Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://feeds.nature.com/nphys/rss/current

  1. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:dc="http://purl.org/dc/elements/1.1/"
  2.         xmlns:content="http://purl.org/rss/1.0/modules/content/" xmlns="http://purl.org/rss/1.0/" xmlns:admin="http://webns.net/mvcb/">
  3.    <channel rdf:about="http://feeds.nature.com/nphys/rss/current">
  4.        <title>Nature Physics</title>
  5.        <description>Nature Physics offers news and reviews alongside top-quality research papers in a monthly publication, covering the entire spectrum of physics. Physics addresses the properties and interactions of matter and energy, and plays a key role in the development of a broad range of technologies. To reflect this, Nature Physics covers all areas of pure and applied physics research. The journal focuses on core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics.</description>
  6.        <link>http://feeds.nature.com/nphys/rss/current</link>
  7.        <admin:generatorAgent rdf:resource="https://www.nature.com/"/>
  8.        <admin:errorReportsTo rdf:resource="mailto:feedback@nature.com"/>
  9.        <dc:publisher>Nature Publishing Group</dc:publisher>
  10.        <dc:language>en</dc:language>
  11.        <dc:rights>© 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.</dc:rights>
  12.        <prism:publicationName>Nature Physics</prism:publicationName>
  13.        
  14.        
  15.        <prism:copyright>© 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.</prism:copyright>
  16.        <prism:rightsAgent>permissions@nature.com</prism:rightsAgent>
  17.        <image rdf:resource="https://www.nature.com/uploads/product/nphys/rss.gif"/>
  18.        <items>
  19.            <rdf:Seq>
  20.                
  21.                    <rdf:li rdf:resource="https://www.nature.com/articles/s41567-024-02442-y"/>
  22.                
  23.                    <rdf:li rdf:resource="https://www.nature.com/articles/s41567-024-02497-x"/>
  24.                
  25.                    <rdf:li rdf:resource="https://www.nature.com/articles/s41567-024-02481-5"/>
  26.                
  27.                    <rdf:li rdf:resource="https://www.nature.com/articles/s41567-024-02463-7"/>
  28.                
  29.                    <rdf:li rdf:resource="https://www.nature.com/articles/s41567-024-02482-4"/>
  30.                
  31.                    <rdf:li rdf:resource="https://www.nature.com/articles/s41567-024-02480-6"/>
  32.                
  33.                    <rdf:li rdf:resource="https://www.nature.com/articles/s41567-024-02478-0"/>
  34.                
  35.                    <rdf:li rdf:resource="https://www.nature.com/articles/s41567-024-02479-z"/>
  36.                
  37.            </rdf:Seq>
  38.        </items>
  39.    </channel>
  40.    <image rdf:about="https://www.nature.com/uploads/product/nphys/rss.gif">
  41.        <title>Nature Physics</title>
  42.        <url>https://www.nature.com/uploads/product/nphys/rss.gif</url>
  43.        <link>http://feeds.nature.com/nphys/rss/current</link>
  44.    </image>
  45.    
  46.        <item rdf:about="https://www.nature.com/articles/s41567-024-02442-y">
  47.            <title><![CDATA[Rotational symmetry influences the mechanical properties of graphene]]></title>
  48.            <link>https://www.nature.com/articles/s41567-024-02442-y</link>
  49.            <content:encoded>
  50.                <![CDATA[<p>Nature Physics, Published online: 06 May 2024; <a href="https://www.nature.com/articles/s41567-024-02442-y">doi:10.1038/s41567-024-02442-y</a></p>Rotational symmetry is shown to protect the quadratic dispersion of out-of-plane flexural vibrations in graphene and other two-dimensional materials against phonon–phonon interactions, making the bending rigidity of these materials non-divergent. The quadratic dispersion is then consistent with the propagation of sound in the graphene plane.]]></content:encoded>
  51.            <dc:title><![CDATA[Rotational symmetry influences the mechanical properties of graphene]]></dc:title>
  52.            
  53.            <dc:identifier>doi:10.1038/s41567-024-02442-y</dc:identifier>
  54.            <dc:source>Nature Physics, Published online: 2024-05-06; | doi:10.1038/s41567-024-02442-y</dc:source>
  55.            <dc:date>2024-05-06</dc:date>
  56.            <prism:publicationName>Nature Physics</prism:publicationName>
  57.            <prism:doi>10.1038/s41567-024-02442-y</prism:doi>
  58.            <prism:url>https://www.nature.com/articles/s41567-024-02442-y</prism:url>
  59.        </item>
  60.    
  61.        <item rdf:about="https://www.nature.com/articles/s41567-024-02497-x">
  62.            <title><![CDATA[Strong tunable coupling between two distant superconducting spin qubits]]></title>
  63.            <link>https://www.nature.com/articles/s41567-024-02497-x</link>
  64.            <content:encoded>
  65.                <![CDATA[<p>Nature Physics, Published online: 06 May 2024; <a href="https://www.nature.com/articles/s41567-024-02497-x">doi:10.1038/s41567-024-02497-x</a></p>The hybrid architecture of Andreev spin qubits made using semiconductor–superconductor nanowires means that supercurrents can be used to inductively couple qubits over long distances.]]></content:encoded>
  66.            <dc:title><![CDATA[Strong tunable coupling between two distant superconducting spin qubits]]></dc:title>
  67.            <dc:creator>Marta Pita-Vidal</dc:creator><dc:creator>Jaap J. Wesdorp</dc:creator><dc:creator>Lukas J. Splitthoff</dc:creator><dc:creator>Arno Bargerbos</dc:creator><dc:creator>Yu Liu</dc:creator><dc:creator>Leo P. Kouwenhoven</dc:creator><dc:creator>Christian Kraglund Andersen</dc:creator>
  68.            <dc:identifier>doi:10.1038/s41567-024-02497-x</dc:identifier>
  69.            <dc:source>Nature Physics, Published online: 2024-05-06; | doi:10.1038/s41567-024-02497-x</dc:source>
  70.            <dc:date>2024-05-06</dc:date>
  71.            <prism:publicationName>Nature Physics</prism:publicationName>
  72.            <prism:doi>10.1038/s41567-024-02497-x</prism:doi>
  73.            <prism:url>https://www.nature.com/articles/s41567-024-02497-x</prism:url>
  74.        </item>
  75.    
  76.        <item rdf:about="https://www.nature.com/articles/s41567-024-02481-5">
  77.            <title><![CDATA[Anisotropic exchange interaction of two hole-spin qubits]]></title>
  78.            <link>https://www.nature.com/articles/s41567-024-02481-5</link>
  79.            <content:encoded>
  80.                <![CDATA[<p>Nature Physics, Published online: 06 May 2024; <a href="https://www.nature.com/articles/s41567-024-02481-5">doi:10.1038/s41567-024-02481-5</a></p>A successful silicon spin qubit design should be rapidly scalable by benefiting from industrial transistor technology. This investigation of exchange interactions between two FinFET qubits provides a guide to implementing two-qubit gates for hole spins.]]></content:encoded>
  81.            <dc:title><![CDATA[Anisotropic exchange interaction of two hole-spin qubits]]></dc:title>
  82.            <dc:creator>Simon Geyer</dc:creator><dc:creator>Bence Hetényi</dc:creator><dc:creator>Stefano Bosco</dc:creator><dc:creator>Leon C. Camenzind</dc:creator><dc:creator>Rafael S. Eggli</dc:creator><dc:creator>Andreas Fuhrer</dc:creator><dc:creator>Daniel Loss</dc:creator><dc:creator>Richard J. Warburton</dc:creator><dc:creator>Dominik M. Zumbühl</dc:creator><dc:creator>Andreas V. Kuhlmann</dc:creator>
  83.            <dc:identifier>doi:10.1038/s41567-024-02481-5</dc:identifier>
  84.            <dc:source>Nature Physics, Published online: 2024-05-06; | doi:10.1038/s41567-024-02481-5</dc:source>
  85.            <dc:date>2024-05-06</dc:date>
  86.            <prism:publicationName>Nature Physics</prism:publicationName>
  87.            <prism:doi>10.1038/s41567-024-02481-5</prism:doi>
  88.            <prism:url>https://www.nature.com/articles/s41567-024-02481-5</prism:url>
  89.        </item>
  90.    
  91.        <item rdf:about="https://www.nature.com/articles/s41567-024-02463-7">
  92.            <title><![CDATA[Mass difference measurements help to determine the neutrino mass]]></title>
  93.            <link>https://www.nature.com/articles/s41567-024-02463-7</link>
  94.            <content:encoded>
  95.                <![CDATA[<p>Nature Physics, Published online: 03 May 2024; <a href="https://www.nature.com/articles/s41567-024-02463-7">doi:10.1038/s41567-024-02463-7</a></p>The Q-value of electron capture in 163Ho has been determined with an uncertainty of 0.6 eV c–2 through a combination of high-precision Penning-trap mass spectrometry and precise atomic physics calculations. This high-precision measurement provides insight into systematic errors in neutrino mass measurements.]]></content:encoded>
  96.            <dc:title><![CDATA[Mass difference measurements help to determine the neutrino mass]]></dc:title>
  97.            
  98.            <dc:identifier>doi:10.1038/s41567-024-02463-7</dc:identifier>
  99.            <dc:source>Nature Physics, Published online: 2024-05-03; | doi:10.1038/s41567-024-02463-7</dc:source>
  100.            <dc:date>2024-05-03</dc:date>
  101.            <prism:publicationName>Nature Physics</prism:publicationName>
  102.            <prism:doi>10.1038/s41567-024-02463-7</prism:doi>
  103.            <prism:url>https://www.nature.com/articles/s41567-024-02463-7</prism:url>
  104.        </item>
  105.    
  106.        <item rdf:about="https://www.nature.com/articles/s41567-024-02482-4">
  107.            <title><![CDATA[Enhanced generation of magnonic frequency combs]]></title>
  108.            <link>https://www.nature.com/articles/s41567-024-02482-4</link>
  109.            <content:encoded>
  110.                <![CDATA[<p>Nature Physics, Published online: 01 May 2024; <a href="https://www.nature.com/articles/s41567-024-02482-4">doi:10.1038/s41567-024-02482-4</a></p>As counterparts to optical frequency combs, magnonic frequency combs could have broad applications if their initiation thresholds were low and the ‘teeth’ of the comb plentiful. Progress has now been made through exploiting so-called exceptional points to enhance the nonlinear coupling between magnons and produce wider magnonic frequency combs.]]></content:encoded>
  111.            <dc:title><![CDATA[Enhanced generation of magnonic frequency combs]]></dc:title>
  112.            
  113.            <dc:identifier>doi:10.1038/s41567-024-02482-4</dc:identifier>
  114.            <dc:source>Nature Physics, Published online: 2024-05-01; | doi:10.1038/s41567-024-02482-4</dc:source>
  115.            <dc:date>2024-05-01</dc:date>
  116.            <prism:publicationName>Nature Physics</prism:publicationName>
  117.            <prism:doi>10.1038/s41567-024-02482-4</prism:doi>
  118.            <prism:url>https://www.nature.com/articles/s41567-024-02482-4</prism:url>
  119.        </item>
  120.    
  121.        <item rdf:about="https://www.nature.com/articles/s41567-024-02480-6">
  122.            <title><![CDATA[A compact neutral-atom fault-tolerant quantum computer based on new quantum codes]]></title>
  123.            <link>https://www.nature.com/articles/s41567-024-02480-6</link>
  124.            <content:encoded>
  125.                <![CDATA[<p>Nature Physics, Published online: 01 May 2024; <a href="https://www.nature.com/articles/s41567-024-02480-6">doi:10.1038/s41567-024-02480-6</a></p>A practical and hardware-efficient blueprint for fault-tolerant quantum computing has been developed, using quantum low-density-parity-check codes and reconfigurable neutral-atom arrays. The scheme requires ten times fewer qubits and paves the way towards large-scale quantum computing using existing experimental technologies.]]></content:encoded>
  126.            <dc:title><![CDATA[A compact neutral-atom fault-tolerant quantum computer based on new quantum codes]]></dc:title>
  127.            
  128.            <dc:identifier>doi:10.1038/s41567-024-02480-6</dc:identifier>
  129.            <dc:source>Nature Physics, Published online: 2024-05-01; | doi:10.1038/s41567-024-02480-6</dc:source>
  130.            <dc:date>2024-05-01</dc:date>
  131.            <prism:publicationName>Nature Physics</prism:publicationName>
  132.            <prism:doi>10.1038/s41567-024-02480-6</prism:doi>
  133.            <prism:url>https://www.nature.com/articles/s41567-024-02480-6</prism:url>
  134.        </item>
  135.    
  136.        <item rdf:about="https://www.nature.com/articles/s41567-024-02478-0">
  137.            <title><![CDATA[Enhancement of magnonic frequency combs by exceptional points]]></title>
  138.            <link>https://www.nature.com/articles/s41567-024-02478-0</link>
  139.            <content:encoded>
  140.                <![CDATA[<p>Nature Physics, Published online: 29 April 2024; <a href="https://www.nature.com/articles/s41567-024-02478-0">doi:10.1038/s41567-024-02478-0</a></p>Frequency combs, which are important for applications in precision spectroscopy, depend on material nonlinearities for their function, which can be hard to engineer. Now an approach combining magnons and exceptional points is shown to be effective.]]></content:encoded>
  141.            <dc:title><![CDATA[Enhancement of magnonic frequency combs by exceptional points]]></dc:title>
  142.            <dc:creator>Congyi Wang</dc:creator><dc:creator>Jinwei Rao</dc:creator><dc:creator>Zhijian Chen</dc:creator><dc:creator>Kaixin Zhao</dc:creator><dc:creator>Liaoxin Sun</dc:creator><dc:creator>Bimu Yao</dc:creator><dc:creator>Tao Yu</dc:creator><dc:creator>Yi-Pu Wang</dc:creator><dc:creator>Wei Lu</dc:creator>
  143.            <dc:identifier>doi:10.1038/s41567-024-02478-0</dc:identifier>
  144.            <dc:source>Nature Physics, Published online: 2024-04-29; | doi:10.1038/s41567-024-02478-0</dc:source>
  145.            <dc:date>2024-04-29</dc:date>
  146.            <prism:publicationName>Nature Physics</prism:publicationName>
  147.            <prism:doi>10.1038/s41567-024-02478-0</prism:doi>
  148.            <prism:url>https://www.nature.com/articles/s41567-024-02478-0</prism:url>
  149.        </item>
  150.    
  151.        <item rdf:about="https://www.nature.com/articles/s41567-024-02479-z">
  152.            <title><![CDATA[Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays]]></title>
  153.            <link>https://www.nature.com/articles/s41567-024-02479-z</link>
  154.            <content:encoded>
  155.                <![CDATA[<p>Nature Physics, Published online: 29 April 2024; <a href="https://www.nature.com/articles/s41567-024-02479-z">doi:10.1038/s41567-024-02479-z</a></p>Quantum low-density parity-check codes are highly efficient in principle but challenging to implement in practice. This proposal shows that these codes could be implemented in the near term using recently demonstrated neutral-atom arrays.]]></content:encoded>
  156.            <dc:title><![CDATA[Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays]]></dc:title>
  157.            <dc:creator>Qian Xu</dc:creator><dc:creator>J. Pablo Bonilla Ataides</dc:creator><dc:creator>Christopher A. Pattison</dc:creator><dc:creator>Nithin Raveendran</dc:creator><dc:creator>Dolev Bluvstein</dc:creator><dc:creator>Jonathan Wurtz</dc:creator><dc:creator>Bane Vasić</dc:creator><dc:creator>Mikhail D. Lukin</dc:creator><dc:creator>Liang Jiang</dc:creator><dc:creator>Hengyun Zhou</dc:creator>
  158.            <dc:identifier>doi:10.1038/s41567-024-02479-z</dc:identifier>
  159.            <dc:source>Nature Physics, Published online: 2024-04-29; | doi:10.1038/s41567-024-02479-z</dc:source>
  160.            <dc:date>2024-04-29</dc:date>
  161.            <prism:publicationName>Nature Physics</prism:publicationName>
  162.            <prism:doi>10.1038/s41567-024-02479-z</prism:doi>
  163.            <prism:url>https://www.nature.com/articles/s41567-024-02479-z</prism:url>
  164.        </item>
  165.    
  166. </rdf:RDF>
  167.  

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//feeds.nature.com/nphys/rss/current

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda