63c86a3a8b539">https://fr.indeed.com/job/responsable-de-conf%C3%A9rences-hf-bef63c86a3a8b539</a><br /></p>]]></description>
  469. <category>Jobs</category>
  470. <pubDate>Mon, 4 Dec 2023 09:04:00 GMT</pubDate>
  471. </item>
  472. <item>
  473. <title>Exotic atomic nucleus sheds light on the world of quarks</title>
  474. <link>https://www.eps.org/news/658712/</link>
  475. <guid>https://www.eps.org/news/658712/</guid>
  476. <description><![CDATA[<p style="text-align: center;"><img alt="" src="https://www.eps.org/resource/resmgr/newsletter-23/cern-pr-28112023.jpg" style="width: 750px;" /></p><p style="text-align: center;"><span style="caret-color: #000000; color: #000000; font-size: 11px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration: none; display: inline !important; float: none; font-family: Arial;"><em>The ISOLDE set-up used to study the exotic nucleus of aluminium. (Image: CERN)</em></span></p><p>Geneva, 28th November 2023</p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-US">E</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">xperiments at CERN and the <span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUVTbJN-2FTvz-2FQIKAycXx08JTPla74BSvbyzHRccz-2FTrnd8B8wcmEJvQtrn4qSsqRQ2c6dnrjM7FBN7X5ycH3-2B6xAIrEtbWf8yKsOe4HHQ8Dxr0JwpBwwIrJXNGrFenfqMWHM4YWikbvMAgaTqpMZ0-2FF3nLb-2FujUKiak814aaTzZrmz7Oj-2FKI-2FKW4TQhzOOEegVUiQNssP4-2FkeSCsUXcULNUvlVWwl4M7nN6i0u6a3maVKHNEF_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOdaubinRLOTW8pJXHrT3BOV25S4JJoAj2EcBFONXTHSbZlsQ-2FEV5x0UvbY1s6IHPvqtxBznFlRFT-2FuBSjesWowyMf3omgtPNA7ksVNQTT2LcaxTQ3udQ6MWAzfdZY4b8tI03O5Jbp5fhihdy2HD4TfA-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUVTbJN-2FTvz-2FQIKAycXx08JTPla74BSvbyzHRccz-2FTrnd8B8wcmEJvQtrn4qSsqRQ2c6dnrjM7FBN7X5ycH3-2B6xAIrEtbWf8yKsOe4HHQ8Dxr0JwpBwwIrJXNGrFenfqMWHM4YWikbvMAgaTqpMZ0-2FF3nLb-2FujUKiak814aaTzZrmz7Oj-2FKI-2FKW4TQhzOOEegVUiQNssP4-2FkeSCsUXcULNUvlVWwl4M7nN6i0u6a3maVKHNEF_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOdaubinRLOTW8pJXHrT3BOV25S4JJoAj2EcBFONXTHSbZlsQ-2FEV5x0UvbY1s6IHPvqtxBznFlRFT-2FuBSjesWowyMf3omgtPNA7ksVNQTT2LcaxTQ3udQ6MWAzfdZY4b8tI03O5Jbp5fhihdy2HD4TfA-3D" data-mce-style="color: blue; text-decoration: underline;">Accelerator Laboratory</a><span style="color: black;" data-mce-style="color: black;" lang="EN-US"> in<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Jyväskylä, Finland,<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">have<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">revealed that the radius of an exotic<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">nucleus of<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">aluminium</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">,<span class="Apple-converted-space"></span></span><sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">26m</span></sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Al</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">,<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">&nbsp;is much larger than previously thought. Th</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">e result, described in a <span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUQIFF3gc2OYF0VY1q1ETRf2rb-2BVpI4XiQvciMEMTbTY0kbQ7kd3B4KsZT-2BM3B-2FXf2lnJcZTuMcvq3ZcTwqJXKec-3DpH1p_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOSfItrCYP4WeFQHtnY6l5b34Vtvep-2BDD-2B5MiYHHVSud6ybMHhbszr7r6i63Ker7Xz7LR-2BP1zRkaeVexOBNY17M-2FyDrDGF2shClb9UcBnJibZfHJTfX6W8dqj3tqWNZPZY5Qnb7kkH7bnlA-2FR0HcsD7c-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUQIFF3gc2OYF0VY1q1ETRf2rb-2BVpI4XiQvciMEMTbTY0kbQ7kd3B4KsZT-2BM3B-2FXf2lnJcZTuMcvq3ZcTwqJXKec-3DpH1p_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOSfItrCYP4WeFQHtnY6l5b34Vtvep-2BDD-2B5MiYHHVSud6ybMHhbszr7r6i63Ker7Xz7LR-2BP1zRkaeVexOBNY17M-2FyDrDGF2shClb9UcBnJibZfHJTfX6W8dqj3tqWNZPZY5Qnb7kkH7bnlA-2FR0HcsD7c-3D" data-mce-style="color: blue; text-decoration: underline;">paper</a><span style="color: black;" data-mce-style="color: black;" lang="EN-US"> just published in<span class="Apple-converted-space"></span><em>Physical Review Letters</em>, sheds light on the effects of the weak force on<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">quarks</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>–</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">the elementary particles that make up<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">proton</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">s,<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">neutrons</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>and other composite particles.</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Among the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">four<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">known fundamental forces</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>of nature</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">–</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">the electromagnetic force, the strong force, the weak force and gravity –<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">the weak<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">force</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">can,<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">with a certain probability, change the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">“</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">flavour</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">”</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span>of<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">a</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span>quark</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">. The <span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XuOyny3lMMNWyDeffTeLS3gdOomCIfdo0rwKS02U9VHNg-3D-3Dsgam_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOfZPkeEEhpXFRW0d-2FwM9dgyR2F-2B6OH-2BpTEK4Bd5SaNe0YkQlziu1X0ZPAmPfiADaIDo48HuTC85DpV0juisjYfzItYRn7LIiFjOA1oPTI3DVXP32PnPQJdiMoH4SdNBfvWvzRueH-2BFeDvjwkZY-2B76lw-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XuOyny3lMMNWyDeffTeLS3gdOomCIfdo0rwKS02U9VHNg-3D-3Dsgam_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOfZPkeEEhpXFRW0d-2FwM9dgyR2F-2B6OH-2BpTEK4Bd5SaNe0YkQlziu1X0ZPAmPfiADaIDo48HuTC85DpV0juisjYfzItYRn7LIiFjOA1oPTI3DVXP32PnPQJdiMoH4SdNBfvWvzRueH-2BFeDvjwkZY-2B76lw-3D" data-mce-style="color: blue; text-decoration: underline;">Standard Model</a><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span> of
  477. particle physics, which describes all particles and their interactions
  478. with one another, does not predict the value of this probability, but,
  479. for a given quark flavour, does predict the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">sum of all</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">possible<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">probabilities</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>to be exactly</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span>1. The</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">refore, the probability sum offers a way to test the Standard Model and search for new physics: if the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">probability</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>sum is found to be different from 1, it<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">would imply new physics</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>beyond the Standard Model</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">.</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Interestingly,
  480. the probability sum involving the up quark is presently in apparent
  481. tension with the expected unity, although the strength of the tension
  482. depends on the underlying theoretical calculations.</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">This
  483. sum includes the respective probabilities of the down quark, the
  484. strange quark and the bottom quark transforming into the up quark.</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-US">The first of these probabilities manifests itself<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">in</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">beta decay</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>of an atomic nucleus, in which a neutron (</span>made of one up&nbsp;quark&nbsp;and two down quarks)<span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">changes into a proton (</span>composed of two up quarks and one down quark)<span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">or vice versa</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">.</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">However,
  485. due to the complex structure of the atomic nuclei that undergo beta
  486. decays, an exact determination of this probability is generally not
  487. feasible. Researchers thus turn to a subset of beta decays that are less
  488. sensitive to the effects of nuclear structure to determine the
  489. probability. Among the several quantities that are needed to
  490. characterise such “superallowed” beta decays is the (charge) radius of
  491. the decaying nucleus.</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-US">This is where the new result for the radius of the<span class="Apple-converted-space"></span></span><sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">26m</span></sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Al<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">nucleus, which undergoes a superallowed beta decay, comes in. The result was obtained by measuring the response of the<span class="Apple-converted-space"></span></span><sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">26m</span></sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Al</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">nucleus to laser light in experiments conducted at CERN’s<span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XtV2xUPOgjz6PDger-2BKblHU5-2FRV9kT8yfuL4N15IBS6dQ-3D-3Dq7Nj_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOTr4yI-2B79t53gjFi5TZ727EILeaOHtt-2B9937AnT1eewWG492gZFA7av2uE-2BL-2FJcVkeFBXLQndG8igmplvOqmBXzxsv14zvyDuqO2vgqMH8v3t2f7TZ4Fx1s4-2Fc8wzESbyIyWoMgadz6vRUSl3tNw-2FEg-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XtV2xUPOgjz6PDger-2BKblHU5-2FRV9kT8yfuL4N15IBS6dQ-3D-3Dq7Nj_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOTr4yI-2B79t53gjFi5TZ727EILeaOHtt-2B9937AnT1eewWG492gZFA7av2uE-2BL-2FJcVkeFBXLQndG8igmplvOqmBXzxsv14zvyDuqO2vgqMH8v3t2f7TZ4Fx1s4-2Fc8wzESbyIyWoMgadz6vRUSl3tNw-2FEg-3D" data-mce-style="color: blue; text-decoration: underline;"> ISOLDE</a><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span> facility and the A</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">ccelerator<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">L</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">aboratory</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">’s<span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUbJ56sgYnERoxHm6-2FT6zQHQRcY5C0LlVNUpfa7ko0n0Sx3hoFtap3Fhk538u5CB-2BOJv2D8-2FFxd1ZgZO6-2Bjnv8CGGmutItcEJN4sv6vKaovy2Bk7xMfLFafcuiMMCQ-2FTcu5rYLp6PfNYaO9U-2B41WDtApugXjiH-2FpU3UbwlWufSV4aPrsikr-2BfOtsZYcQAHBvOVQ-3D-3DDd7U_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOU-2FRkVWxHcjxP-2BU2RjbbmXipvf4Sp4lP41cht2bdody8S6yf-2FnqnQ-2FtqMF1-2BNnGDz8AIDV3k-2BT7RNX3KYl3U8TpaadNVwzbxMi5OG0J05B-2BaIGBB1pLsL5nhEqYEp-2FrhgLJvECzV2XyJN2wJ8TsM2io-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUbJ56sgYnERoxHm6-2FT6zQHQRcY5C0LlVNUpfa7ko0n0Sx3hoFtap3Fhk538u5CB-2BOJv2D8-2FFxd1ZgZO6-2Bjnv8CGGmutItcEJN4sv6vKaovy2Bk7xMfLFafcuiMMCQ-2FTcu5rYLp6PfNYaO9U-2B41WDtApugXjiH-2FpU3UbwlWufSV4aPrsikr-2BfOtsZYcQAHBvOVQ-3D-3DDd7U_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOU-2FRkVWxHcjxP-2BU2RjbbmXipvf4Sp4lP41cht2bdody8S6yf-2FnqnQ-2FtqMF1-2BNnGDz8AIDV3k-2BT7RNX3KYl3U8TpaadNVwzbxMi5OG0J05B-2BaIGBB1pLsL5nhEqYEp-2FrhgLJvECzV2XyJN2wJ8TsM2io-3D" data-mce-style="color: blue; text-decoration: underline;"> IGISOL</a><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span> facility.
  492. The new radius, a weighted average of the ISOLDE and IGISOL datasets,
  493. is much larger than predicted, and the upshot is a weakening of the
  494. current apparent tension in<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">the probability sum involving the up quark</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">.</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">“Charge
  495. radii of other nuclei that undergo superallowed beta decays have been
  496. measured previously at ISOLDE and other facilities, and efforts are
  497. under way to determine the radius of<span class="Apple-converted-space"></span><sup>54</sup>Co at IGISOL,”</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">explains ISOLDE physicist and lead author of the paper, Peter Plattner. “But</span><span class="Apple-converted-space"></span><sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">26m</span></sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Al</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span>is
  498. a rather unique case as, although it is the most precisely studied of
  499. such nuclei, its radius has remained unknown until now, and, as it turns
  500. out, it is much larger than assumed in the calculation of the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">probability of the down quark transforming into the up quark</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">.”</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="background-color: white;" data-mce-style="background-color: white;"><span style="color: black;" data-mce-style="color: black;">“Searches
  501. for new physics beyond the Standard Model, including those based on the
  502. probabilities of quarks changing flavour, are often a high-precision
  503. game,” says CERN theorist Andreas Juttner. “This result underlines the
  504. importance of scrutinising all relevant experimental and theoretical
  505. results in every possible way.”</span></span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Past and present particle physics experiments worldwide, including the <span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xv2-2BWbRZYIs9xksAqHWzcfF5nUb-2BoC8HPAkaAGYewMR2w-3D-3DUU9y_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOZzZ42CSIWLt-2BOoceamkv84-2FbAjNoa1ktBtHI1yOsAz5aLUTutfIqLrmaqP1Iqsm9tsVvK5ahk0eDzU1HnGEbKk8-2BrMQCQjQyVwLJAQFcfoJWBWXTiHw5-2BEfk81EirurNBTaondTlraGOW-2Bdem0O3HA-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xv2-2BWbRZYIs9xksAqHWzcfF5nUb-2BoC8HPAkaAGYewMR2w-3D-3DUU9y_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOZzZ42CSIWLt-2BOoceamkv84-2FbAjNoa1ktBtHI1yOsAz5aLUTutfIqLrmaqP1Iqsm9tsVvK5ahk0eDzU1HnGEbKk8-2BrMQCQjQyVwLJAQFcfoJWBWXTiHw5-2BEfk81EirurNBTaondTlraGOW-2Bdem0O3HA-3D" data-mce-style="color: blue; text-decoration: underline;">LHCb</a><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span> experiment at the <span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvS8KZZmPynhUVdb07SDKsdVxYxzSyIVWZb3PRLoJb72-2B-2FG4LjtqB66UcSweNZs-2Foo-3Dxdqx_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOe-2FGstQEa-2F0LOD5ymnJ2S6WPsjqGaxUkjFSJnxwWVs2etMecc3qIR4-2FYYgP8uBM-2FBT31SfMdipeeYtHr6-2Ft1YrvNNLkzgP49mdV8jBEBYN417TpMdC-2FEaNyIsbpupDHB7D-2BiukrP7XPqST-2BSpgEAISY-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvS8KZZmPynhUVdb07SDKsdVxYxzSyIVWZb3PRLoJb72-2B-2FG4LjtqB66UcSweNZs-2Foo-3Dxdqx_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOe-2FGstQEa-2F0LOD5ymnJ2S6WPsjqGaxUkjFSJnxwWVs2etMecc3qIR4-2FYYgP8uBM-2FBT31SfMdipeeYtHr6-2Ft1YrvNNLkzgP49mdV8jBEBYN417TpMdC-2FEaNyIsbpupDHB7D-2BiukrP7XPqST-2BSpgEAISY-3D" data-mce-style="color: blue; text-decoration: underline;">Large Hadron Collider</a><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">,
  506. have contributed, and are continuing to contribute, significantly to
  507. our knowledge of the effects of the weak force on quarks through the
  508. determination of<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">various probabilities of a quark</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>flavour change. H</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">owever,</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span>nuclear physics experiments on<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">superallowed beta decays currently offer the best way to determine the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">probability of the down quark transforming into the up quark</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">, and this may well remain the case for the foreseeable future.</span></span></span></p>]]></description>
  509. <category>News From Europe</category>
  510. <pubDate>Tue, 28 Nov 2023 10:09:00 GMT</pubDate>
  511. </item>
  512. <item>
  513. <title>The CMS collaboration at CERN presents its latest search for new exotic particles</title>
  514. <link>https://www.eps.org/news/657776/</link>
  515. <guid>https://www.eps.org/news/657776/</guid>
  516. <description><![CDATA[<p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><span style="font-size: 11px; font-family: Arial;"><em><img alt="" src="https://www.eps.org/resource/resmgr/news-23/CERN-PR-20231113.jpg" style="width: 750px;" /></em></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><span style="font-size: 11px; font-family: Arial;"><em>Illustration of two types of long-lived particles decaying into a pair of muons, showing how the signals of the muons can be traced back to the long-lived particle decay point using data from the tracker and muon detectors. /&nbsp;Représentation graphique de deux types de particules à vie longue se désintégrant en paires de muons ; les signaux correspondant aux muons peuvent être associés au point où la particule à vie longue s'est désintégrée, à l’aide des données provenant du trajectographe et des détecteurs de muons. (Image: CMS/CERN)</em></span></p><p><br class="Apple-interchange-newline" /><br /></p><p>Geneva, 13th november 2023<br /></p><p>The CMS experiment has presented its first search for new physics
  517. using data from Run 3 of the Large Hadron Collider. The new study looks
  518. at the possibility of “dark photon” production in the decay of Higgs
  519. bosons in the detector. Dark photons are exotic long-lived particles:
  520. “long-lived” because they have an average lifetime of more than a tenth
  521. of a billionth of a second – a very long lifetime in terms of particles
  522. produced in the LHC – and “exotic” because they are not part of the
  523. Standard Model of particle physics. The Standard Model is the leading
  524. theory of the fundamental building blocks of the Universe, but many
  525. physics questions remain unanswered, and so searches for phenomena
  526. beyond the Standard Model continue. CMS’s new result defines more
  527. constrained limits on the parameters of the decay of Higgs bosons to
  528. dark photons, further narrowing down the area in which physicists can
  529. search for them.</p><p>In theory, dark photons would travel a measurable
  530. distance in the CMS detector before they decay into “displaced muons”.
  531. If scientists were to retrace the tracks of these muons, they would find
  532. that they don’t reach all the way to the collision point, because the
  533. tracks come from a particle that has already moved some distance away,
  534. without any trace.</p><p>Run 3 of the LHC began in July 2022 and has a
  535. higher instantaneous luminosity than previous LHC runs, meaning there
  536. are more collisions happening at any one moment for researchers to
  537. analyse. The LHC produces tens of millions of collisions every second,
  538. but only a few thousand of them can be stored, as recording every
  539. collision would quickly consume all the available data storage. This is
  540. why CMS is equipped with a real-time data selection algorithm called the
  541. trigger, which decides whether or not a given collision is interesting.
  542. Therefore, it is not only a higher volume of data that could help to
  543. reveal evidence of the dark photon, but also the way in which the
  544. trigger system is fine-tuned to look for specific phenomena.</p><p>“We
  545. have really improved our ability to trigger on displaced muons,” says
  546. Juliette Alimena from the CMS experiment. “This allows us to collect
  547. much more events than before with muons that are displaced from the
  548. collision point by distances from a few hundred micrometres to several
  549. metres. Thanks to these improvements, if dark photons exist, CMS is now
  550. much more likely to find them.”</p><p>The CMS trigger system has been
  551. crucial to this search, and was especially refined between Runs 2 and 3
  552. to search for exotic long-lived particles. As a result, the
  553. collaboration has been able to use the LHC more efficiently, obtaining a
  554. strong result using just a third of the amount of data as previous
  555. searches. To do this, the CMS team refined the trigger system by adding a
  556. new algorithm called a non-pointing muon algorithm. This improvement
  557. meant that even with just four to five months of data from Run 3 in
  558. 2022, more displaced-muon events were recorded than in the much larger
  559. 2016–18 Run 2 dataset. The new coverage of the triggers vastly increases
  560. the momentum ranges of the muons that are picked up, allowing the team
  561. to explore new regions where long-lived particles may be hiding.</p><p>The
  562. CMS team will continue using the most powerful techniques to analyse
  563. all data taken in the remaining years of Run 3 operations, with the aim
  564. of further exploring physics beyond the Standard Model.</p>Find out more: <a href="https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-23-014/index.html#Sum" data-mce-href="https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-23-014/index.html#Sum">Paper</a>]]></description>
  565. <category>News From Europe</category>
  566. <pubDate>Tue, 14 Nov 2023 13:39:00 GMT</pubDate>
  567. </item>
  568. <item>
  569. <title>Statement by the Executive Committee of the EPS about the current situation in the Middle-East</title>
  570. <link>https://www.eps.org/news/656903/</link>
  571. <guid>https://www.eps.org/news/656903/</guid>
  572. <description><![CDATA[<p style="text-align: center;"><img alt="" src="https://cdn.ymaws.com/www.eps.org/resource/resmgr/news/logo_EPS_blue.gif" style="width: 200px; height: 201px;" /></p><p style="text-align: center;"><strong>Statement by the Executive Committee of the EPS about the current situation in the Middle-East</strong></p><p style="text-align: center;"><strong>2nd November 2023<br /></strong></p><p>We remain convinced of the fundamental importance of the free
  573. exchange of scientific ideas, transcending national boundaries, as a key
  574. vector for the progress of civilization. This progress is hindered by
  575. acts of violence which the EPS will always oppose. Fostering peaceful
  576. international cooperation, EPS played a founding role in the SESAME
  577. facility where both Israel and Palestine are represented and it created
  578. Young Minds sections in Palestine (Bethlehem) and Israel (Jerusalem).</p><p>We
  579. stand with our colleagues of the Israeli Physical Society, a Member
  580. Society of the EPS, and extend our heartfelt support to our Palestinian
  581. colleagues suffering in these dark times.</p>]]></description>
  582. <category>News from the EPS</category>
  583. <pubDate>Thu, 2 Nov 2023 13:27:00 GMT</pubDate>
  584. </item>
  585. <item>
  586. <title>Successful experiment with FAIR detector in Japan – First measurement of nucleus oxygen-28</title>
  587. <link>https://www.eps.org/news/655372/</link>
  588. <guid>https://www.eps.org/news/655372/</guid>
  589. <description><![CDATA[<p>Researchers of the GSI Helmholtzzentrum für Schwerionenforschung and
  590. the Technical University in Darmstadt, together with an international
  591. team, succeeded in producing and detecting the long-sought oxygen atomic
  592. nucleus&nbsp;<sup>28</sup>O for the first time. The experiment was conducted
  593. at the Japanese research center RIKEN. A decisive factor was the
  594. first-time use of the meter-high neutron detector NeuLAND, which weighs
  595. several tons and was developed for the future accelerator center FAIR
  596. (Facility for Antiproton and Ion Research) in Darmstadt. At FAIR, it
  597. will be an important component of one of the first experiments to go
  598. into operation, starting in 2028. The current results are published in
  599. the journal Nature<strong>.</strong></p><p>The experiment was conducted at the Radioactive Ion Beam Factory (RIBF) at the RIKEN research center in Japan. The&nbsp;<sup>28</sup>O nuclei were produced in collisions of accelerated ions of the radioactive fluorine isotope&nbsp;<sup>29</sup>F with a hydrogen target, in which a proton was shot out of the fluorine. Subsequently, the decay of the&nbsp;<sup>28</sup>O into&nbsp;<sup>24</sup>O
  600. and four neutrons had to be measured. Thanks to the utilization of the
  601. NeuLAND neutron detector setup, four neutrons could be observed in
  602. coincidence with the charged remnant nucleus for the first time.</p><p>“NeuLAND
  603. is being developed at GSI/FAIR and built with the participation of
  604. German university groups for the R3B experiment at the FAIR facility.
  605. For the current experiment, we flew the detector to RIKEN in Japan and
  606. recommissioned it on site,” explains Professor Thomas Aumann, who heads
  607. the Research department Nuclear Reactions at GSI/FAIR and holds a
  608. professorship for experimental nuclear physics with exotic ion beams at
  609. TU Darmstadt. “The realization required an extraordinary effort, in
  610. which the Darmstadt groups at GSI/FAIR and the TU Darmstadt made a
  611. central contribution.”</p><p>The most stable oxygen isotope is composed of eight protons and eight neutrons, while&nbsp;<sup>28</sup>O
  612. has eight protons and 20 neutrons. Understanding the properties of such
  613. extremely neutron-rich nuclei is of great importance for the further
  614. development and for tests of modern nuclear theories. These, in turn,
  615. form the basis for predicting and understanding properties of
  616. neutron-rich nuclei and neutron-rich nuclear matter, which play a major
  617. role in our universe, for example in the synthesis of the heavy
  618. elements. They are for example produced in collisions of neutron stars,
  619. which have recently been detected by multi-messenger astronomy using the
  620. measurement of gravitational waves. <br /></p><p>“The result impressively
  621. highlights the relevance and contribution of the detector setups
  622. developed for FAIR, such as in this case the NeuLAND detector, which was
  623. essential to conduct the experiment,” says Professor Paolo Giubellino,
  624. Scientific Managing Director of GSI and FAIR. “Together with our
  625. Japanese colleagues, with whom we have a long-standing successful
  626. collaboration, and in an international team of top researchers, we were
  627. able to achieve this outstanding result, of which all involved can be
  628. very proud.”</p><p>The participation of German universities in the
  629. development and construction of the R3B NeuLAND detector was
  630. substantially supported through the BMBF's collaborative research
  631. program. The experiment was funded by the DFG through the collaborative
  632. research center SFB 1245 “Atomic nuclei: From Fundamental Interactions
  633. to Structure and Stars” at the TU Darmstadt.</p><p>&nbsp;</p><div class="fancybox-caption fancybox-caption--separate"><div class="fancybox-caption__body"><span class="desc"></span><p style="text-align: center;"><em><img alt="" src="https://www.eps.org/resource/resmgr/news/csm_NeuLAND_e4b3e2c7d9.jpg" style="width: 800px;" /><br />The NeuLand measurement setup at GSI/FAIR - <span class="copy">Photo: G. Otto, GSI/FAIR</span></em></p></div></div><p>&nbsp;</p><div class="fancybox-caption fancybox-caption--separate"><div class="fancybox-caption__body"><span class="desc"></span><br /><span class="down"><a href="https://www.gsi.de/fileadmin/oeffentlichkeitsarbeit/pressemitteilungen/2023/NeuLAND.jpg"></a><a href="https://www.gsi.de/fileadmin/_processed_/c/1/csm_NeuLAND_89e60d66d6.jpg"></a></span><br /><span class="copy"></span></div></div><p>&nbsp;</p>]]></description>
  634. <category>News From Europe</category>
  635. <pubDate>Tue, 17 Oct 2023 16:52:00 GMT</pubDate>
  636. </item>
  637. <item>
  638. <title>Nobel Prize in Physics 2023 announced!</title>
  639. <link>https://www.eps.org/news/654966/</link>
  640. <guid>https://www.eps.org/news/654966/</guid>
  641. <description><![CDATA[<p style="text-align: center;"><img alt="" src="https://www.eps.org/resource/resmgr/news/nobel-prize-physics-2023.jpeg" style="width: 750px; height: 750px;" /></p><p style="text-align: center;"><em>Imagte credit: Niklas Elmehed © Nobel Prize Outreach</em></p><hr /><p style="text-align: left;">3rd October 2023 - Press release Nobel Prize Foundation<em></em><br /></p><p><a href="http://www.kva.se/en/" rel="noopener noreferrer" target="_blank" data-mce-href="http://www.kva.se/en/">The Royal Swedish Academy of Sciences</a><span>&nbsp;</span>has decided to award the Nobel Prize in Physics 2023 to</p><p><strong>Pierre Agostini</strong><br />The Ohio State University, Columbus, USA</p><p><strong>Ferenc Krausz</strong><br style="box-sizing: inherit; -webkit-font-smoothing: antialiased;" data-mce-style="box-sizing: inherit; -webkit-font-smoothing: antialiased;" />Max Planck Institute of Quantum Optics, Garching and Ludwig-Maximilians-Universität München, Germany</p><p><strong>Anne L’Huillier</strong><br style="box-sizing: inherit; -webkit-font-smoothing: antialiased;" data-mce-style="box-sizing: inherit; -webkit-font-smoothing: antialiased;" />Lund University, Sweden</p><p><em>“for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter”</em></p><p class="wp-block-heading"><strong>Experiments with light capture the shortest of moments</strong></p><p>The
  642. three Nobel Laureates in Physics 2023 are being recognised for their
  643. experiments, which have given humanity new tools for exploring the world
  644. of electrons inside atoms and molecules. Pierre Agostini, Ferenc Krausz
  645. and Anne L’Huillier have demonstrated a way to create extremely short
  646. pulses of light that can be used to measure the rapid processes in which
  647. electrons move or change energy.</p><p>Fast-moving events flow into
  648. each other when perceived by humans, just like a film that consists of
  649. still images is perceived as continual movement. If we want to
  650. investigate really brief events, we need special technology. In the
  651. world of electrons, changes occur in a few tenths of an attosecond – an
  652. attosecond is so short that there are as many in one second as there
  653. have been seconds since the birth of the universe.</p><p>The laureates’
  654. experiments have produced pulses of light so short that they are
  655. measured in attoseconds, thus demonstrating that these pulses can be
  656. used to provide images of processes inside atoms and molecules.</p><p>In 1987,<span></span><strong>Anne L’Huillier</strong><span>&nbsp;</span>discovered
  657. that many different overtones of light arose when she transmitted
  658. infrared laser light through a noble gas. Each overtone is a light wave
  659. with a given number of cycles for each cycle in the laser light. They
  660. are caused by the laser light interacting with atoms in the gas; it
  661. gives some electrons extra energy that is then emitted as light. Anne
  662. L’Huillier has continued to explore this phenomenon, laying the ground
  663. for subsequent breakthroughs.</p><p>In 2001,<span></span><strong>Pierre Agostini</strong><span>&nbsp;</span>succeeded
  664. in producing and investigating a series of consecutive light pulses, in
  665. which each pulse lasted just 250 attoseconds. At the same time,<span></span><strong>Ferenc Krausz</strong><span>&nbsp;</span>was
  666. working with another type of experiment, one that made it possible to
  667. isolate a single light pulse that lasted 650 attoseconds.</p><p>The
  668. laureates’ contributions have enabled the investigation of processes
  669. that are so rapid they were previously impossible to follow.</p><p>“We
  670. can now open the door to the world of electrons. Attosecond physics
  671. gives us the opportunity to understand mechanisms that are governed by
  672. electrons. The next step will be utilising them,” says Eva Olsson, Chair
  673. of the Nobel Committee for Physics.</p><p>There are potential
  674. applications in many different areas. In electronics, for example, it is
  675. important to understand and control how electrons behave in a material.
  676. Attosecond pulses can also be used to identify different molecules,
  677. such as in medical diagnostics.</p>]]></description>
  678. <category>News from the EPS</category>
  679. <pubDate>Thu, 12 Oct 2023 10:44:00 GMT</pubDate>
  680. </item>
  681. <item>
  682. <title>CERN inaugurates Science Gateway, its new outreach centre for science education</title>
  683. <link>https://www.eps.org/news/654737/</link>
  684. <guid>https://www.eps.org/news/654737/</guid>
  685. <description><![CDATA[<p style="text-align: center;"><span><img alt="" src="https://www.eps.org/resource/resmgr/newsletter-23/CERN-science-gateway-2023.jpg" style="width: 800px;" /></span></p><p style="text-align: center;"><span><em><span style="caret-color: #000000; color: #000000; font-size: 11px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;"><span>From left to right:&nbsp;</span></span><span style="caret-color: #000000; color: #000000; font-size: 11px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; display: inline !important; float: none;">President of the CERN Council,&nbsp;</span><span style="caret-color: #000000; color: #000000; font-size: 11px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;"></span><span style="caret-color: #000000; color: #000000; font-size: 11px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; display: inline !important; float: none;">Eliezer Rabinovici,&nbsp;President of the Swiss Confederation, Alain Berset,&nbsp;</span></em><span style="caret-color: #000000; color: #000000; font-size: 11px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;"><span lang="EN-GB"><em>CERN Director-General, Fabiola Gianotti, Chair of Stellantis, John Elkann, and architect, Renzo Piano, right after cutting the ribbon of Science Gateway, officially declaring the project open.</em></span></span></span></p><p><span>Geneva, 7 October 2023. Today, CERN inaugurated its new
  686. state-of-the-art facility for science education and outreach. In a
  687. day-long inauguration event, CERN debuted&nbsp;<a data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUTvcqSQViwImbmwtuskC1uU1IC0F9E-2BDP4T1U8ymCrNM4VEl_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49Unm3-2F66Ofq1hCwzVUBr63fiei8spCQQErX-2BFQKZSB8o33nhPM-2BGT70Oa2h-2B2hSI-2F5Xukt8OEK1hFiRyXOL63RV7w3xLJlrAM9VPucNgarGFJYTREDnh8Zx6aK6VCmdAPybjVDVcvFmG-2BdgCYXgK5NDy8-3D" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUTvcqSQViwImbmwtuskC1uU1IC0F9E-2BDP4T1U8ymCrNM4VEl_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49Unm3-2F66Ofq1hCwzVUBr63fiei8spCQQErX-2BFQKZSB8o33nhPM-2BGT70Oa2h-2B2hSI-2F5Xukt8OEK1hFiRyXOL63RV7w3xLJlrAM9VPucNgarGFJYTREDnh8Zx6aK6VCmdAPybjVDVcvFmG-2BdgCYXgK5NDy8-3D">Science Gateway</a>&nbsp;to
  688. the President of the Swiss&nbsp;Confederation, ministers and other
  689. high-level authorities from CERN’s Member and Associate Member States,
  690. the project’s donors and partners in CERN’s research, education and
  691. outreach. Designed by world-renowned&nbsp;<a data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=TeZUXWpUv-2B6TCY38pVLo9tUU55AknX8JQQfrrYjfIvs-3DV2Gx_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49UntHACXpQXeOiIc-2BBTNZzmTQFOksjif3vIOm3Jh8vbF1ZGVxfsO2982Wqp3nAgTpeKPJNg-2FNc3Gq7rGTDusU210LiW3mX6PEA0VL5NtUmRS4DA2iQw0K4-2B2zO483pDUC7j8hoP21F713XXLBPpPE50Pk-3D" href="https://u7061146.ct.sendgrid.net/ls/click?upn=TeZUXWpUv-2B6TCY38pVLo9tUU55AknX8JQQfrrYjfIvs-3DV2Gx_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49UntHACXpQXeOiIc-2BBTNZzmTQFOksjif3vIOm3Jh8vbF1ZGVxfsO2982Wqp3nAgTpeKPJNg-2FNc3Gq7rGTDusU210LiW3mX6PEA0VL5NtUmRS4DA2iQw0K4-2B2zO483pDUC7j8hoP21F713XXLBPpPE50Pk-3D">Renzo Piano Building Workshop</a>,
  692. the new facility is open to visitors from around the world, from the
  693. age of five and upwards. It will allow CERN to significantly expand its
  694. portfolio of educational and outreach activities. CERN&nbsp;Science Gateway
  695. will be open to the public as of tomorrow,&nbsp;8 October 2023.<br /><br />The inauguration ceremony began with an address by&nbsp;<a data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc4S4iO7LvdCGQv5rqUmndvSkfQu0moX9IdbkCAG6t4JJ579MH6d0-2BDJLs6D-2BghkZmDIVXW-2BDME7HujWz1lQNLFg70KrKrxzO3pPu6ICI-2BFcZ9nP_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49UnnNIg1aLR-2FHYm68dnreXpIRLv2WNUupcOACEA4rM-2FOO-2BgEpq-2FwMlXN8ecafpLtp1iXVmQNjbA0ejgT2NkeZze9JsQCxmC-2FAyOJzfSxj1o4RiMXn1tTWAckJ-2BSVFwkuE4UDGQO6ASIEG2V8OFUOrnGks-3D" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc4S4iO7LvdCGQv5rqUmndvSkfQu0moX9IdbkCAG6t4JJ579MH6d0-2BDJLs6D-2BghkZmDIVXW-2BDME7HujWz1lQNLFg70KrKrxzO3pPu6ICI-2BFcZ9nP_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49UnnNIg1aLR-2FHYm68dnreXpIRLv2WNUupcOACEA4rM-2FOO-2BgEpq-2FwMlXN8ecafpLtp1iXVmQNjbA0ejgT2NkeZze9JsQCxmC-2FAyOJzfSxj1o4RiMXn1tTWAckJ-2BSVFwkuE4UDGQO6ASIEG2V8OFUOrnGks-3D">Fabiola Gianotti</a>,
  696. the CERN Director-General, who stressed the value of education and
  697. outreach with the public. “Sharing CERN’s research and the beauty and
  698. utility of&nbsp;science with the public has always been a key objective and
  699. activity of CERN, and with Science Gateway, as of tomorrow, we can
  700. expand significantly this component of our mission. We want to show the
  701. importance of&nbsp;fundamental research and its applications to society,
  702. infuse everyone who comes here with curiosity and a passion for science,
  703. and inspire young people to take up careers in Science, Technology,
  704. Engineering and&nbsp;Mathematics (STEM)” she said. “Science Gateway will be a
  705. place where scientists and the public can interact daily. For me,
  706. personally, Science Gateway is a dream that has become a reality and I
  707. am deeply grateful to all&nbsp;the people who have contributed, starting with
  708. our generous donors.”<br /><br /><a data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc4S4iO7LvdCGQv5rqUmndvRjgox8ExxUF8yahIvFyLW-Miy_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49UnuCr4klbCSxFUtu80X4xm7naxOE-2F1Pk-2FM-2FtIJf-2FDsg78uhzNkN1-2BDfBt7hr-2Fntm78JbH8aQHuk5t-2BGCPKc-2BhKHdjcFyYEmWkXnUvz-2B0JBBljjPwFPONMRjONuagJ7FVr7xpGsWoBvJoekkDmuou2fys-3D" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc4S4iO7LvdCGQv5rqUmndvRjgox8ExxUF8yahIvFyLW-Miy_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49UnuCr4klbCSxFUtu80X4xm7naxOE-2F1Pk-2FM-2FtIJf-2FDsg78uhzNkN1-2BDfBt7hr-2Fntm78JbH8aQHuk5t-2BGCPKc-2BhKHdjcFyYEmWkXnUvz-2B0JBBljjPwFPONMRjONuagJ7FVr7xpGsWoBvJoekkDmuou2fys-3D">CERN</a>, the European Laboratory for Particle Physics, is the home of the&nbsp;<a data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvS8KZZmPynhUVdb07SDKsdVxYxzSyIVWZb3PRLoJb72-2B-2FG4LjtqB66UcSweNZs-2Foo-3DFFJF_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49Unv1PrXiZJCZ1dpASWZKqhzEtB6knetPQPfFomEnvAQ2GaYgAgaMqWtDGH-2FTSA9aIbeFWVQHSeOpHUWGywSchvn1MAFv9Ja1pLcSI2d3Qycx9PXCYiTsQosq-2BM2rioTJefH4mpQRmysNFlvQtqveT2xw-3D" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvS8KZZmPynhUVdb07SDKsdVxYxzSyIVWZb3PRLoJb72-2B-2FG4LjtqB66UcSweNZs-2Foo-3DFFJF_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49Unv1PrXiZJCZ1dpASWZKqhzEtB6knetPQPfFomEnvAQ2GaYgAgaMqWtDGH-2FTSA9aIbeFWVQHSeOpHUWGywSchvn1MAFv9Ja1pLcSI2d3Qycx9PXCYiTsQosq-2BM2rioTJefH4mpQRmysNFlvQtqveT2xw-3D">Large Hadron Collider</a>, the world’s largest and most powerful particle accelerator.<br /><br />In
  709. his address, the President of the Swiss Confederation, Alain Berset,
  710. said: “Those familiar with Venn diagrams will agree that this invisible
  711. circle puts CERN at the intersection between Switzerland, France and
  712. Europe, thus&nbsp;symbolising its commitment to shared scientific and
  713. political values. CERN truly is an exceptional facility and one that
  714. enables Switzerland and Geneva to shine on the world stage.”<br /><br />The
  715. iconic building, inspired by the tubular structure of CERN’s
  716. accelerators, comprises five areas housing exhibitions, laboratories and
  717. an auditorium that can be flexibly configured into different spaces
  718. depending on&nbsp;requirements, as well as a shop and a restaurant.&nbsp;<br /><br />The
  719. transparent glass panels and bridges further represent CERN’s
  720. commitment to collaboration across borders and culture and open science
  721. that is accessible to all.<br /><br />Renzo Piano, chief architect of the
  722. project, said: “This will be a place where people meet: kids, students,
  723. adults, teachers and scientists, everybody attracted by the exploration
  724. of the Universe, from the infinitely vast to the&nbsp;infinitely small. It is
  725. a bridge, in both a metaphorical and a real sense. This building is fed
  726. by the energy of the Sun, landed in the middle of a newly grown
  727. forest.”<br /><br />Not only is the building visually striking, but CERN and
  728. the architects committed to it being fully carbon neutral, and almost
  729. 4000 square metres of solar panels supply more power than the building’s
  730. needs. Over 400 trees&nbsp;have been planted, situating the whole campus in a
  731. living forest.&nbsp;<br /><br />While the full project was launched in 2018,
  732. construction of the Science Gateway campus took just over two years,
  733. with the first stone of the building being laid on&nbsp;<a data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUZNwZ4zLyzOebsryBBP7XUhiA27-2BM77xkyI5XgId4mNxTmy2ZtFwgXzN4VyaqhO-2BOWdFU51ys6qM9u3PLomquYsBhKZjB-2B0jO93VOYbQKSI0wn8F_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49Unn32d2RA7HNU8iM1FsBwrRR3f6AyUGad9XhwZdJ-2B7P711qPUBgGXv7b7eK9hGTNTVNslUaXrKchqe7-2FODmkVsJ3YCmy-2Footf2i16LyTKqyitG9elgkyCkpHr2vBdcvGEbx-2FvQqKBDqYs68GiW0NRvBs-3D" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUZNwZ4zLyzOebsryBBP7XUhiA27-2BM77xkyI5XgId4mNxTmy2ZtFwgXzN4VyaqhO-2BOWdFU51ys6qM9u3PLomquYsBhKZjB-2B0jO93VOYbQKSI0wn8F_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49Unn32d2RA7HNU8iM1FsBwrRR3f6AyUGad9XhwZdJ-2B7P711qPUBgGXv7b7eK9hGTNTVNslUaXrKchqe7-2FODmkVsJ3YCmy-2Footf2i16LyTKqyitG9elgkyCkpHr2vBdcvGEbx-2FvQqKBDqYs68GiW0NRvBs-3D">21 June 2021</a>.<br /><br />This
  734. new facility would not have been possible without the generous support
  735. of the&nbsp;CERN Science Gateway sponsors, who share the same values and,
  736. through their contributions, want to pay tribute to education
  737. and&nbsp;knowledge for the benefit of society. The overall cost of Science
  738. Gateway was about 100 million Swiss francs, and this was funded
  739. exclusively through donations. In particular, the&nbsp;<a data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUTDrk7LNbqljKpGK86DXsPWeeTTg3fVBBO1cFf-2FBnSsuzYdF_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49UnizUrWsL3A9dkEQf6Kc-2BvRt2tMgkSh55le8DJ76DBrFeCwXIpsvvPyNCETxW1h5Hkhy-2FWDJqq00wcedfPkNQ3ja5u9eIzrj8Ykyk0gxKqSdE1ObTy9nu-2BsyAJ0Ee1lEJFvzVHAzIr-2FbNJ9DmzI5SwHo-3D" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUTDrk7LNbqljKpGK86DXsPWeeTTg3fVBBO1cFf-2FBnSsuzYdF_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozaBBztP3XEcb5sRJ0zCfzbeSST7RINw27nMttfANlamiuiOW61zBnoGKJ4NxkA7miDPOrjyhrd81HFdUer49UnizUrWsL3A9dkEQf6Kc-2BvRt2tMgkSh55le8DJ76DBrFeCwXIpsvvPyNCETxW1h5Hkhy-2FWDJqq00wcedfPkNQ3ja5u9eIzrj8Ykyk0gxKqSdE1ObTy9nu-2BsyAJ0Ee1lEJFvzVHAzIr-2FbNJ9DmzI5SwHo-3D">Stellantis Foundation</a>&nbsp;is
  740. the largest single&nbsp;donor and contributed 45 million Swiss francs
  741. towards the project. John Elkann, Chairman of Stellantis, said: “CERN is
  742. an example of how we can work together in harmony, using scientific
  743. knowledge and ingenuity for the&nbsp;greater good. Stellantis Foundation is
  744. proud to partner with such an institution as it opens to the public the
  745. new Science Gateway, which also celebrates a great innovator like Sergio
  746. Marchionne. My family and I strongly&nbsp;believe in the power of education,
  747. which is the mission of the Fondazione Agnelli : a commitment we
  748. reinforce today with conviction and passion.”<br /><br />As part of wider
  749. society, Stellantis takes action to advance human achievement.
  750. Stellantis, through its philanthropic activities and its Foundation,
  751. invests in individuals through education projects that spark innovation
  752. and&nbsp;excellence.&nbsp;<br /><br />The Fondation Hans Wilsdorf is also a major
  753. donor. Other donors are the LEGO foundation, the Loterie Romande, Ernst
  754. Göhner Stiftung, Rolex, the Carla Fendi Foundation, the Fondation
  755. Gelbert, Solvay, the Fondation&nbsp;Meyrinoise du Casino and the town of
  756. Meyrin. CERN thanks the République et Canton de Genève and the CERN and
  757. Society Foundation for their support.<br /><br />The ceremony took place in
  758. the new 900-seat auditorium, named after Sergio Marchionne, former CEO
  759. of Fiat Chrysler Automobiles, who recently passed away. Guests visited
  760. the education laboratories and the unique&nbsp;immersive exhibitions and
  761. enjoyed the Big Bang Café, the Collider Circle square and other areas of
  762. the Science Gateway campus.<br /><br />Throughout the day, guided by CERN
  763. scientists and children of CERN personnel, visitors were able to
  764. experience first-hand the range of Science Gateway’s opportunities, from
  765. interactive exhibitions to laboratories for&nbsp;hands-on experiments and
  766. immersive spaces. They also had the opportunity to appreciate CERN’s
  767. scientific breakthroughs and technologies, learn about the history of
  768. the Universe and admire the mysteries of the quantum&nbsp;world. Teenagers
  769. guided guests through various enquiry-based laboratory activities
  770. throughout the afternoon.&nbsp;<br /><br />Eliezer Rabinovici, President of the
  771. CERN Council, speaking on behalf of CERN’s Member and Associate Member
  772. States, said: “Today we celebrate the courage and passion to innovate
  773. that CERN has always demonstrated&nbsp;and the commitment to share the fruits
  774. of its research with people from all countries and of all ages. May the
  775. science leaders of tomorrow come from among the curious children who
  776. will fill this wonderful place with joy in the&nbsp;coming years.”</span></p><p><span>The
  777. new centre is expected to host up to 500 000 visitors a year from
  778. across the world. Science Gateway will be free of charge and open 6 days
  779. a week, from Tuesday to Sunday. </span></p>]]></description>
  780. <category>News From Europe</category>
  781. <pubDate>Tue, 10 Oct 2023 15:23:00 GMT</pubDate>
  782. </item>
  783. <item>
  784. <title>The CTAO will double its staff as major infrastructure development begins In 2024</title>
  785. <link>https://www.eps.org/news/652350/</link>
  786. <guid>https://www.eps.org/news/652350/</guid>
  787. <description><![CDATA[<p style="text-align: center;"><em><img alt="" src="https://www.eps.org/resource/resmgr/news/Chile_V04_Final-scaled.jpeg" style="width: 750px;" /></em></p><p style="text-align: center;"><em>Rendering of the southern array site, <a href="https://www.cta-observatory.org/about/locations/ctao-south/" rel="noopener" target="_blank" data-mce-href="https://www.cta-observatory.org/about/locations/ctao-south/">CTAO-South</a>, located in Chile. Credit: CTAO</em></p><p style="text-align: left;"><em>&nbsp;</em></p><p><strong>Bologna, Italy –</strong> <strong>On 6 September 2023, the Cherenkov
  788. Telescope Array Observatory’s (CTAO’s) two governing bodies, the Board
  789. of Governmental Representatives (BGR) and the <a href="https://www.cta-observatory.org/about/governance/" rel="noopener" target="_blank" data-mce-href="https://www.cta-observatory.org/about/governance/">CTAO gGmbH Council</a>,
  790. gathered to agree on the significant forthcoming measures to advance
  791. the Observatory to its construction phase. During the meeting, both
  792. bodies unanimously certified their commitment to the progress of the
  793. CTAO, including a foreseen endorsement of up to approximately 30 million
  794. euro for 2024. This represents a significant increase in annual
  795. funding, which will enable the Observatory to not only move forward with
  796. substantial infrastructure development but also to double its
  797. workforce.</strong></p><p>The CTAO is in the process of a two-step application to
  798. transition from a gGmbH (under the German law) to a European Research
  799. Infrastructure Consortium (ERIC, under the European law). While the <a href="https://www.cta-observatory.org/bgr-submits-step2-application-ctao-eric/" rel="noopener" target="_blank" data-mce-href="https://www.cta-observatory.org/bgr-submits-step2-application-ctao-eric/">first step has been completed</a>,
  800. discussions with the European Commission concerning the second step are
  801. still ongoing. The agreement between the BGR, comprised of
  802. representatives of the future legal entity’s member countries, and the
  803. CTAO gGmbH Council, allows the project to proceed in the meantime.</p><p>“While
  804. we continue to work towards obtaining the ERIC status, the member
  805. countries and organisations within the BGR are prepared to advance the
  806. project to its next phase,” explains Aldo Covello, Chair of the BGR.
  807. Markus Schleier, Chair of the CTAO gGmbH Council, stated: “The pledge of
  808. the BGR and the agreement we have reached in the Council will not only
  809. ensure the stability of the project but will undoubtedly help the CTAO
  810. attract new talent and investment as it continues to grow.”</p><p>The
  811. current legal entity of the CTAO, the CTAO gGmbH, and its partners have
  812. carried out extensive design and pre-construction activities, including
  813. the advancement of telescopes, such as the LST-1, the prototype of the
  814. Large-Sized Telescope under commissioning on the CTAO-North site in La
  815. Palma, Spain. In 2024, the Observatory plans to open at least 30 new
  816. positions and start major infrastructure development including building
  817. roads, power systems, and foundations for its southern array site in the
  818. Atacama Desert (Chile). Together with the very important developments
  819. in the northern array site, this represents a major milestone for the
  820. project.</p><p>These steps will bring the Observatory closer to realizing <a href="https://www.cta-observatory.org/ctao-releases-layouts-for-alpha-configuration/" rel="noopener" target="_blank" data-mce-href="https://www.cta-observatory.org/ctao-releases-layouts-for-alpha-configuration/">its planned 64 telescopes</a>, which will deliver an unprecedented sensitivity in the quest to unveil new discoveries in the high-energy gamma-ray Universe.</p>]]></description>
  821. <category>News International </category>
  822. <pubDate>Mon, 25 Sep 2023 12:21:00 GMT</pubDate>
  823. </item>
  824. <item>
  825. <title>Commission and UK reach political agreement on UK participation in Horizon Europe and Copernicus</title>
  826. <link>https://www.eps.org/news/651039/</link>
  827. <guid>https://www.eps.org/news/651039/</guid>
  828. <description><![CDATA[<div class="ecl-paragraph"><p><strong>The European Commission and the United Kingdom <a href="https://ec.europa.eu/commission/presscorner/detail/en/statement_23_4375" data-mce-href="https://ec.europa.eu/commission/presscorner/detail/en/statement_23_4375">reached a political agreement on 7th September 2023</a>
  829. on the UK's participation in Horizon Europe, the EU's research and
  830. innovation programme, and Copernicus, the EU's world-leading Earth
  831. observation programme.</strong></p><p>President of the European Commission, Ursula <strong>von der Leyen</strong>, said: <em>“The
  832. EU and UK are key strategic partners and allies, and today's agreement
  833. proves that point. We will continue to be at the forefront of global
  834. science and research.”</em></p><p>This mutually agreed solution follows
  835. in-depth discussions between the EU and the UK and will be beneficial to
  836. both. It will allow the EU and UK to deepen their relationship in
  837. research, innovation and space, bringing together research and space
  838. communities.</p><p>Today's agreement remains fully in line with the
  839. EU-UK Trade and Cooperation Agreement. The UK will be required to
  840. contribute financially to the EU budget and is subject to all the
  841. safeguards of the Trade and Cooperation Agreement. Overall, it is
  842. estimated that the UK will contribute almost €2.6 billion per year on
  843. average for its participation to both Horizon Europe and the Copernicus
  844. component of the Space programme.</p><p><strong>In more detail</strong></p><p>As of 1 January 2024, researchers and organisations in the UK will be able to participate in <strong>Horizon Europe</strong>
  845. on par with their counterparts in EU Member States and will have access
  846. to Horizon Europe funding. This will reinforce the opportunity to be
  847. part of a worldwide network of researchers and innovators aimed at
  848. tackling global challenges in climate, energy, mobility, digital,
  849. industry and space, health, and more.</p><p>Association to<strong> Copernicus </strong>will
  850. enable the UK's contribution to a strategically important space
  851. programme with a state-of-the art capacity to monitor the Earth and to
  852. access its services. Copernicus makes an essential contribution in
  853. reaching our European Green Deal and net-zero objectives.</p><p>The UK will also have access to services from the EU Space Surveillance and Tracking, a component of the EU Space Programme.</p><p><strong>Next steps</strong></p><p>Today's
  854. political agreement must now be approved by the Council before being
  855. formally adopted in the EU-UK Specialised Committee on Participation in
  856. Union Programmes.</p><p><strong>Background</strong></p><p>The UK
  857. association to certain EU programmes is governed by the Trade and
  858. Cooperation Agreement. The agreement on the Windsor Framework earlier
  859. this year allowed the EU and the UK to open a new chapter in their
  860. partnership, based on mutual trust and full cooperation.</p><p><strong>For more information</strong></p><ul><li><a href="https://ec.europa.eu/commission/presscorner/detail/en/statement_23_4375" data-mce-href="https://ec.europa.eu/commission/presscorner/detail/en/statement_23_4375">Joint statement by the European Commission and UK Government</a><br data-mce-bogus="1" /></li><li><a href="https://ec.europa.eu/commission/presscorner/detail/en/qanda_23_4373" data-mce-href="https://ec.europa.eu/commission/presscorner/detail/en/qanda_23_4373">Questions and Answers</a><br data-mce-bogus="1" /></li><li><a href="https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en" data-mce-href="https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en">Horizon Europe</a><br data-mce-bogus="1" /></li><li><a href="https://www.copernicus.eu/en" data-mce-href="https://www.copernicus.eu/en">Copernicus</a><br data-mce-bogus="1" /></li><li><a href="https://www.eusst.eu/" data-mce-href="https://www.eusst.eu/">EU SST – EU Space Surveillance and Tracking</a><br data-mce-bogus="1" /></li></ul></div>]]></description>
  861. <category>News From Europe</category>
  862. <pubDate>Fri, 8 Sep 2023 09:50:00 GMT</pubDate>
  863. </item>
  864. <item>
  865. <title>On the track of elusive neutrinos</title>
  866. <link>https://www.eps.org/news/650918/</link>
  867. <guid>https://www.eps.org/news/650918/</guid>
  868. <description><![CDATA[<p style="text-align: center;"><img alt="" src="https://www.eps.org/resource/resmgr/news/08prismaproject8phaseIIdrama.png" style="width: 750px;" /><br />View to Seattle: While the Project 8 group in Mainz is focusing on the
  869. development of atomic sources, the first prototypes of the experiment
  870. have been built in the USA. The device shown here is the second built by
  871. the collaboration and the first to use tritium. ©/Foto: A. Lindman /
  872. Project 8 Collaboration<br /></p><p style="text-align: left;">&nbsp;</p><p><strong>University of Mainz, 7th September 2023. Important milestone reached in "Project 8" experiment to measure neutrino mass</strong></p><p>Neutrinos
  873. are ubiquitous elementary particles that interact only very weakly with
  874. normal matter. Therefore, they usually penetrate it unhindered and are
  875. therefore also called ghost particles. Nevertheless, neutrinos play a
  876. predominant role in the early universe. In order to fully explain how
  877. our universe evolved, we need above all to know their mass. But so far,
  878. it has not been possible to determine this mass.</p><p>The international
  879. Project 8 collaboration wants to change this with its new experiment.
  880. For the first time, Project 8 is using a completely new technology to
  881. determine the neutrino mass, the so-called "Cyclotron Radiation Emission
  882. Spectroscopy" - CRES for short. In a recent publication in the renowned
  883. journal&nbsp;<em>Physical Review Letters</em>, the Project 8 collaboration
  884. has now been able to show that the CRES method is indeed suitable for
  885. determining the neutrino mass and has already set an upper limit for
  886. this fundamental quantity in a first measurement – an important
  887. milestone has thus been reached. From Johannes Gutenberg University
  888. Mainz (JGU), the research groups of Prof. Dr. Martin Fertl and Prof. Dr.
  889. Sebastian Böser are involved, both researchers at the Cluster of
  890. Excellence PRISMA<sup>+</sup>. Dr. Christine Claessens, former PhD
  891. student of Sebastian Böser and now postdoc at the University of
  892. Washington in Seattle (USA), made a crucial contribution to the current
  893. publication as part of her PhD thesis.</p><p><strong>Electrons as the key to neutrino mass</strong></p><p>The
  894. Project 8 experiment uses the beta decay of radioactive tritium to
  895. track neutrino mass. Tritium is a heavy relative of hydrogen – a
  896. so-called isotope. It is unstable and consists of one proton and two
  897. neutrons. By converting one of these neutrons into a proton, tritium
  898. decays to helium while emitting an electron and an antineutrino. "And
  899. here's the kicker," says Martin Fertl. "Since neutrinos and their
  900. antiparticles have no electric charge, they are very difficult to
  901. detect. Therefore, we don't even try to detect them. Instead, we measure
  902. the energy of the resulting electrons via their orbital frequency in a
  903. magnetic field. Based on the shape of the energy spectrum of the
  904. electrons, we then determine the neutrino mass, or set an upper limit on
  905. that mass in this way."</p><p><strong>Very precise measurement of electron energy is necessary</strong></p><p>To
  906. obtain reliable results, the energy of the electrons must be measured
  907. extremely precisely. This is because the resulting (anti)neutrino is
  908. incredibly light, at least 500,000 times lighter than an electron. "When
  909. neutrinos and electrons are produced simultaneously, the neutrino mass
  910. has only a tiny effect on the electron's motion. And we want to see this
  911. small effect," explains Sebastian Böser. The method that makes this
  912. possible is called "Cyclotron Radiation Emission Spectroscopy" (CRES).
  913. It registers the microwave radiation emitted by the nascent electrons
  914. when they are forced into a circular path in a magnetic field. The
  915. frequency of the emitted radiation can be determined extremely precisely
  916. and then the mass of the neutrino can be inferred from the electron
  917. energy.</p><p>To make this work, Christine Claessens has made a decisive
  918. experimental contribution: "As part of my doctoral thesis, I developed,
  919. among other things, an event detection system consisting of a real-time
  920. trigger and an offline event reconstruction. This system searches for
  921. the characteristic CRES features in the continuously digitized and
  922. processed radio frequency signal. Reconstruction of the start frequency
  923. of each electron event enables high-precision recording of a tritium
  924. decay spectrum." On this basis, Christine Claessens succeeded in
  925. analyzing the first tritium spectrum recorded with CRES with respect to
  926. systematic uncertainties – and thus in calculating a first upper limit
  927. for the neutrino mass with this new technology, which has now found its
  928. way into the latest publication.</p><p>There, the Project 8
  929. collaboration specifically reports 3,770 tritium-beta decay events that
  930. were registered over a period of 82 days in a sample cell the size of a
  931. single pea. The sample cell is cooled to very low temperatures and
  932. placed in a magnetic field that causes the escaping electrons to travel
  933. in a circular path long enough for the detectors to register a microwave
  934. signal. Crucially, no false signals or background events are registered
  935. that could be mistaken for or mask the "real signal". "The resulting
  936. first-time determination of the upper limit for the neutrino mass with a
  937. purely frequency-based measurement technique is a very promising
  938. result, since we can measure frequencies very accurately nowadays,"
  939. Sebastian Böser and Martin Fertl conclude.</p><p><strong>Next steps are already underway</strong></p><p>After
  940. the successful proof of principle, the next step is ready: For the
  941. final experiment, the researchers need individual tritium atoms, which
  942. they create from the fission of tritium molecules. This is tricky
  943. because tritium, like hydrogen, prefers to form molecules. Developing
  944. such a source – first for atomic hydrogen and later for atomic tritium –
  945. is an important contribution of the Mainz team.</p><p>At the moment the
  946. Project 8 collaboration, which includes members from ten research
  947. institutions worldwide, is working on testing designs for scaling up the
  948. experiment from a pea-sized sample chamber to one a thousand times
  949. larger. This will allow far more beta decay events to be registered. At
  950. the end of a multi-year research and development program, the Project 8
  951. experiment should eventually surpass the sensitivity of previous
  952. experiments – such as the current KATRIN experiment – to provide a value
  953. for neutrino mass for the first time.</p><p><strong>&nbsp;</strong></p>]]></description>
  954. <category>News From Europe</category>
  955. <pubDate>Thu, 7 Sep 2023 11:06:00 GMT</pubDate>
  956. </item>
  957. <item>
  958. <title>Furthest ever detection of a galaxy’s magnetic field</title>
  959. <link>https://www.eps.org/news/650916/</link>
  960. <guid>https://www.eps.org/news/650916/</guid>
  961. <description><![CDATA[<img alt="" src="https://www.eps.org/resource/resmgr/news/eso2316a.jpg" style="width: 750px;" /><p style="text-align: center;"><em>ALMA view of the 9io9 galaxy - © ESO<br /></em></p><p class="text_intro pr_first"><strong>ESO, 6th September 2023. Using the Atacama Large
  962. Millimeter/submillimeter Array (ALMA), astronomers have detected the
  963. magnetic field of a galaxy so far away that its light has taken more
  964. than 11 billion years to reach us: we see it as it was when the Universe
  965. was just 2.5 billion years old. The result provides astronomers with
  966. vital clues about how the magnetic fields of galaxies like our own Milky
  967. Way came to be.</strong></p><p dir="ltr">Lots of astronomical bodies in the Universe have magnetic fields, whether it be planets, stars or galaxies. “<em>Many
  968. people might not be aware that our entire galaxy and other galaxies are
  969. laced with magnetic fields, spanning tens of thousands of light-years</em>,”
  970. says James Geach, a professor of astrophysics at the University of
  971. Hertfordshire, UK, and lead author of the study published today in <em>Nature</em>.</p><p dir="ltr">“<em>We actually know very little about how these fields form, despite their being quite fundamental to how galaxies evolve</em>,”
  972. adds Enrique Lopez Rodriguez, a researcher at Stanford University, USA,
  973. who also participated in the study. It is not clear how early in the
  974. lifetime of the Universe, and how quickly, magnetic fields in galaxies
  975. form because so far astronomers have only mapped magnetic fields in
  976. galaxies close to us.</p><p dir="ltr">Now, using<a href="https://www.eso.org/public/teles-instr/alma/" data-mce-href="https://www.eso.org/public/teles-instr/alma/"> ALMA</a>, in which the European Southern Observatory (<a href="https://www.eso.org/public/" data-mce-href="https://www.eso.org/public/">ESO</a>)
  977. is a partner, Geach and his team have discovered a fully formed
  978. magnetic field in a distant galaxy, similar in structure to what is
  979. observed in nearby galaxies. The field is about 1000 times weaker than
  980. the Earth’s magnetic field, but extends over more than 16&nbsp;000
  981. light-years.</p><p dir="ltr">“<em>This discovery gives us new clues as to how galactic-scale magnetic fields are formed,</em>”
  982. explains Geach. Observing a fully developed magnetic field this early
  983. in the history of the Universe indicates that magnetic fields spanning
  984. entire galaxies can form rapidly while young galaxies are still growing.</p><p dir="ltr">The
  985. team believes that intense star formation in the early Universe could
  986. have played a role in accelerating the development of the fields.
  987. Moreover, these fields can in turn influence how later generations of
  988. stars will form. Co-author and ESO astronomer Rob Ivison says that the
  989. discovery opens up <em>“a new window onto the inner workings of galaxies, because the magnetic fields are</em><em>&nbsp;linked to the material that is forming new stars.”</em></p><p dir="ltr">To make this detection, the team searched for light emitted by dust grains in a distant galaxy, 9io9 <a href="https://www.eso.org/public/news/eso2316/?lang#1" data-mce-href="https://www.eso.org/public/news/eso2316/?lang#1">[1]</a>.
  990. Galaxies are packed full of dust grains and when a magnetic field is
  991. present, the grains tend to align and the light they emit becomes<a href="https://www.eso.org/public/teles-instr/technology/polarimetry/" data-mce-href="https://www.eso.org/public/teles-instr/technology/polarimetry/"> polarised</a>.
  992. This means that the light waves oscillate along a preferred direction
  993. rather than randomly. When ALMA detected and mapped a polarised signal
  994. coming from 9io9, the presence of a magnetic field in a very distant
  995. galaxy was confirmed for the first time.</p><p dir="ltr">“<em>No other telescope could have achieved this</em>,”
  996. says Geach. The hope is that with this and future observations of
  997. distant magnetic fields the mystery of how these fundamental galactic
  998. features form will begin to unravel.</p><h3>Notes</h3><p><a class="anchor mceItemAnchor" name="1"></a>[1]
  999. 9io9 was discovered in the course of a citizen science project. The
  1000. discovery was helped by viewers of the British BBC television programme
  1001. Stargazing Live, when over three nights in 2014 the audience was asked
  1002. to examine millions of images in the hunt for distant galaxies.</p><h3>Links</h3><ul><li><a href="https://www.eso.org/public/archives/releases/sciencepapers/eso2316/eso2316a.pdf" data-mce-href="https://www.eso.org/public/archives/releases/sciencepapers/eso2316/eso2316a.pdf">Research paper</a><br data-mce-bogus="1" /></li><li><a href="https://www.eso.org/public/images/archive/category/alma/" data-mce-href="https://www.eso.org/public/images/archive/category/alma/">Photos of ALMA</a><br data-mce-bogus="1" /></li></ul>]]></description>
  1003. <category>News From Europe</category>
  1004. <pubDate>Thu, 7 Sep 2023 10:59:00 GMT</pubDate>
  1005. </item>
  1006. <item>
  1007. <title>New type of star gives clues to mysterious origin of magnetars</title>
  1008. <link>https://www.eps.org/news/649270/</link>
  1009. <guid>https://www.eps.org/news/649270/</guid>
  1010. <description><![CDATA[<p class="text_intro pr_first" style="text-align: center;"><img alt="" src="https://www.eps.org/resource/resmgr/news/eso2313a.jpg" style="width: 750px;" /></p><p class="text_intro pr_first" style="text-align: center;"><em>Artist’s impression of HD 45166, the star that might become a magnetar - © ESO<br /></em></p><p class="text_intro pr_first"><strong>Magnetars are the strongest magnets in
  1011. the Universe. These super-dense dead stars with ultra-strong magnetic
  1012. fields can be found all over our galaxy but astronomers don’t know
  1013. exactly how they form. Now, using multiple telescopes around the world,
  1014. including European Southern Observatory (ESO) facilities, researchers
  1015. have uncovered a living star that is likely to become a magnetar. This
  1016. finding marks the discovery of a new type of astronomical object —
  1017. massive magnetic helium stars — and sheds light on the origin of
  1018. magnetars.</strong></p>
  1019. <p dir="ltr">Despite having been observed for over 100 years, the
  1020. enigmatic nature of the star HD 45166 could not be easily explained by
  1021. conventional models, and little was known about it beyond the fact that
  1022. it is one of a pair of stars <a href="https://www.eso.org/public/news/eso2313/?lang#1">[1]</a>, is rich in helium and is a few times more massive than our Sun.</p>
  1023. <p dir="ltr">“<em>This star became a bit of an obsession of mine</em>,”
  1024. says Tomer Shenar, the lead author of a study on this object published
  1025. today in Science and an astronomer at the University of Amsterdam, the
  1026. Netherlands. “<em>Tomer and I refer to HD 45166 as the ‘zombie star</em><strong>’</strong>,” says co-author and ESO astronomer Julia Bodensteiner, based in Germany. “<em>This is not only because this star is so unique, but also because I jokingly said that it turns Tomer into a zombie.</em>"</p>
  1027. <p dir="ltr">Having studied similar helium-rich stars before, Shenar
  1028. thought magnetic fields could crack the case. Indeed, magnetic fields
  1029. are known to influence the behaviour of stars and could explain why
  1030. traditional models failed to describe HD 45166, which is located about
  1031. 3000 light-years away in the constellation Monoceros. “<em>I remember having a Eureka moment while reading the literature: ‘What if the star is magnetic?’,</em>” says Shenar, who is currently based at the Centre for Astrobiology in Madrid, Spain.</p>
  1032. <p dir="ltr">Shenar and his team set out to study the star using
  1033. multiple facilities around the globe. The main observations were
  1034. conducted in February 2022 using an instrument on the
  1035. Canada-France-Hawaii Telescope that can detect and measure magnetic
  1036. fields. The team also relied on key archive data taken with the
  1037. Fiber-fed Extended Range Optical Spectrograph (<a href="https://www.eso.org/public/teles-instr/lasilla/mpg22/feros/">FEROS</a>) at ESO’s <a href="https://eso.org/public/teles-instr/lasilla/">La Silla Observatory</a> in Chile.</p>
  1038. <p dir="ltr">Once the observations were in, Shenar asked co-author Gregg
  1039. Wade, an expert on magnetic fields in stars at the Royal Military
  1040. College of Canada, to examine the data. Wade’s response confirmed
  1041. Shenar’s hunch: “<em>Well my friend, whatever this thing is — it is definitely magnetic.</em>”</p>
  1042. <p dir="ltr">Shenar's team had found that the star has an incredibly strong magnetic field, of 43 000 <a href="https://en.wikipedia.org/wiki/Gauss_(unit)">gauss</a>, making HD 45166 the most magnetic massive star found to date <a href="https://www.eso.org/public/news/eso2313/?lang#2">[2]</a>. “<em>The&nbsp;</em><em>entire surface of the helium star has a magnetic field almost 100,000 times stronger than Earth's,</em>” explains co-author Pablo Marchant, an astronomer at KU Leuven’s Institute of Astronomy in Belgium [see edit].&nbsp;</p>
  1043. <p dir="ltr">This observation marks the discovery of the very first massive magnetic helium star. “<em>It is exciting to uncover a new type of astronomical object,</em>” says Shenar, ”<em>especially when it’s been hiding in plain sight all along.</em>”</p>
  1044. <p dir="ltr">Moreover, it provides clues to the origin of magnetars,
  1045. compact dead stars laced with magnetic fields at least a billion times
  1046. stronger than the one in HD 45166. The team’s calculations suggest that
  1047. this star will end its life as a magnetar. As it collapses under its own
  1048. gravity, its magnetic field will strengthen, and the star will
  1049. eventually become a very compact core with a magnetic field of around
  1050. 100 trillion gauss <a href="https://www.eso.org/public/news/eso2313/?lang#3">[3]</a> — the most powerful type of magnet in the Universe.</p>
  1051. <p dir="ltr">Shenar and his team also found that HD 45166 has a mass
  1052. smaller than previously reported, around twice the mass of the Sun, and
  1053. that its stellar pair orbits at a far larger distance than believed
  1054. before. Furthermore, their research indicates that HD 45166 formed
  1055. through the merger of two smaller helium-rich stars. “<em>Our findings completely reshape our understanding of HD 45166</em>,” concludes Bodensteiner.</p>
  1056. <p dir="ltr"><em>Edit [17 August]: the quote by Pablo Marchant was
  1057. changed since a unit conversion mistake led to the previous version
  1058. being incorrect.</em></p>
  1059. <h3>Notes</h3><p dir="ltr"><a class="anchor" name="1"></a>[1] While HD 45166 is a binary system, in this text HD 45166 refers to the helium-rich star, not to both stars.</p>
  1060. <p dir="ltr"><a class="anchor" name="2"></a>[2] The magnetic field of 43 000 gauss is the strongest magnetic field ever detected in a star that exceeds the <a href="https://en.wikipedia.org/wiki/Chandrasekhar_limit">Chandrasekhar mass limit</a>, which is the critical limit above which stars may collapse into neutron stars (magnetars are a type of neutron star).</p>
  1061. <p dir="ltr"><a class="anchor" name="3"></a>[3] In this text, a billion refers to one followed by nine zeros and a trillion refers to one followed by 12 zeros.</p>]]></description>
  1062. <category>News From Europe</category>
  1063. <pubDate>Fri, 18 Aug 2023 07:37:00 GMT</pubDate>
  1064. </item>
  1065. <item>
  1066. <title>ATLAS sets record precision on Higgs boson’s mass</title>
  1067. <link>https://www.eps.org/news/648073/</link>
  1068. <guid>https://www.eps.org/news/648073/</guid>
  1069. <description><![CDATA[<p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><strong><span style="font-size: 14px;" data-mce-style="font-size: 14px;"><span lang="EN-US"><span style="font-family: Arial, sans-serif;" data-mce-style="font-family: Arial, sans-serif;"><img alt="ATLAS-Higgs_decay_2_photons.png" src="https://eu.vocuspr.com/Publish/2960786/vcsPRAsset_2960786_97881_1fe67292-f99c-462c-89b6-1f17e114b6dd_0.png" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;" width="600" height="337" /></span></span></span></strong></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><strong><span style="font-size: 14px;" data-mce-style="font-size: 14px;"><span lang="EN-US"><span style="font-family: Arial, sans-serif;" data-mce-style="font-family: Arial, sans-serif;">New result from the ATLAS experiment at CERN reaches the unprecedented precision of 0.09%</span></span></span></strong></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;">&nbsp;</p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;"><span style="font-family: Arial, Helvetica, sans-serif;" data-mce-style="font-family: Arial, Helvetica, sans-serif;"><span style="font-size: 14px;" data-mce-style="font-size: 14px;"><span style="color: black;" data-mce-style="color: black;"><span lang="EN-US">In the 11 years since its discovery at the <span class="Apple-converted-space"></span></span></span><span lang="EN-US"><span style="text-decoration: underline;" data-mce-style="text-decoration: underline;"><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUbu54SGOJ2jHHD7Cp1OOp6wajqmrJV82xTzbNUdpev19SZ1knBoAtwzh92dmeSiM5mKWnlm0DIWrXbgYXjodpnM-3D9xWZ_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAPuQXBB-2FzC2YKRu5Y4V4g-2BiS-2BnY0QobGI2NiNmupm2DoNQlD3uW4kvfgs4yyrsGzlJEj9EHo4NxXlYpXP1w62PtNP5MGY5c7K6MDe8OsHlGScU6B-2Fw-2BbUKEWODsuhKNRin-2FVn-2FAgGJcs8C5q4CSeSfo-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUbu54SGOJ2jHHD7Cp1OOp6wajqmrJV82xTzbNUdpev19SZ1knBoAtwzh92dmeSiM5mKWnlm0DIWrXbgYXjodpnM-3D9xWZ_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAPuQXBB-2FzC2YKRu5Y4V4g-2BiS-2BnY0QobGI2NiNmupm2DoNQlD3uW4kvfgs4yyrsGzlJEj9EHo4NxXlYpXP1w62PtNP5MGY5c7K6MDe8OsHlGScU6B-2Fw-2BbUKEWODsuhKNRin-2FVn-2FAgGJcs8C5q4CSeSfo-3D"><span style="color: #2980b9;" data-mce-style="color: #2980b9;">Large Hadron Collider</span></a></span><span style="color: #2980b9;" data-mce-style="color: #2980b9;"></span></span><span style="color: black;" data-mce-style="color: black;"> (LHC), the <span class="Apple-converted-space"></span></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XswC-2B7NIy-2F8s9eIUhZuqbYWh1V5HItPW6T0-2BS3ZyJmCTQ-3D-3D3YSu_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAFpVz0GL0bNE6VDCKi0NPBI9KDRBzz6zM-2FvjrWDyqb1-2BJhFCxZp2E4ND1Dl4GFs1gQQld7-2FQqhpo8M8h65D-2FLlRHSan7r5NOPSX-2FObLs1qixiwrUu-2BEZmvkK4d2YNOOs0O8Ne5fILwvM5LzGkW5ubJk-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XswC-2B7NIy-2F8s9eIUhZuqbYWh1V5HItPW6T0-2BS3ZyJmCTQ-3D-3D3YSu_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAFpVz0GL0bNE6VDCKi0NPBI9KDRBzz6zM-2FvjrWDyqb1-2BJhFCxZp2E4ND1Dl4GFs1gQQld7-2FQqhpo8M8h65D-2FLlRHSan7r5NOPSX-2FObLs1qixiwrUu-2BEZmvkK4d2YNOOs0O8Ne5fILwvM5LzGkW5ubJk-3D"><span style="color: #2980b9;" data-mce-style="color: #2980b9;"><span class="Hyperlink1"><span style="text-transform: none;" data-mce-style="text-transform: none;"><span style="text-decoration: underline;" data-mce-style="text-decoration: underline;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;" data-mce-style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;">Higgs boson</span></span></span></span></span></span></a><span style="color: #2980b9;" data-mce-style="color: #2980b9;"><span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;"> has
  1070. become a central avenue for shedding light on the fundamental structure
  1071. of the Universe. Precise measurements of the properties of this special
  1072. particle are among the most powerful tools physicists have to test the<span class="Apple-converted-space"></span></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XuOyny3lMMNWyDeffTeLS3gdOomCIfdo0rwKS02U9VHNg-3D-3DekMp_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAAhheKstP9W8T-2FmZFBAmMILiOdB0vI6vBVuUUuB3THmTtpGzoC-2FdTQ8VoCSOaX-2Bf8yLNhb-2FfXTNhVHRnagKA0QoKzVl1yLYzykccf1DGmqEt5zi3t1tIfuTPXLoxO-2FkzEdjoh3wAfYaTVDz931q8mOM-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XuOyny3lMMNWyDeffTeLS3gdOomCIfdo0rwKS02U9VHNg-3D-3DekMp_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAAhheKstP9W8T-2FmZFBAmMILiOdB0vI6vBVuUUuB3THmTtpGzoC-2FdTQ8VoCSOaX-2Bf8yLNhb-2FfXTNhVHRnagKA0QoKzVl1yLYzykccf1DGmqEt5zi3t1tIfuTPXLoxO-2FkzEdjoh3wAfYaTVDz931q8mOM-3D"><span style="color: #2980b9;" data-mce-style="color: #2980b9;"><span class="Hyperlink0"><span style="text-transform: none;" data-mce-style="text-transform: none;"><span style="text-decoration: underline;" data-mce-style="text-decoration: underline;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;" data-mce-style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;"> Standard Model</span></span></span></span></span></span></a><span style="color: black;" data-mce-style="color: black;">, currently the theory that best describes the world of particles and their interactions. At the<span class="Apple-converted-space"></span></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUWS47esSiYuxU3G-2Fp6LXM8NbRYOvsUiUiZwfiE10vGZ8SV_l_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAOjgzPI1SgvBNz5TP1VeGPAdaL4VmfFQnY8sj8J6LOOD-2BlIlJjo88BiSn-2Bo56mvVAUz0Ar-2BZpiPDw-2BRAjKv7O8pwwrdLcqe1OaeEEBjC1bzWBYIzF8vNkBnGgzvK0NZkX84p48yHOzc-2Bz7EVgBkhthw-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUWS47esSiYuxU3G-2Fp6LXM8NbRYOvsUiUiZwfiE10vGZ8SV_l_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAOjgzPI1SgvBNz5TP1VeGPAdaL4VmfFQnY8sj8J6LOOD-2BlIlJjo88BiSn-2Bo56mvVAUz0Ar-2BZpiPDw-2BRAjKv7O8pwwrdLcqe1OaeEEBjC1bzWBYIzF8vNkBnGgzvK0NZkX84p48yHOzc-2Bz7EVgBkhthw-3D"><span style="color: #2980b9;" data-mce-style="color: #2980b9;"><span class="Hyperlink0"><span style="text-transform: none;" data-mce-style="text-transform: none;"><span style="text-decoration: underline;" data-mce-style="text-decoration: underline;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;" data-mce-style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;"> Lepton Photon Conference</span></span></span></span></span></span></a><span style="color: #2980b9;" data-mce-style="color: #2980b9;"><span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;"> this week, the<span class="Apple-converted-space"></span></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvaSd7VykOLipdNbJu-2B56GgYi2eybr2PPK7xuObe7xEZg-3D-3Dzo37_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAIu5C5HLQMWD54PdeRqHqNpbvRdcGiEgD53AzjvxCzAOeUuG98rTXAJ146NGeA9hbabO4EYHyrIkqn4fNsaZCJbB5Hom7U7PLdJ4w-2BXJpi-2FDLmMl-2FufYxJEkuYdrvPW6twGUmjISjD3MQ9FIX-2BoB6hY-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvaSd7VykOLipdNbJu-2B56GgYi2eybr2PPK7xuObe7xEZg-3D-3Dzo37_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAIu5C5HLQMWD54PdeRqHqNpbvRdcGiEgD53AzjvxCzAOeUuG98rTXAJ146NGeA9hbabO4EYHyrIkqn4fNsaZCJbB5Hom7U7PLdJ4w-2BXJpi-2FDLmMl-2FufYxJEkuYdrvPW6twGUmjISjD3MQ9FIX-2BoB6hY-3D"><span style="color: #2980b9;" data-mce-style="color: #2980b9;"><span class="Hyperlink0"><span style="text-transform: none;" data-mce-style="text-transform: none;"><span style="text-decoration: underline;" data-mce-style="text-decoration: underline;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;" data-mce-style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;"> ATLAS</span></span></span></span></span></span></a><span style="color: black;" data-mce-style="color: black;"><span class="Apple-converted-space">&nbsp;</span> collaboration reported how it has measured the mass of the Higgs boson more precisely than ever before.</span></span></span></p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;">&nbsp;</p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;"><span style="font-family: Arial, Helvetica, sans-serif;" data-mce-style="font-family: Arial, Helvetica, sans-serif;"><span style="font-size: 14px;" data-mce-style="font-size: 14px;"><span style="color: black;" data-mce-style="color: black;">The
  1073. mass of the Higgs boson is not predicted by the Standard Model and must
  1074. therefore be determined by experimental measurement. Its value governs
  1075. the strengths of the interactions of the Higgs boson with the other
  1076. elementary particles as well as with itself. A precise knowledge of this
  1077. fundamental parameter is key to accurate theoretical calculations
  1078. which, in turn, allow physicists to confront their measurements of the
  1079. Higgs boson’s properties with predictions from the Standard Model.
  1080. Deviations from these predictions would signal the presence of new or
  1081. unaccounted-for phenomena. The Higgs boson’s mass is also a crucial
  1082. parameter driving the evolution and the stability of the <span class="Apple-converted-space"></span></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=qa2IbKGitjgQYp6e-2BOdtLaJIR8uEAno1mVcTeqRJVHH5L1fe5jOuwNayMJEh1cnbe9bUiDBXUzdzFdhh4eroTpND8Xo-2BaBrg-2BxE2TCG70Nw-3DGAj9_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAF3rN3UOQlYKYVmlz-2BYWNy93jvmoWiuZeb5WpxLRhGbdS-2FvjIK2whWnZqb3WwMjTQx285y0BQFULcHaAq4oV18yHuIy6JyIvYlK0mtvhKpvUtisL3V06J7AKWEFaMIzuhDzH7T9-2FOrd8GLC8uy1fNZw-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=qa2IbKGitjgQYp6e-2BOdtLaJIR8uEAno1mVcTeqRJVHH5L1fe5jOuwNayMJEh1cnbe9bUiDBXUzdzFdhh4eroTpND8Xo-2BaBrg-2BxE2TCG70Nw-3DGAj9_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAF3rN3UOQlYKYVmlz-2BYWNy93jvmoWiuZeb5WpxLRhGbdS-2FvjIK2whWnZqb3WwMjTQx285y0BQFULcHaAq4oV18yHuIy6JyIvYlK0mtvhKpvUtisL3V06J7AKWEFaMIzuhDzH7T9-2FOrd8GLC8uy1fNZw-3D"><span style="color: #2980b9;" data-mce-style="color: #2980b9;"><span class="Hyperlink2"><span style="text-decoration: underline;" data-mce-style="text-decoration: underline;">Universe’</span></span><span lang="NL"><span style="text-decoration: none;" data-mce-style="text-decoration: none;">s</span></span><span lang="NL"><span style="text-decoration: none;" data-mce-style="text-decoration: none;"><span class="Apple-converted-space">&nbsp;</span>vacuum</span></span></span></a><span style="color: black;" data-mce-style="color: black;">.<span class="Apple-converted-space"></span></span></span></span></p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;">&nbsp;</p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;"><span style="font-family: Arial, Helvetica, sans-serif;" data-mce-style="font-family: Arial, Helvetica, sans-serif;"><span style="font-size: 14px;" data-mce-style="font-size: 14px;"><span style="color: black;" data-mce-style="color: black;">The ATLAS and <span class="Apple-converted-space"></span></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvXKNfjhuDKpQM83zDjw9fEeteRtemaaAbq39Fl1VJQPg-3D-3DbgXw_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAPehaW84slZA4fsgkpeoL2lf2VZMlDkBticT0S8R4AzCh7LPRGOFUEQWj4DVBkiXwkQRHH91yajUWmIKK9gOIP2qJE90UDHz0fQ85uM0ZYOS9TrDsR8QNj0rROif2k65bYGUIkiYOxilwgBGEs-2BVG3k-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvXKNfjhuDKpQM83zDjw9fEeteRtemaaAbq39Fl1VJQPg-3D-3DbgXw_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAPehaW84slZA4fsgkpeoL2lf2VZMlDkBticT0S8R4AzCh7LPRGOFUEQWj4DVBkiXwkQRHH91yajUWmIKK9gOIP2qJE90UDHz0fQ85uM0ZYOS9TrDsR8QNj0rROif2k65bYGUIkiYOxilwgBGEs-2BVG3k-3D"><span style="color: #2980b9;" data-mce-style="color: #2980b9;"><span class="Hyperlink0"><span style="text-transform: none;" data-mce-style="text-transform: none;"><span style="text-decoration: underline;" data-mce-style="text-decoration: underline;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;" data-mce-style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;">CMS</span></span></span></span></span></span></a><span style="color: black;" data-mce-style="color: black;"><span class="Apple-converted-space">&nbsp;</span>collaborations
  1083. have been making ever more precise measurements of the Higgs boson’s
  1084. mass since the particle’s discovery. The new ATLAS measurement combines
  1085. two results: a new Higgs boson mass measurement based on an analysis of
  1086. the particle’s decay into two high-energy photons (the “diphoton
  1087. channel”) and an <span class="Apple-converted-space"></span></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUXlDN4e46rfX0tz8-2FOw8Dd-2BQ4vz-2B6VOX2dkK2WpFEuQuekos_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAIFgCPfv4h5QxMAfdaJU9Cf1qxliIPqNyq4U4iCymucspb9lei-2BdUm41tjUJgArAwY-2F-2FaWMeEZsD1ccLHfgdJJPYDj13Mp-2FyZZVdmTW2JmTBvmiO3QQsopvjWpTDsgWl26JQ-2FiHRFpUy-2BnA01ylf73E-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUXlDN4e46rfX0tz8-2FOw8Dd-2BQ4vz-2B6VOX2dkK2WpFEuQuekos_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAIFgCPfv4h5QxMAfdaJU9Cf1qxliIPqNyq4U4iCymucspb9lei-2BdUm41tjUJgArAwY-2F-2FaWMeEZsD1ccLHfgdJJPYDj13Mp-2FyZZVdmTW2JmTBvmiO3QQsopvjWpTDsgWl26JQ-2FiHRFpUy-2BnA01ylf73E-3D"><span style="color: #2980b9;" data-mce-style="color: #2980b9;"><span class="Hyperlink0"><span style="text-transform: none;" data-mce-style="text-transform: none;"><span style="text-decoration: underline;" data-mce-style="text-decoration: underline;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;" data-mce-style="font-variant-ligatures: normal !important; font-variant-caps: normal !important; font-variant-east-asian: normal !important; font-variant-position: normal !important;">earlier mass measurement</span></span></span></span></span></span></a><span style="color: black;" data-mce-style="color: black;"><span class="Apple-converted-space">&nbsp;</span>based on a study of its decay into four leptons (the “four-lepton channel”).</span></span></span></p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;">&nbsp;</p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;"><span style="font-family: Arial, Helvetica, sans-serif;" data-mce-style="font-family: Arial, Helvetica, sans-serif;"><span style="font-size: 14px;" data-mce-style="font-size: 14px;"><span style="color: black;" data-mce-style="color: black;">The
  1088. new measurement in the diphoton channel, which combines analyses of the
  1089. full ATLAS data sets from Runs 1 and 2 of the LHC, resulted in a mass
  1090. of 125.22 billion electronvolts (GeV) with an uncertainty of only 0.14
  1091. GeV. With a precision of 0.11%, this diphoton-channel result is the most
  1092. precise measurement to date of the Higgs boson’s mass from a single
  1093. decay channel.</span></span></span></p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;">&nbsp;</p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;"><span style="font-family: Arial, Helvetica, sans-serif;" data-mce-style="font-family: Arial, Helvetica, sans-serif;"><span style="font-size: 14px;" data-mce-style="font-size: 14px;"><span style="color: black;" data-mce-style="color: black;">Compared
  1094. to the previous ATLAS measurement in this channel, the new result
  1095. benefits both from the full ATLAS Run 2 data set, which reduced the
  1096. statistical uncertainty by a factor of two, and from dramatic
  1097. improvements to the calibration of photon energy measurements, which
  1098. decreased the systematic uncertainty by almost a factor of four to 0.09
  1099. GeV.<span class="Apple-converted-space"></span></span></span></span></p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;">&nbsp;</p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;"><span style="font-family: Arial, Helvetica, sans-serif;" data-mce-style="font-family: Arial, Helvetica, sans-serif;"><span style="font-size: 14px;" data-mce-style="font-size: 14px;"><span style="color: black;" data-mce-style="color: black;">“The
  1100. advanced and rigorous calibration techniques used in this analysis were
  1101. critical for pushing the precision to such an unprecedented level,”
  1102. says Stefano Manzoni, convener of the ATLAS electron–photon calibration
  1103. subgroup. “Their development took several years and required a deep
  1104. understanding of the ATLAS detector. They will also greatly benefit
  1105. future analyses.”</span></span></span></p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;">&nbsp;</p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;"><span style="font-family: Arial, Helvetica, sans-serif;" data-mce-style="font-family: Arial, Helvetica, sans-serif;"><span style="font-size: 14px;" data-mce-style="font-size: 14px;"><span style="color: black;" data-mce-style="color: black;">When
  1106. the ATLAS researchers combined this new mass measurement in the
  1107. diphoton channel with the earlier mass measurement in the four-lepton
  1108. channel, they obtained a Higgs boson mass of 125.11 GeV with an
  1109. uncertainty of 0.11 GeV. With a precision of 0.09%, this is the most
  1110. precise measurement yet of this fundamental parameter.</span></span></span></p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;">&nbsp;</p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;"><span style="font-family: Arial, Helvetica, sans-serif;" data-mce-style="font-family: Arial, Helvetica, sans-serif;"><span style="font-size: 14px;" data-mce-style="font-size: 14px;"><span style="color: black;" data-mce-style="color: black;">“This
  1111. very precise measurement is the result of the relentless investment of
  1112. the ATLAS collaboration in improving the understanding of our data,”
  1113. says ATLAS spokesperson Andreas Hoecker. “Powerful reconstruction
  1114. algorithms paired with precise calibrations are the determining
  1115. ingredients of precision measurements. The new measurement of the Higgs
  1116. boson’s mass adds to the increasingly detailed mapping of this critical
  1117. new sector of particle physics.”</span></span></span></p><p class="BodyA" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; border: none; margin: 0cm;"><br /><span style="font-size: 14px; font-family: arial, helvetica, sans-serif;">Find out more on the <span class="Apple-converted-space"></span><span style="text-decoration: underline;" data-mce-style="text-decoration: underline;"><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATURd6O7p9cBoEEIG55l6X6buy7ftSHsb-2BSIytjTfoIh8qipvwSkX-2FhHYNXfmmsK8gdQ-3D-3DkTBB_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAG42uk92xDQnMNR1ggzLHcoeqPauOMLkymtPyrqRK-2BwlG-2FGEnf-2FLOtKIaA0oZtVTBDxbNCm9GEsv-2BhG4rzx2W43vD2ZtApbJRCXvaG0TwiqUhB3u5Ilj2LSXJnNAIhzk7ZXcb62zWbLXs0rmhyWbXlg-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATURd6O7p9cBoEEIG55l6X6buy7ftSHsb-2BSIytjTfoIh8qipvwSkX-2FhHYNXfmmsK8gdQ-3D-3DkTBB_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozhD-2FPZTgrQ6q1SxDzbIkr46c0QovXGCztNIaBeX0d1h9Jr-2FHE5WWOURxWQqp49BMTFXeMP9VDewREg78YHwIKAG42uk92xDQnMNR1ggzLHcoeqPauOMLkymtPyrqRK-2BwlG-2FGEnf-2FLOtKIaA0oZtVTBDxbNCm9GEsv-2BhG4rzx2W43vD2ZtApbJRCXvaG0TwiqUhB3u5Ilj2LSXJnNAIhzk7ZXcb62zWbLXs0rmhyWbXlg-3D"><span style="color: #2980b9;" data-mce-style="color: #2980b9;">ATLAS website</span></a></span>.</span></p>]]></description>
  1118. <category>News From Europe</category>
  1119. <pubDate>Tue, 8 Aug 2023 12:54:00 GMT</pubDate>
  1120. </item>
  1121. <item>
  1122. <title>New image reveals secrets of planet birth</title>
  1123. <link>https://www.eps.org/news/647301/</link>
  1124. <guid>https://www.eps.org/news/647301/</guid>
  1125. <description><![CDATA[<p class="text_intro pr_first" style="text-align: center;"><strong><img alt="" src="https://www.eps.org/resource/resmgr/news/eso2312a.jpg" style="width: 750px;" /></strong></p><p class="text_intro pr_first" style="text-align: center;"><em>Combined SPHERE and ALMA image of material orbiting V960 Mon - image credit: ESO<br /></em></p><p class="text_intro pr_first"><strong>25th July 2023. A spectacular new image released
  1126. today by the European Southern Observatory gives us clues about how
  1127. planets as massive as Jupiter could form. Using ESO’s Very Large
  1128. Telescope (VLT) and the Atacama Large Millimeter/submillimeter Array
  1129. (ALMA), researchers have detected large dusty clumps, close to a young
  1130. star, that could collapse to create giant planets.</strong></p><p dir="ltr">“<em>This
  1131. discovery is truly captivating as it marks the very first detection of
  1132. clumps around a young star that have the potential to give rise to giant
  1133. planets,</em>” says Alice Zurlo, a researcher at the Universidad Diego Portales, Chile, involved in the observations.</p><p dir="ltr">The work is based on a mesmerising picture obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (<a href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/sphere/" data-mce-href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/sphere/">SPHERE</a>) instrument on ESO’s<a href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/" data-mce-href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/"> VLT</a>
  1134. that features fascinating detail of the material around the star V960
  1135. Mon. This young star is located over 5000 light-years away in the
  1136. constellation Monoceros and attracted astronomers’ attention when it
  1137. suddenly increased its brightness more than twenty times in 2014. SPHERE
  1138. observations taken shortly after the onset of this brightness
  1139. ‘outburst’ revealed that the material orbiting V960 Mon is assembling
  1140. together in a series of intricate spiral arms extending over distances
  1141. bigger than the entire Solar System.</p><p dir="ltr">This finding then motivated astronomers to analyse archive observations of the same system made with<a href="https://www.eso.org/public/teles-instr/alma/" data-mce-href="https://www.eso.org/public/teles-instr/alma/"> ALMA</a>,
  1142. in which ESO is a partner. The VLT observations probe the surface of
  1143. the dusty material around the star, while ALMA can peer deeper into its
  1144. structure. “<em>With ALMA, it became apparent that the spiral arms are
  1145. undergoing fragmentation, resulting in the formation of clumps with
  1146. masses akin to those of planets</em>,” says Zurlo.</p><p dir="ltr">Astronomers
  1147. believe that giant planets form either by ‘core accretion’, when dust
  1148. grains come together, or by ‘gravitational instability’, when large
  1149. fragments of the material around a star contract and collapse. While
  1150. researchers have previously found evidence for the first of these
  1151. scenarios, support for the latter has been scant.</p><p dir="ltr">“<em>No one had ever seen a real observation of gravitational instability happening at planetary scales — until now</em>,” says Philipp Weber, a researcher at the University of Santiago, Chile, who led the study published today in <em>The Astrophysical Journal Letter</em>s.</p><p dir="ltr">“<em>Our
  1152. group has been searching for signs of how planets form for over ten
  1153. years, and we couldn't be more thrilled about this incredible discovery</em>,” says team-member Sebastián Pérez from the University of Santiago, Chile.</p><p>ESO
  1154. instruments will help astronomers unveil more details of this
  1155. captivating planetary system in the making, and ESO’s Extremely Large
  1156. Telescope (<a href="https://elt.eso.org" data-mce-href="https://elt.eso.org">ELT</a>)
  1157. will play a key role. Currently under construction in Chile’s Atacama
  1158. Desert, the ELT will be able to observe the system in greater detail
  1159. than ever before, collecting crucial information about it. “<em>The ELT
  1160. will enable the exploration of the chemical complexity surrounding these
  1161. clumps, helping us find out more about the composition of the material
  1162. from which potential planets are forming</em>,” concludes Weber.</p><h3>More information</h3><p dir="ltr">The
  1163. team behind this work comprises young researchers from diverse Chilean
  1164. universities and institutes, under the Millennium Nucleus on Young
  1165. Exoplanets and their Moons (YEMS) research centre, funded by the Chilean
  1166. National Agency for Research and Development (ANID) and its Millennium
  1167. Science Initiative Program. The two facilities used, ALMA and VLT, are
  1168. located in Chile’s Atacama Desert.</p><p dir="ltr">This research is presented in a paper to appear in <em>The Astrophysical Journal Letters&nbsp;</em>(doi:&nbsp;10.3847/2041-8213/ace186).</p><p>Composition of the team: <a data-mce-href="https://www.eso.org/public/news/eso2312/?lang" href="https://www.eso.org/public/news/eso2312/?lang">https://www.eso.org/public/news/eso2312/?lang</a><br /></p><h3>Links</h3><ul><li><a href="https://www.eso.org/public/archives/releases/sciencepapers/eso2312/eso2312a.pdf" data-mce-href="https://www.eso.org/public/archives/releases/sciencepapers/eso2312/eso2312a.pdf">Research paper</a><br data-mce-bogus="1" /></li><li><a href="http://www.eso.org/public/images/archive/category/paranal/" data-mce-href="http://www.eso.org/public/images/archive/category/paranal/">Photos of the VLT</a><br data-mce-bogus="1" /></li><li><a href="https://www.eso.org/public/images/archive/category/alma/" data-mce-href="https://www.eso.org/public/images/archive/category/alma/">Photos of ALMA&nbsp;</a><br data-mce-bogus="1" /></li><li><a href="https://elt.eso.org" data-mce-href="https://elt.eso.org">Find out more about ESO's Extremely Large Telescope</a></li></ul>]]></description>
  1169. <category>News From Europe</category>
  1170. <pubDate>Tue, 1 Aug 2023 14:39:00 GMT</pubDate>
  1171. </item>
  1172. <item>
  1173. <title>LHCb tightens precision on key measurements of matter–antimatter asymmetry</title>
  1174. <link>https://www.eps.org/news/643459/</link>
  1175. <guid>https://www.eps.org/news/643459/</guid>
  1176. <description><![CDATA[<p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><img alt="LHCbMediaUpdate.jpeg" src="https://eu.vocuspr.com/Publish/2960786/vcsPRAsset_2960786_97453_54f45bcb-35c7-41ee-b65b-33e53c9d303d_0.jpeg" width="600" height="428" /><br /></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><em><span style="font-size: 12px;"><span style="font-family: Arial, Helvetica, sans-serif;">The LHCb experiment (image: CERN)</span></span></em><br /></p><p>Geneva 16th June 2023<br /></p><p>The Big Bang is thought to have created equal amounts of matter and&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xv4xyjQVbEYkouGMKFcmPFuc1895xgeDBfh5zC3q0DxGQ-3D-3Dv2zs_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBI-2BauL4DmUEi3Qs9xbnteGHddr4cHZEm0VNF5KzH66oSh0kWLOpjkakR-2B9z5w9nsQ-2F8iEFnYLS7l5Vjk3pmil1jMAOecm7MiAN-2FW2wHUdgSm3-2B-2F7h6h-2BIYk-2BjfJYenKcaEcxr4CdXAdMg0dXA2jqIcU-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xv4xyjQVbEYkouGMKFcmPFuc1895xgeDBfh5zC3q0DxGQ-3D-3Dv2zs_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBI-2BauL4DmUEi3Qs9xbnteGHddr4cHZEm0VNF5KzH66oSh0kWLOpjkakR-2B9z5w9nsQ-2F8iEFnYLS7l5Vjk3pmil1jMAOecm7MiAN-2FW2wHUdgSm3-2B-2F7h6h-2BIYk-2BjfJYenKcaEcxr4CdXAdMg0dXA2jqIcU-3D">antimatter</a>, yet the Universe today is made almost entirely of matter, so something must have happened to create this imbalance.</p><p>The weak force of the&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XuOyny3lMMNWyDeffTeLS3gdOomCIfdo0rwKS02U9VHNg-3D-3DI6tO_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBHJfqp8uFzMLhzUvH-2BOA6OQBFVhzDKJciB7LIucBALaQ8aOY94eoDefRjpFXp4rATIn-2F3UNAllcZlxP7KrtN5mfMKDmUW7wwMX63vfj4y6fXuNxJsOO9cz0EQcmRvRU2dYBBgEE7yk4u4bj7Hgfktg4-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XuOyny3lMMNWyDeffTeLS3gdOomCIfdo0rwKS02U9VHNg-3D-3DI6tO_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBHJfqp8uFzMLhzUvH-2BOA6OQBFVhzDKJciB7LIucBALaQ8aOY94eoDefRjpFXp4rATIn-2F3UNAllcZlxP7KrtN5mfMKDmUW7wwMX63vfj4y6fXuNxJsOO9cz0EQcmRvRU2dYBBgEE7yk4u4bj7Hgfktg4-3D">Standard Model</a>&nbsp;of
  1177. particle physics is known to induce a behavioural difference between
  1178. matter and antimatter – known as CP symmetry violation – in decays of
  1179. particles containing quarks, one of the building blocks of matter. But
  1180. these differences, or asymmetries, are hard to measure and insufficient
  1181. to explain the matter–antimatter imbalance in the present-day Universe,
  1182. prompting physicists to both measure precisely the known differences and
  1183. to look for new ones.</p><p>At a&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUT0fMHswK-2FrLsWwK4iHO74tZRnAoDXXp5bEfP6hJVuYEjXZt_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBI2Hi4QrWjDGRgui0vd519Tf9GxJ-2BavYmNc3gPnWkG3kedZLLdlhMU2-2BXW-2BrKDwgDBWH9cUx0xsYnrOH5-2Fs5BcBf1-2F2-2BsyDhrrcbzESbCKsmGFEC-2BwHKxfdZz4Jw-2B094CT7x1EyDHProT2KapuSJ3OM-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUT0fMHswK-2FrLsWwK4iHO74tZRnAoDXXp5bEfP6hJVuYEjXZt_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBI2Hi4QrWjDGRgui0vd519Tf9GxJ-2BavYmNc3gPnWkG3kedZLLdlhMU2-2BXW-2BrKDwgDBWH9cUx0xsYnrOH5-2Fs5BcBf1-2F2-2BsyDhrrcbzESbCKsmGFEC-2BwHKxfdZz4Jw-2B094CT7x1EyDHProT2KapuSJ3OM-3D">seminar</a>&nbsp;held at CERN today, the&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xv2-2BWbRZYIs9xksAqHWzcfF5nUb-2BoC8HPAkaAGYewMR2w-3D-3D5ofo_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBFQeFABc5ruDYXE7M6kuIzG89nwihplJGwtj4XV27wkMM-2FO3S6To-2BMhiokSOW-2FYhxgrk77YUsqOCLLMUa47cwh9pbtcGPk84D9B5BMr697EMFnpFZAe0cf2pWSF1ZJSkQR13zlfAIORqeR2dH7mZdWY-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xv2-2BWbRZYIs9xksAqHWzcfF5nUb-2BoC8HPAkaAGYewMR2w-3D-3D5ofo_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBFQeFABc5ruDYXE7M6kuIzG89nwihplJGwtj4XV27wkMM-2FO3S6To-2BMhiokSOW-2FYhxgrk77YUsqOCLLMUa47cwh9pbtcGPk84D9B5BMr697EMFnpFZAe0cf2pWSF1ZJSkQR13zlfAIORqeR2dH7mZdWY-3D">LHCb</a>&nbsp;collaboration
  1184. reported how it has measured, more precisely than ever before, two key
  1185. parameters that determine such matter–antimatter asymmetries. <br /></p><p>In
  1186. 1964, James Cronin and Val Fitch discovered CP symmetry violation
  1187. through their pioneering experiment at Brookhaven National Laboratory in
  1188. the US, using decays of particles containing strange quarks. This
  1189. finding challenged the long-held belief in this symmetry of nature and
  1190. earned Cronin and Fitch the&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUWMVM8Ty3-2Fe-2F20cBR6cMpTJ0QhCWCC5zpHfggermKK6jxdkwMtGBOLp2pom-2BbqhSxQ-3D-3D3f1s_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBNgqDN6dFkd5uyDwIl-2Bx4NTXC84oUO-2B78p5B6MQDxpJsOiYKaZ5quRnSh7x1yeqvEGEEpOjLluzNiPp1Iss-2BvZvKgAQg46lixX8qqJXW08lvNGJlHm8Pd9JwWjgEjhYrNcUwcy-2BiPHOyv-2FdT1s7-2BN4s-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUWMVM8Ty3-2Fe-2F20cBR6cMpTJ0QhCWCC5zpHfggermKK6jxdkwMtGBOLp2pom-2BbqhSxQ-3D-3D3f1s_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBNgqDN6dFkd5uyDwIl-2Bx4NTXC84oUO-2B78p5B6MQDxpJsOiYKaZ5quRnSh7x1yeqvEGEEpOjLluzNiPp1Iss-2BvZvKgAQg46lixX8qqJXW08lvNGJlHm8Pd9JwWjgEjhYrNcUwcy-2BiPHOyv-2FdT1s7-2BN4s-3D">Nobel Prize in Physics</a>&nbsp;in 1980. <br /></p><p>In
  1191. 2001, the BaBar experiment in the US and the Belle experiment in Japan
  1192. confirmed the existence of CP violation in decays of beauty mesons,
  1193. particles with a beauty quark, solidifying our understanding of the
  1194. nature of this phenomenon. This achievement ignited intense research
  1195. efforts to further understand the mechanisms behind CP violation. In
  1196. 2008, Makoto Kobayashi and Toshihide Maskawa received the&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUWMVM8Ty3-2Fe-2F20cBR6cMpTJ0QhCWCC5zpHfggermKK6jEY4vHzSfUQzoTAvOcgKPnQ-3D-3Dxi62_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBEqp3enHHOkXooFpK7eMaYlaaHUAX7w20ux8xElFX28w4s-2Bhy7g3Pgv-2B-2B6B3Z-2F6XLawqBuRQGBjCx16x7bJMTRdkL7WvG30nn6NuDc1ynMW4I9eB2O8oe9P-2FPKmMWd8PIZMt8RIMqRLONZPAWMAceqs-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUWMVM8Ty3-2Fe-2F20cBR6cMpTJ0QhCWCC5zpHfggermKK6jEY4vHzSfUQzoTAvOcgKPnQ-3D-3Dxi62_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBEqp3enHHOkXooFpK7eMaYlaaHUAX7w20ux8xElFX28w4s-2Bhy7g3Pgv-2B-2B6B3Z-2F6XLawqBuRQGBjCx16x7bJMTRdkL7WvG30nn6NuDc1ynMW4I9eB2O8oe9P-2FPKmMWd8PIZMt8RIMqRLONZPAWMAceqs-3D">Nobel Prize in Physics</a>&nbsp;for their theoretical framework that elegantly explained the observed CP violation phenomena.</p><p>It its latest studies, using the full dataset recorded by the LHCb detector during the second run of the&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvS8KZZmPynhUVdb07SDKsdVxYxzSyIVWZb3PRLoJb72-2B-2FG4LjtqB66UcSweNZs-2Foo-3DhV6P_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBLE7X2XLJSr3ayJGXIqoxvLW6PP0a4dEA8ohmntkCZNhHPfHlchsvsuRRlsW5DsQP8CZWc4l3VzpDdEvotxcKrwK2Tdz90DdY-2BGnwbb-2FsxpxBO5SBvdmOWLilZcMWSZx88pxhQV5B72-2B-2Bfwy4kWImTI-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvS8KZZmPynhUVdb07SDKsdVxYxzSyIVWZb3PRLoJb72-2B-2FG4LjtqB66UcSweNZs-2Foo-3DhV6P_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBLE7X2XLJSr3ayJGXIqoxvLW6PP0a4dEA8ohmntkCZNhHPfHlchsvsuRRlsW5DsQP8CZWc4l3VzpDdEvotxcKrwK2Tdz90DdY-2BGnwbb-2FsxpxBO5SBvdmOWLilZcMWSZx88pxhQV5B72-2B-2Bfwy4kWImTI-3D">Large Hadron Collider</a>(LHC),
  1197. the LHCb collaboration set out to measure with high precision two
  1198. parameters that determine the amount of CP violation in decays of beauty
  1199. mesons. <br /></p><p>One parameter determines the amount of CP violation
  1200. in decays of neutral beauty mesons, which are made up of a bottom
  1201. antiquark and a down quark. This is the same parameter as that measured
  1202. by the BaBar and Belle experiments in 2001. The other parameter
  1203. determines the amount of CP violation in decays of strange beauty
  1204. mesons, which consist of a bottom antiquark and a strange quark.</p><p>Specifically,
  1205. these parameters determine the extent of time-dependent CP violation.
  1206. This type of CP violation stems from the intriguing quantum interference
  1207. that occurs when a particle and its antiparticle undergo decay. The
  1208. particle has the ability to spontaneously transform into its
  1209. antiparticle and vice versa. As this oscillation takes place, the decays
  1210. of the particle and antiparticle interfere with each other, leading to a
  1211. distinctive pattern of CP violation that changes over time. In other
  1212. words, the amount of CP violation observed depends on the time the
  1213. particle lives before decaying. This fascinating phenomenon provides
  1214. physicists with key insights into the fundamental nature of particles
  1215. and their symmetries.</p><p>For both parameters, the new LHCb results,
  1216. which are more precise than any equivalent result from a single
  1217. experiment, are in line with the values predicted by the Standard Model.</p><p>“These
  1218. measurements are interpreted within our fundamental theory of particle
  1219. physics, the Standard Model, improving the precision with which we can
  1220. determine the difference between the behaviour of matter and
  1221. antimatter,” explains LHCb spokesperson Chris Parkes. “Through more
  1222. precise measurements, large improvements have been made in our
  1223. knowledge. These are key parameters that aid our search for unknown
  1224. effects from beyond our current theory.”</p><p>Future data, from the third run of the LHC and the collider’s planned upgrade, the&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xt20vqf3CncbMg9EUdZS-2BJBdWLTNVefroRll5e1wruwEouEr1-2BkFgKjHZabFUdCg7U-3Dj2sK_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBMmgjrRQB368MZ2vfYRCzq-2FKoiP60vEcybDvnPAtTizVuUvshdyvkMFziO1KRPVi-2BvM40Scfu157hmnA95-2FAuGIMgJu0755zpW-2Fp1JG7EvI-2FopHZBcsyCf8Iton965n4ZOdEJNQ71FakSM6zRofGWns-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xt20vqf3CncbMg9EUdZS-2BJBdWLTNVefroRll5e1wruwEouEr1-2BkFgKjHZabFUdCg7U-3Dj2sK_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBMmgjrRQB368MZ2vfYRCzq-2FKoiP60vEcybDvnPAtTizVuUvshdyvkMFziO1KRPVi-2BvM40Scfu157hmnA95-2FAuGIMgJu0755zpW-2Fp1JG7EvI-2FopHZBcsyCf8Iton965n4ZOdEJNQ71FakSM6zRofGWns-3D">High-Luminosity LHC</a>,
  1225. will further tighten the precision on these matter–antimatter asymmetry
  1226. parameters and perhaps point to new physics phenomena that could help
  1227. shed light on what is one of the Universe’s best-kept secrets.</p><p>Find out more on LHCb's website:&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATURfrzAjt4eM0fPfjVbu6euuzST7PEgpwFlJHtJxDWFYrlo4AnioyJaie3flI9bfoqLPgtOX2g6uSqHMW2M0NGfvDIpbOWm74NgYMy7e0UQewDmqAlX-2B4XT05QrgAoFE8mQ-3D-3D8haO_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBHqnn2vTE6E4c9YsKGBnOJUFM9146726m5PJF-2BcJgKoeGinReCx7f6zMrAbOBPEajqlMcEGmDHU0r8rn3aRD2SeazSKAh1BlMLwQN0ZIq9Mt8yjMbbDGRCAamJQX8C8-2FbbbuLXFaZTQyhWnzjODM3eU-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATURfrzAjt4eM0fPfjVbu6euuzST7PEgpwFlJHtJxDWFYrlo4AnioyJaie3flI9bfoqLPgtOX2g6uSqHMW2M0NGfvDIpbOWm74NgYMy7e0UQewDmqAlX-2B4XT05QrgAoFE8mQ-3D-3D8haO_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBHqnn2vTE6E4c9YsKGBnOJUFM9146726m5PJF-2BcJgKoeGinReCx7f6zMrAbOBPEajqlMcEGmDHU0r8rn3aRD2SeazSKAh1BlMLwQN0ZIq9Mt8yjMbbDGRCAamJQX8C8-2FbbbuLXFaZTQyhWnzjODM3eU-3D">precise measurement of the CP-violating phase&nbsp;φs</a>&nbsp;and&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATURfrzAjt4eM0fPfjVbu6euuzST7PEgpwFlJHtJxDWFYrlo4AnioyJaie3flI9bfoqLPgtOX2g6uSqHMW2M0NGfuxL5EQcjFH-2BYmtLcFHG-2F7NpqT7M7GME8PDs4daPa-2BVeRMSD-2BFeN4KnESuAeLngeeY-3Dlm4V_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBIHn5kXTCzSIxXd3mGT6rlmxe5iizCySXIFfk9IupFvt0qOlPLM2qbNqJiSmt6Qpe4-2F9Gy2P2ChfYatM8DyKneivwAxiuA94xSdISvi358eIBODwiYVsG3DGYFzVjBbYkWrF6YbAInW1-2BdfBpghcWiI-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATURfrzAjt4eM0fPfjVbu6euuzST7PEgpwFlJHtJxDWFYrlo4AnioyJaie3flI9bfoqLPgtOX2g6uSqHMW2M0NGfuxL5EQcjFH-2BYmtLcFHG-2F7NpqT7M7GME8PDs4daPa-2BVeRMSD-2BFeN4KnESuAeLngeeY-3Dlm4V_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozC4LHbeeINfGLYJom2dOczjTT8jtcPzEPjuqqr7uEbUwUJ7-2F4QA7q-2FU7mox3TCggK0ZMGXK2YpHdPcEwgn3nbBIHn5kXTCzSIxXd3mGT6rlmxe5iizCySXIFfk9IupFvt0qOlPLM2qbNqJiSmt6Qpe4-2F9Gy2P2ChfYatM8DyKneivwAxiuA94xSdISvi358eIBODwiYVsG3DGYFzVjBbYkWrF6YbAInW1-2BdfBpghcWiI-3D">precise measurement of the unitarity triangle angle β</a> <br /></p>]]></description>
  1228. <category>News From Europe</category>
  1229. <pubDate>Thu, 15 Jun 2023 08:45:00 GMT</pubDate>
  1230. </item>
  1231. <item>
  1232. <title>LHC experiments see first evidence of a rare Higgs boson decay</title>
  1233. <link>https://www.eps.org/news/642490/</link>
  1234. <guid>https://www.eps.org/news/642490/</guid>
  1235. <description><![CDATA[<p style="text-align: center;"><img alt="Atlas cms art.png" src="https://eu.vocuspr.com/Publish/2960786/vcsPRAsset_2960786_97065_9e6b2401-6b0b-425e-8a08-dbb1f884fc30_0.png" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;" width="600" height="309" /></p><p style="text-align: center;"><em style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;"><span style="font-size: 11px;" data-mce-style="font-size: 10px;"><span style="font-family: Arial, Helvetica, sans-serif;" data-mce-style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 11.5px;" data-mce-style="line-height: 11.5px;"><span style="color: black;" data-mce-style="color: black;"><span lang="EN-GB"><span style="line-height: 11.5px;" data-mce-style="line-height: 11.5px;">Candidate events from<span class="Apple-converted-space"></span></span></span><span style="background-color: white;" data-mce-style="background-color: white;"><span style="color: black;" data-mce-style="color: black;">ATLAS (left) and CMS (right) for a Higgs boson decaying into a Z boson</span></span><span lang="EN-GB"><span style="background-color: white;" data-mce-style="background-color: white;"><span style="line-height: 11.5px;" data-mce-style="line-height: 11.5px;"><span style="color: black;" data-mce-style="color: black;"><span class="Apple-converted-space"></span>and a photon</span></span></span></span><span style="background-color: white;" data-mce-style="background-color: white;"><span style="color: black;" data-mce-style="color: black;">,</span></span><span lang="EN-GB"><span style="background-color: white;" data-mce-style="background-color: white;"><span style="line-height: 11.5px;" data-mce-style="line-height: 11.5px;"><span style="color: black;" data-mce-style="color: black;"><span class="Apple-converted-space"></span>with the Z boson<span class="Apple-converted-space"></span></span></span></span></span><span style="background-color: white;" data-mce-style="background-color: white;"><span style="color: black;" data-mce-style="color: black;">decay</span></span><span lang="EN-GB"><span style="background-color: white;" data-mce-style="background-color: white;"><span style="line-height: 11.5px;" data-mce-style="line-height: 11.5px;"><span style="color: black;" data-mce-style="color: black;">ing</span></span></span></span><span style="background-color: white;" data-mce-style="background-color: white;"><span style="color: black;" data-mce-style="color: black;"><span class="Apple-converted-space"></span>into a pair of muons.&nbsp;</span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">(Image: CERN)</span></span></span></span></span></em></p><p>The discovery of the Higgs boson at CERN’s Large Hadron Collider
  1236. (LHC) in 2012 marked a significant milestone in particle physics. Since
  1237. then, the ATLAS and CMS collaborations have been diligently
  1238. investigating the properties of this unique particle and searching to
  1239. establish the different ways in which it is produced and decays into
  1240. other particles.</p><p>At the Large Hadron Collider Physics (LHCP)
  1241. conference this week, ATLAS and CMS report how they teamed up to find
  1242. the first evidence of the rare process in which the Higgs boson decays
  1243. into a Z boson, the electrically neutral carrier of the weak force, and a
  1244. photon, the carrier of the electromagnetic force. This Higgs boson
  1245. decay could provide indirect evidence of the existence of particles
  1246. beyond those predicted by the Standard Model of particle physics.</p><p>The
  1247. decay of the Higgs boson into a Z boson and a photon is similar to that
  1248. of a decay into two photons. In these processes, the Higgs boson does
  1249. not decay directly into these pairs of particles. Instead, the decays
  1250. proceed via an intermediate "loop" of “virtual” particles that pop in
  1251. and out of existence and cannot be directly detected. These virtual
  1252. particles could include new, as yet undiscovered particles that interact
  1253. with the Higgs boson.</p><p>The Standard Model predicts that, if the
  1254. Higgs boson has a mass of around 125 billion electronvolts,
  1255. approximately 0.15% of Higgs bosons will decay into a Z boson and a
  1256. photon. But some theories that extend the Standard Model predict a
  1257. different decay rate. Measuring the decay rate therefore provides
  1258. valuable insights into both physics beyond the Standard Model and the
  1259. nature of the Higgs boson.</p><p>Previously, using data from
  1260. proton–proton collisions at the LHC, ATLAS and CMS independently
  1261. conducted extensive searches for the decay of the Higgs boson into a Z
  1262. boson and a photon. Both searches used similar strategies, identifying
  1263. the Z boson through its decays into pairs of electrons or muons –
  1264. heavier versions of electrons. These Z boson decays occur in about 6.6%
  1265. of the cases.</p><p>In these searches, collision events associated with
  1266. this Higgs boson decay (the signal) would be identified as a narrow
  1267. peak, over a smooth background of events, in the distribution of the
  1268. combined mass of the decay products. To enhance the sensitivity to the
  1269. decay, ATLAS and CMS exploited the most frequent modes in which the
  1270. Higgs boson is produced and categorised events based on the
  1271. characteristics of these production processes. They also used advanced
  1272. machine-learning techniques to further distinguish between signal and
  1273. background events.</p><p>In a new study, ATLAS and CMS have now joined
  1274. forces to maximise the outcome of their search. By combining the data
  1275. sets collected by both experiments during the second run of the LHC,
  1276. which took place between 2015 and 2018, the collaborations have
  1277. significantly increased the statistical precision and reach of their
  1278. searches.</p><p>This collaborative effort resulted in the first evidence
  1279. of the Higgs boson decay into a Z boson and a photon. The result has a
  1280. statistical significance of 3.4 standard deviations, which is below the
  1281. conventional requirement of 5 standard deviations to claim an
  1282. observation. The measured signal rate is 1.9 <a data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUXc1jVaiM4SRbb3B-2BVyTKeHf7MaJSULqF41ytbs7Cw8ivu48sLyyUXGSa08cWWjj8g-3D-3D5dB__Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozIP9c8b85HEqRpIas2P-2Bqr9CnpLDdj0EIzXVFWC60H-2BgmLE-2B5jugLT3QrOdtjjV0d7tcd1MNc9drMb18SzV9JR9zp-2B4g5-2FplMHmOlGLVnrI0jnlpO6zJCjuwuUgUQtBQfDGP38T1Mp66vOUdikvdaMr1dtxijzrUVDiprTEvz9vO1OkcHL4cIFnziNCOSQIpx9-2FXZwlmf9hi5PDzSbCQFVwB2-2FInjYCFsDM8SD3Lo9H8-3D" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUXc1jVaiM4SRbb3B-2BVyTKeHf7MaJSULqF41ytbs7Cw8ivu48sLyyUXGSa08cWWjj8g-3D-3D5dB__Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozIP9c8b85HEqRpIas2P-2Bqr9CnpLDdj0EIzXVFWC60H-2BgmLE-2B5jugLT3QrOdtjjV0d7tcd1MNc9drMb18SzV9JR9zp-2B4g5-2FplMHmOlGLVnrI0jnlpO6zJCjuwuUgUQtBQfDGP38T1Mp66vOUdikvdaMr1dtxijzrUVDiprTEvz9vO1OkcHL4cIFnziNCOSQIpx9-2FXZwlmf9hi5PDzSbCQFVwB2-2FInjYCFsDM8SD3Lo9H8-3D">standard deviations</a> above the Standard Model prediction.</p><p>“Each
  1283. particle has a special relationship with the Higgs boson, making the
  1284. search for rare Higgs decays a high priority,” says ATLAS physics
  1285. coordinator Pamela Ferrari. "Through a meticulous combination of the
  1286. individual results of ATLAS and CMS, we have made a step forward towards
  1287. unravelling yet another riddle of the Higgs boson."</p><p>“The
  1288. existence of new particles could have very significant effects on rare
  1289. Higgs decay modes,” says CMS physics coordinator Florencia Canelli.
  1290. “This study is a powerful test of the Standard Model. With the ongoing <a data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUbfeodTgU7iRVZxb1L7-2B8D8x7tfdAnM7Q19Urx081EPY-2BDyltB4i-2BXPdnNLL1cKKB2RiA5UNApkalRUojtp4RRuHfznkYf9F3XeIvSB3gCvvmjVwmmBpwYK2a2iWJvMyyA-3D-3D7WhR_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozIP9c8b85HEqRpIas2P-2Bqr9CnpLDdj0EIzXVFWC60H-2BgmLE-2B5jugLT3QrOdtjjV0d7tcd1MNc9drMb18SzV9JR-2F-2Bgt06W1pASWKKoRD4Uecg-2BCgTG3IUR14jmecZg04ogtAwji4tFTlaxe-2BhtOSkoQt1UZuc4yukYDgKjv4v2ja6P-2BGCNj8mXSblgNkEVmvDRc-2FcbDBxXrs5-2F3OJVtuW4V3xrTOXnqNNm2e2m8BMYcj8-3D" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUbfeodTgU7iRVZxb1L7-2B8D8x7tfdAnM7Q19Urx081EPY-2BDyltB4i-2BXPdnNLL1cKKB2RiA5UNApkalRUojtp4RRuHfznkYf9F3XeIvSB3gCvvmjVwmmBpwYK2a2iWJvMyyA-3D-3D7WhR_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozIP9c8b85HEqRpIas2P-2Bqr9CnpLDdj0EIzXVFWC60H-2BgmLE-2B5jugLT3QrOdtjjV0d7tcd1MNc9drMb18SzV9JR-2F-2Bgt06W1pASWKKoRD4Uecg-2BCgTG3IUR14jmecZg04ogtAwji4tFTlaxe-2BhtOSkoQt1UZuc4yukYDgKjv4v2ja6P-2BGCNj8mXSblgNkEVmvDRc-2FcbDBxXrs5-2F3OJVtuW4V3xrTOXnqNNm2e2m8BMYcj8-3D">third run of the LHC</a> and the future <a data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUbu54SGOJ2jHHD7Cp1OOp6wajqmrJV82xTzbNUdpev192nLb-2FGq1bavtctzOZQ2x2L0pJLKZunfezQqkSSSXcZ8-3DtQwp_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozIP9c8b85HEqRpIas2P-2Bqr9CnpLDdj0EIzXVFWC60H-2BgmLE-2B5jugLT3QrOdtjjV0d7tcd1MNc9drMb18SzV9JR-2B9EHeNHAMnVKqkp80y7SDLw0IwxFE56W4mlOtVdez0kRmbSnaDRhhFihsNbxUoE9Sq92E0ZOabTf01nyLrSWmngYrivTkc3lpFV2rFFL1cq79-2By84l1HfVGNRh06xq-2F3zPmwJ404MDycgABh7fYA9w-3D" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUbu54SGOJ2jHHD7Cp1OOp6wajqmrJV82xTzbNUdpev192nLb-2FGq1bavtctzOZQ2x2L0pJLKZunfezQqkSSSXcZ8-3DtQwp_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozIP9c8b85HEqRpIas2P-2Bqr9CnpLDdj0EIzXVFWC60H-2BgmLE-2B5jugLT3QrOdtjjV0d7tcd1MNc9drMb18SzV9JR-2B9EHeNHAMnVKqkp80y7SDLw0IwxFE56W4mlOtVdez0kRmbSnaDRhhFihsNbxUoE9Sq92E0ZOabTf01nyLrSWmngYrivTkc3lpFV2rFFL1cq79-2By84l1HfVGNRh06xq-2F3zPmwJ404MDycgABh7fYA9w-3D">High-Luminosity LHC</a>, we will be able to improve the precision of this test and probe ever rarer Higgs decays.”</p>]]></description>
  1291. <category>News From Europe</category>
  1292. <pubDate>Tue, 6 Jun 2023 14:29:00 GMT</pubDate>
  1293. </item>
  1294. </channel>
  1295. </rss>
  1296.  

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//eps.site-ym.com/resource/rss/news.rss

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda