Sorry

This feed does not validate.

In addition, interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://lnwme.blogspot.com/rss.xml

  1. <?xml version='1.0' encoding='UTF-8'?><rss xmlns:atom="http://www.w3.org/2005/Atom" xmlns:openSearch="http://a9.com/-/spec/opensearchrss/1.0/" xmlns:blogger="http://schemas.google.com/blogger/2008" xmlns:georss="http://www.georss.org/georss" xmlns:gd="http://schemas.google.com/g/2005" xmlns:thr="http://purl.org/syndication/thread/1.0" version="2.0"><channel><atom:id>tag:blogger.com,1999:blog-14256471</atom:id><lastBuildDate>Sun, 29 Dec 2024 08:18:19 +0000</lastBuildDate><category>p53</category><category>ECM extracellular matrix</category><category>Cervico-vaginal foetal fibronectin MMP1-2</category><category>Bcl-2</category><category>ZNFN1A1</category><category>PDZ</category><category>TGF-beta</category><category>pkc</category><category>TATA</category><category>BMP</category><category>CD11b</category><category>VSV-G</category><category>GPRs</category><category>NEIGHBOR OF BRCA1 GENE 1</category><category>POU</category><category>lamin</category><category>BCL2</category><category>CDC42</category><category>Ca(2+)</category><category>ERVK6</category><category>TROPO</category><category>Z-disc</category><category>MHC</category><category>Rho</category><category>acyl</category><category>ABI1</category><category>H2O2</category><category>Ribosomal protein S6</category><category>VP-16</category><category>p21ras</category><category>14-3-3</category><category>BTB</category><category>COPI</category><category>GABAergicAB</category><category>V(D)J</category><category>hnRPN</category><category>nmda</category><category>Arabidopsis</category><category>GH</category><category>GST glutathione</category><category>NADP</category><category>NFKB</category><category>SH3</category><category>beta2</category><category>dynein</category><category>pka</category><category>COP9</category><category>CpG island</category><category>ENO1</category><category>FUGU</category><category>GATA-1</category><category>IRE-BP</category><category>SNARE</category><category>TFIID</category><category>TXN</category><category>UO</category><category>WDR1</category><category>amyloid</category><category>caspase</category><category>microRNA</category><category>p300</category><category>ppar</category><category>ptk</category><category>CCR5</category><category>K-ras</category><category>MK-801</category><category>MYC</category><category>Mabs</category><category>RSS type H3</category><category>Rho kinase</category><category>TLR</category><category>TRANSFORMATION-RELATED PROTEIN 53 TRP53</category><category>citrate</category><category>phases S</category><category>syndecan-1</category><category>zbtb24</category><category>APC</category><category>Arp2/3</category><category>B23</category><category>CAG</category><category>CD45</category><category>CREB</category><category>Ferroportin</category><category>GOLGA2LY2</category><category>GSH glutathione</category><category>GnRH</category><category>H1</category><category>Hoxb</category><category>Janus</category><category>Kv1</category><category>O157:H7</category><category>Pima</category><category>SLCO1B1</category><category>SLCO6A1</category><category>VEGF</category><category>Xq13</category><category>e3B1</category><category>mRNPs</category><category>mapk</category><category>metallothionein</category><category>pusedopolio</category><category>ARNT</category><category>ART</category><category>BACH1</category><category>BCR</category><category>BDNF</category><category>Ca2+</category><category>FK506</category><category>HIF1</category><category>IDDM/VEP</category><category>IFNG</category><category>IgG</category><category>MDM2</category><category>NADPH</category><category>O1</category><category>PI3K</category><category>Protein-A</category><category>PtdIns</category><category>SLC40A1</category><category>Slc11a1</category><category>T3</category><category>TBP</category><category>TXNRD1</category><category>ggt</category><category>nucleotide 308</category><category>ssh unit</category><category>substance P</category><category>tyrosine hydroxylase</category><category>zymogen</category><category>5HT1</category><category>AMP</category><category>Autoantigens</category><category>Catalase</category><category>Cyclin T1/CDK9</category><category>DFKZp</category><category>GPCR</category><category>GPI</category><category>GSK3 beta</category><category>HLA-DQA</category><category>IgA</category><category>K+</category><category>MoAb</category><category>Myosin</category><category>PT</category><category>QTL</category><category>SOD1</category><category>SSCP</category><category>UDP</category><category>agouti</category><category>anthrax</category><category>chronome</category><category>epistatic</category><category>forskolin</category><category>laminin</category><category>pgr1</category><category>pol</category><category>rs1801282</category><category>sp1</category><category>theta</category><category>AP-1</category><category>BBB</category><category>BTK</category><category>CDK</category><category>CNC</category><category>COP1</category><category>CYP2B6</category><category>ERCC</category><category>G0 phase</category><category>G2</category><category>GLI3/ssh</category><category>HIV1</category><category>HLA-DR</category><category>HMG box</category><category>HMG1</category><category>HPRD</category><category>HSP90</category><category>IL6</category><category>Kir2.1</category><category>MC4R</category><category>MERLIN</category><category>MRE11</category><category>P450</category><category>PHD (plant homology domain)</category><category>PSMA</category><category>PWM pokeweed mitogen</category><category>Serial Endosymbiosis Theory</category><category>TGFB</category><category>TRX</category><category>TTTY testis-specific transcript</category><category>World Bank</category><category>capsase</category><category>chicken embryo</category><category>connexin</category><category>cytochrome b</category><category>ferrodoxin</category><category>gp160</category><category>morphogenesis</category><category>p120 GAP</category><category>phiX174</category><category>polymerase chain reaction</category><category>zero-sum</category><category>ASK1</category><category>ATRIP-RPA-ssDNA</category><category>B12</category><category>CART</category><category>CD4</category><category>CDC2</category><category>ERV</category><category>Epo</category><category>G6PD</category><category>Heterodimerize</category><category>IL1</category><category>IMP</category><category>IRE1</category><category>KDEL</category><category>KIAA0067</category><category>KLK2 kallikrein 2</category><category>LEF1</category><category>MAGUK</category><category>MAPT</category><category>MDR1 (multidrug resistance)</category><category>MID1</category><category>MK-167</category><category>MPP</category><category>NQO</category><category>NRF2</category><category>NS3</category><category>PCNA</category><category>RuBisCO</category><category>S100A6</category><category>SLC11A2</category><category>SLC18A2</category><category>SLC1A2</category><category>SLC25A4</category><category>SRrp508</category><category>SSCP single-stranded conformation polymorphism</category><category>Sec14p</category><category>Sec18p</category><category>TFR</category><category>TSP1</category><category>Tyr20</category><category>UGA</category><category>VAV</category><category>VGP</category><category>VMAT2</category><category>VSG</category><category>Van der Waal&#39;s</category><category>XRCC</category><category>base excision repair (BER)</category><category>brain natriuretic peptide (BNP)</category><category>case-control study</category><category>curcumin</category><category>cytochrome c</category><category>glycoprotein</category><category>miR-122 promoter</category><category>nephrin gene</category><category>phosphatidylinositol</category><category>tartrate</category><category>torpedo</category><category>variable (V)</category><category>1</category><category>ABC</category><category>ALPP</category><category>AMELX</category><category>ANOVA</category><category>BDNF (V66M)</category><category>BTC</category><category>CA1</category><category>CCL5</category><category>CCND</category><category>CXCL1</category><category>ESR1</category><category>Fibrillin</category><category>HEK-293</category><category>HRAS</category><category>HSPGS</category><category>HTT</category><category>IGH</category><category>KLF2</category><category>LIG4 SYNDROME</category><category>Lunatic fringe</category><category>MAP3K11</category><category>MLH1</category><category>MT state</category><category>NBR1</category><category>NF1</category><category>NFE2</category><category>NK4</category><category>Oct-4</category><category>PAX-6</category><category>PLA2</category><category>POL IOTA</category><category>S. pombe</category><category>SLC25A5</category><category>SLC31A1</category><category>STP1</category><category>Spy</category><category>TCR</category><category>TNFS</category><category>TRF</category><category>TTN</category><category>YWHAZ</category><category>YY1</category><category>axis type I -II hypothesis</category><category>catecholamine</category><category>chi square</category><category>coitus interruptus COI</category><category>cytokenesis</category><category>dyad</category><category>glutamate side chain</category><category>neanderthalensis</category><category>pg</category><category>25D(3)</category><category>508</category><category>ACCEPTOR 1</category><category>AMPA</category><category>ANT</category><category>APOB</category><category>Artemis</category><category>Aspergillus niger</category><category>BCM</category><category>C reactive protein (CRP)</category><category>C-X-C</category><category>C. elegans</category><category>CDH1</category><category>CFP</category><category>CMV</category><category>COL2A1</category><category>COX-2</category><category>COX2</category><category>Caveman</category><category>CpG MTase</category><category>DA-1</category><category>DBH</category><category>DDR low-carb</category><category>DSB</category><category>ERK1</category><category>EST</category><category>Emiliania Huxleyi</category><category>GDNF</category><category>GIT1</category><category>GRB10</category><category>IGFBP3</category><category>IL3</category><category>IL5</category><category>IL8</category><category>IPA</category><category>IRP</category><category>ITGA</category><category>ITO/IPA</category><category>ITPR1</category><category>Intrachromosomal epistasis</category><category>MDMX</category><category>MEN2B</category><category>Multipoint AT theta</category><category>NEMO</category><category>NR3C2</category><category>Neural Computation</category><category>Ondine Curse</category><category>PAF</category><category>PGN</category><category>PHD-type</category><category>PSA-LM</category><category>Pol eta</category><category>RPS6</category><category>SACM1L</category><category>SCN9A</category><category>SLC19A2</category><category>SLC25A12</category><category>SLC2A4</category><category>SLC38A3</category><category>SLC6A4</category><category>SLE</category><category>SLY1</category><category>SULT1A1</category><category>T200</category><category>T4</category><category>TTAGGG</category><category>U937</category><category>UGT1A1</category><category>UPD</category><category>USF2</category><category>USH</category><category>Viscum album</category><category>WISP</category><category>[protection of telomeres 1] POT1</category><category>amylin</category><category>beta3</category><category>cAMP</category><category>cI protein</category><category>caffeine</category><category>cdt1</category><category>chaperonin</category><category>chimera</category><category>epigallocatechin</category><category>epigenetic</category><category>genetic interaction</category><category>gp45</category><category>hERbeta</category><category>micro villi</category><category>neologism</category><category>nucleotide excision repair (NER)</category><category>peroxiredoxin</category><category>polymorphisms</category><category>relative risk (RR)</category><category>self-notself</category><category>steroid X receptor</category><category>sticky wicket</category><category>trithorax-related protein</category><category>video-game</category><category>Экстраюмор</category><category>(TTAGGG)12</category><category>13  polymorphisms</category><category>13 polymorphisms</category><category>1q31</category><category>47 XXY</category><category>5=HT1</category><category>ABT 200</category><category>AGT</category><category>AHS</category><category>AIDS/HIV</category><category>ANP</category><category>ARF</category><category>ARTN</category><category>ATR</category><category>BRD8</category><category>Best disease</category><category>Big Blue</category><category>CA125</category><category>CACNA1G</category><category>CD34</category><category>CD36</category><category>CDPX2</category><category>CFTR</category><category>CSF2</category><category>CTGF</category><category>D10Mit148</category><category>D8Mit113</category><category>D8Mit85</category><category>DNA fingerprinting</category><category>DSS</category><category>E26</category><category>ERP</category><category>European Russia</category><category>FAD</category><category>Fhit</category><category>G</category><category>G-CSF</category><category>GALT</category><category>GCG</category><category>GCNF</category><category>GFP</category><category>GLO1</category><category>GOS</category><category>GRX-glutaredoxin</category><category>GSR</category><category>GSTT1</category><category>GZMA</category><category>Galphaq</category><category>Geminin</category><category>HERV</category><category>HFE4</category><category>HLAHLA-DQA</category><category>HPRT</category><category>HSL</category><category>IAP intracisternal A-particle</category><category>IDN</category><category>IGEM</category><category>IQ motif</category><category>IQ motifs</category><category>ITO</category><category>Inositol</category><category>KG-1</category><category>KIAA0434</category><category>KIAA1407</category><category>Kunitz-type genes</category><category>Ligation-mediated PCR</category><category>MAGI2</category><category>MARVEL</category><category>MDS Miller-Dieker syndrome</category><category>MIB1</category><category>MTHFR</category><category>Methadone</category><category>Mitf</category><category>NCAM</category><category>NCBI</category><category>NCK-associated protein 1</category><category>NOGO</category><category>NUCKS</category><category>OCD</category><category>ODC</category><category>OPN</category><category>OSCAR</category><category>OT system</category><category>OTC</category><category>P2Y</category><category>PCR/SSCP</category><category>PEVK</category><category>PFC</category><category>PGR153</category><category>PHGDH</category><category>POLQ</category><category>PRSS1</category><category>PSMC</category><category>PSMD1</category><category>PSMD6</category><category>PTTG1</category><category>PZ</category><category>Pdgfra</category><category>RAD30</category><category>RANTES</category><category>RET</category><category>RIIID</category><category>RSS</category><category>RTN4R</category><category>Rho kinase MDS stop</category><category>RhoA-19N</category><category>S. cerevisiae</category><category>SAC1</category><category>SET domain</category><category>SFRS1</category><category>SLC17A4</category><category>SLC25A16 in autism</category><category>SLC25A21</category><category>SLC27A5</category><category>SMS</category><category>SNM</category><category>SSC [Shamanic State of Consciousness]</category><category>STK-4</category><category>Self/Nonself</category><category>Swiss Cheese</category><category>TCF</category><category>TEM-8</category><category>TERF1</category><category>TNF308</category><category>TNM</category><category>TNSF</category><category>TRIO</category><category>TU 502</category><category>TrkB</category><category>Trotskyism</category><category>V-ERB-A</category><category>VDCC</category><category>VHL</category><category>WARS</category><category>WWP1</category><category>ZFPM1</category><category>ZO-1</category><category>antithrombin III</category><category>autophosphorylate</category><category>behavior order modifier BDM</category><category>betaAR</category><category>cathepsin B</category><category>classcal</category><category>cysteinyl leukotriene receptors</category><category>dNTP and 2&#39;- 3&#39;-ddNTP</category><category>eigen</category><category>env</category><category>fuzzy logic</category><category>g3p</category><category>glutathione-GSH</category><category>macropain</category><category>mitofusin</category><category>molecule (iv) and (nt)</category><category>murimac</category><category>octamer</category><category>p16INK4a</category><category>p73</category><category>photonic devices</category><category>phylogenic</category><category>proliferating cell nuclear antigen</category><category>reverse transcription</category><category>rs6784095</category><category>seven domains of the (ISC)2 SSCP</category><category>short tandem repeat</category><category>slc4a1</category><category>snaps</category><category>tetraspanin</category><category>tpi</category><category>tryptophan hydroxylase</category><category>valence</category><category>variable region (Vh)</category><category>vertical growth phase (VGP)</category><category>xxx</category><category>yin-yang model</category><category>(GST)/GABARAP</category><category>(GSTT1)</category><category>(Y20TRF23)</category><category>1 2 3-bpg</category><category>13-4-4</category><category>188</category><category>2-aminoadipic acid (AAA)</category><category>3pg</category><category>47</category><category>677CT</category><category>A</category><category>ACY1</category><category>AHSA1</category><category>AID</category><category>AMPD</category><category>AMV</category><category>APEH</category><category>APOBEC3G</category><category>ASPM</category><category>AT</category><category>ATR [?]</category><category>Ameliorate</category><category>AnPRT</category><category>Axin</category><category>BAFF</category><category>BCDO</category><category>BFP</category><category>BH3</category><category>BR3</category><category>BSN</category><category>Balbiani ring 3</category><category>C-terminal extension (CTE)</category><category>C. albicans</category><category>CA150</category><category>CALLA</category><category>CATCH 22</category><category>CAZ</category><category>CCA</category><category>CCHF</category><category>CD54</category><category>CHILD</category><category>CHML</category><category>COI gene</category><category>COS7</category><category>CTF7</category><category>CTLA-4</category><category>Chondrodysplasia punctata (CPD)</category><category>D2</category><category>DAT</category><category>DHAP</category><category>DNMT3B</category><category>DXS1047</category><category>Dark Site</category><category>Dresden</category><category>EAAT2</category><category>EORTC</category><category>ERG</category><category>ESCO1</category><category>European Transition Project</category><category>F(ab)2</category><category>F8A1</category><category>FKHR</category><category>FLIP</category><category>FOG</category><category>Fascin1</category><category>Fenton reaction</category><category>GABARAP</category><category>GABRQ gamma-aminobutyric acid</category><category>GABT</category><category>GCCR-PHA</category><category>GMCSF</category><category>GST3</category><category>Glg1</category><category>HAAO</category><category>HBB</category><category>HES</category><category>HOMO/LUMO</category><category>HP1 defensin</category><category>IFCC</category><category>IGHJ</category><category>INTERLEUKIN 12</category><category>ITI</category><category>KIAA0999</category><category>KIAA1677</category><category>L-dopa</category><category>LAT</category><category>LFNG</category><category>LIMD1</category><category>LIMK1</category><category>LIPE</category><category>LTP</category><category>LY294002</category><category>LYT10</category><category>MAG</category><category>MAXENT</category><category>MCM</category><category>MCM2-7</category><category>MFP</category><category>MFS</category><category>MICE</category><category>MIRN</category><category>MLR</category><category>MME</category><category>MMSET</category><category>MP</category><category>MPZ</category><category>MSF</category><category>MSN</category><category>Microcephalin</category><category>NAHR</category><category>NEP</category><category>NRTK</category><category>NURD</category><category>NcoI</category><category>Ngn2</category><category>O-chi-1</category><category>ODR</category><category>OMPG</category><category>ORC</category><category>ORCCs</category><category>Octet</category><category>Omenn syndrome</category><category>P453T</category><category>P50RhoGAP</category><category>PBL-SCID</category><category>PCLO</category><category>PCR</category><category>PETC</category><category>PHM</category><category>PKR</category><category>PLIN</category><category>PO protein</category><category>POH</category><category>PRKAA1</category><category>PRKCL1</category><category>PSA</category><category>PSI</category><category>PSP-I/PSP-II</category><category>PSYOP</category><category>PTS</category><category>PWM</category><category>Phosphoramidon</category><category>Plb2p</category><category>R39C</category><category>RAB</category><category>RANKL</category><category>RASA</category><category>RNR-Ribonucleotide reductase</category><category>RPE^%</category><category>RRS</category><category>RSD1 (recessive suppressor of secretory defect) protein</category><category>RSTS</category><category>Rnomics</category><category>RushIT KIDS</category><category>S12</category><category>SCCP</category><category>SCID</category><category>SCR</category><category>SERT</category><category>SETDB1</category><category>SFO subfornical organ</category><category>SHGC-34099</category><category>SLC12A9</category><category>SLC38A4</category><category>SLSLC25A16 in autism</category><category>SPTLC1</category><category>SULF1</category><category>Secys- selenocysteine</category><category>Stalinist purge</category><category>T</category><category>T7</category><category>TAT</category><category>TBARS</category><category>TGN</category><category>TGR-selenodiglutathione reductase</category><category>TJP</category><category>TSR</category><category>TT</category><category>TTV</category><category>TWEAK</category><category>TcpA</category><category>Triosephosphate isomerase</category><category>Tyrosyl-tRNA</category><category>UGT</category><category>V44M</category><category>VDAC</category><category>VDT</category><category>VGT</category><category>VLCFA</category><category>VNTR</category><category>VRS Virchow-Robin spaces</category><category>Vpr</category><category>WAIS-R</category><category>WASP</category><category>WBBLL</category><category>Wim van Eck</category><category>XIAP</category><category>XPG</category><category>XXY</category><category>ZP2</category><category>ZPZ</category><category>aaRS</category><category>adPOE</category><category>and C complex</category><category>and M</category><category>anthranilate</category><category>anti-TRF1</category><category>asperigellez</category><category>atp</category><category>beta-globin</category><category>blood brain barrier</category><category>bovine genome</category><category>cgp-3466</category><category>chemokine receptor</category><category>cpn60_TCP1</category><category>cross-linking</category><category>cub</category><category>cubitus interruptus (cI protein)</category><category>cytochrome f</category><category>detective story</category><category>eeg</category><category>embden-meyerhof</category><category>exinct</category><category>exon junction complex</category><category>framework region 3</category><category>gait</category><category>gapc</category><category>gapdh</category><category>gigaxonin</category><category>hBD-1 (BDNF)</category><category>hCSFs</category><category>hGSTO1-1</category><category>hUPC2</category><category>high mobility group</category><category>ibogaine</category><category>karyology</category><category>lasp-1</category><category>mOR-EG</category><category>methylglyoxal</category><category>monomers</category><category>multiple system atrophy (MSA)</category><category>mushroom bodies (MBs)</category><category>nad</category><category>oracle</category><category>oxidized glutathione reductase-GSSG</category><category>p23</category><category>p70S6K</category><category>p85</category><category>pSB1A2</category><category>pd</category><category>pgk</category><category>pimonidazole</category><category>pinyin</category><category>polygenic</category><category>praja-1</category><category>repulsion range</category><category>rhodphsin</category><category>riboflavin</category><category>rp-l13</category><category>runga kutta</category><category>s-nitrosylation</category><category>securin</category><category>serendipitous</category><category>siah1</category><category>slurp</category><category>stdev</category><category>synteny</category><category>teenage suicide</category><category>thiolltransferase-TTase</category><category>thyroxine</category><category>transthyretin</category><category>two-state theory</category><category>universal automaton</category><category>weirdest</category><category>Γkji = Γijk</category><category>ΔΓd/Γd</category><title>VackvSuG</title><description></description><link>http://lnwme.blogspot.com/</link><managingEditor>noreply@blogger.com (mark brenneman)</managingEditor><generator>Blogger</generator><openSearch:totalResults>1075</openSearch:totalResults><openSearch:startIndex>1</openSearch:startIndex><openSearch:itemsPerPage>25</openSearch:itemsPerPage><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-4986984642022292062</guid><pubDate>Sun, 10 Apr 2016 03:24:00 +0000</pubDate><atom:updated>2016-04-18T07:48:17.633-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">DHAP</category><category domain="http://www.blogger.com/atom/ns#">g3p</category><category domain="http://www.blogger.com/atom/ns#">G6PD</category><category domain="http://www.blogger.com/atom/ns#">methylglyoxal</category><category domain="http://www.blogger.com/atom/ns#">tpi</category><category domain="http://www.blogger.com/atom/ns#">Triosephosphate isomerase</category><title>TRIOSEPHOSPHATE ISOMERASE (TPI) A DIMERIC GLYCOLYTIC ENZYME AS A MODEL OF TIM-BARREL ACTIVE-SITE STRUCTURAL AND CHEMICAL ASPECTS IN THE MONOMER LOOP REGION&#39;S REVERSIBLE CATALYTIC REACTION.</title><description>&lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  2. &lt;br /&gt;&lt;/div&gt;
  3. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in; text-align: justify;&quot;&gt;
  4. Triosephosphate
  5. isomerase (TPI, EC &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?cmd=PureSearch&amp;amp;term=5.3.1.1[EC%2FRN%20Number]&quot;&gt;5.3.1.1&lt;/a&gt;)
  6. (§,
  7.  
  8.  
  9.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/92808.html?ID=88530&quot; target=&quot;_blank&quot;&gt;‡&lt;/a&gt;) is essential to glycolysis, catalyzes the fifth step in the
  10. glycolysis pathway the reversible conversion of dihydroxyacetone
  11. phosphate (DHAP) into glyceraldehyde-3-phosphate. TPI is a homodimer
  12. formed by two identical dimeric molecules of a single structural
  13. locus : &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/protein/P60174&quot;&gt;12p13.31&lt;/a&gt;.
  14. TPI has only 1 functional gene with a molecular mass of 29 kDa, that
  15. after refinement are products of a distinct &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2550787&quot;&gt;single&lt;/a&gt;
  16. structural locus. The variant phenotype of identical subunits are
  17. expressed in both red cells and circulating &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7294020&quot;&gt;lymphocytes&lt;/a&gt;,
  18. catalyzing the interconversion of one of the two products breakdown
  19. by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14762718&quot;&gt;reversible&lt;/a&gt;
  20. conversion. The TPI substrate by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23909928&quot;&gt;deprotonation&lt;/a&gt;
  21. the transition state reaction of dihydroxyacetone phosphate (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17424909&quot;&gt;DHAP&lt;/a&gt;)
  22. substrate yields one product of the glycolytic pathway, is a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17444661&quot;&gt;trend&lt;/a&gt;*
  23. (Kcat) that persists creating the initial complex
  24. microcompartmentation of TPI to give (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3365378/&quot;&gt;G3P&lt;/a&gt;)
  25. glyceraldehyde-3-phosphate which seems to be the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/26570983&quot;&gt;isomerase&lt;/a&gt;*
  26. activity, release is slower than its conversion to DHAP  in normal
  27. and TPI deficient cells. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21839742&quot;&gt;TIM&lt;/a&gt;
  28. with its natural substrates has &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25383217&quot;&gt;not
  29. been&lt;/a&gt;
  30. (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207401/#sec2title&quot;&gt;•&lt;/a&gt;)
  31. crystalized&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16503298&quot;&gt;**&lt;/a&gt;.
  32. TPI is a dimeric enzyme and contains 7 exons interrupted by six
  33. introns.&lt;/div&gt;
  34. &lt;blockquote&gt;
  35. &lt;br /&gt;&lt;/blockquote&gt;
  36. &lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  37. &lt;/div&gt;
  38. &lt;blockquote&gt;
  39. &lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  40. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/JEoq9MsxeOqtrOfy-5SKhke5AaBNy2u1ktIcw5STY3E?feat=directlink&quot;&gt;
  41.  &lt;img align=&quot;left&quot; alt=&quot;monomers&quot; border=&quot;0&quot; height=&quot;145&quot; name=&quot;Image3&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhQnTjh7TAPVthBESca2aLu-yHyJDLLZFWZ-XB92XIupzA2PKw6m0b3M3cBsRDfWBm7ackpLz_AjeXPBjwN_onfxg_EPGGShYaOgdwW4ZskQpBo1zXZRJju008orCctYthH7DsCfw/s800-Ic42/image7.png&quot; width=&quot;238&quot; /&gt;
  42. &lt;/a&gt;
  43. The crystallographic structure of (HsTPI) human triosephosphate
  44. isomerase PDB:1HTI is one dimer per asymmetric unit subunit 1 and
  45. subunit 2 are in the open and closed conformations in the
  46. 3-dimensional asymmetric space group P 2(1) which is specific to the
  47. Monoclinic with minimization on the entire structure in the presence
  48. of substrate analogues and its surrounding residues supporting
  49. possible regions targeted for drug design.
  50.  
  51. &lt;/div&gt;
  52. &lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;&quot;&gt;
  53. &lt;br /&gt;&lt;/div&gt;
  54. &lt;/blockquote&gt;
  55. &lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;&quot;&gt;
  56. &lt;br /&gt;&lt;/div&gt;
  57. &lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  58. TPI
  59. deficiency (TPID) a disorder of glycolysis, occurring in haplotypes
  60. of specific alleles heterogeneous to clinical &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2876430&quot;&gt;TPI&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8503454&quot;&gt;deficiency&lt;/a&gt;,
  61. with a rare homozygous &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9338582&quot;&gt;deficiency&lt;/a&gt;
  62. the resulting &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12023819&quot;&gt;genetic&lt;/a&gt;
  63. defect is the cause of a null variant incompatible with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7628118&quot;&gt;life&lt;/a&gt;
  64. by abnormally high &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14559119&quot;&gt;levels&lt;/a&gt;
  65. of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12509510&quot;&gt;DHAP&lt;/a&gt;
  66. which degrades spontaneously into the toxic (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22902706&quot;&gt;MG&lt;/a&gt;)
  67.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19786097&quot;&gt;methylglyoxal&lt;/a&gt;,
  68. due to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22574817&quot;&gt;deamidation&lt;/a&gt;
  69. of asparagine (Asn&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3740839&quot;&gt;15-71&lt;/a&gt;)
  70. to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25884638&quot;&gt;form&lt;/a&gt;
  71. aspartic and glutamic acid. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19686666&quot;&gt;Loop
  72. 6&lt;/a&gt;
  73. plays a role in preventing the breakdown yield of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22813930&quot;&gt;methylglyoxal&lt;/a&gt;
  74. (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12454456&quot;&gt;fMG&lt;/a&gt;)
  75. one of the of the three products of enzyme-bound enediol(ate)
  76.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14563846&quot;&gt;phosphate&lt;/a&gt;,
  77. towards &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15166315&quot;&gt;elimination&lt;/a&gt;
  78. of (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19348462&quot;&gt;fMG&lt;/a&gt;)
  79. inorganic phosphate. TPI deficiency is due to the common aberrant
  80. dimerization (or the dissociation into inactive monomers) of mutation
  81. TPI &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18510744&quot;&gt;1591C&lt;/a&gt;,
  82. encoding a Glu&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8931952&quot;&gt;104&lt;/a&gt;-to-Asp
  83. (glutamate-to-aspartate) substitution in the TPI &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17183658&quot;&gt;variant&lt;/a&gt;
  84. found in cases of hemolytic anemia &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16086671&quot;&gt;coupled&lt;/a&gt;
  85. with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9871806&quot;&gt;neurodegeneration&lt;/a&gt;,
  86. the Glu&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10916682&quot;&gt;104&lt;/a&gt;-to-Asp
  87. substitution is the most &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20374271&quot;&gt;common&lt;/a&gt;
  88. disease allele inherited, when compared to wild-type TPI&#39;s &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8745400&quot;&gt;three&lt;/a&gt;
  89. (residues from the same &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20694739&quot;&gt;subunit&lt;/a&gt;)
  90. similar but not identical interactions between the inhibitor and
  91. catalytic residues, Glu &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23560625&quot;&gt;167&lt;/a&gt;
  92. (or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21671330&quot;&gt;165&lt;/a&gt;)
  93. forms a stable dimer and provides the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21633986&quot;&gt;rationale&lt;/a&gt;
  94. for production of structurally normal enzyme in humans, the E&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23966267&quot;&gt;104&lt;/a&gt;D
  95. mutation, provides the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/26870617&quot;&gt;amyloid-resistant&lt;/a&gt;
  96. structure of human triosephosphate isomerase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18562316&quot;&gt;HsTPI&lt;/a&gt;).
  97.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24056040&quot;&gt;Water&lt;/a&gt;-protein
  98. molecules &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18562316&quot;&gt;join&lt;/a&gt;
  99. two catalytically active monomers which is only in its dimeric form,
  100. as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24564410&quot;&gt;monomers&lt;/a&gt;
  101. of TIM are not functional. Within a hydrophobic catalytic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10916682&quot;&gt;pocket&lt;/a&gt;
  102. of the native enzymes the binding and catalysis of TPIs in
  103.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10655478&quot;&gt;hemolysates&lt;/a&gt;,
  104. bind to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9850739&quot;&gt;red
  105. cell&lt;/a&gt;
  106. membrane. Molecular modeling using the human crystal structure of
  107.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23023928&quot;&gt;TPI&lt;/a&gt;
  108. was performed to determine how these mutations could affect enzyme
  109. structure and function. The Amyloid &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/26870617&quot;&gt;secondary&lt;/a&gt;
  110. structure autoepitopes &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15146421&quot;&gt;antigen&lt;/a&gt;-driven
  111. mechanism works toward recovery of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1849541&quot;&gt;anti&lt;/a&gt;-triosephosphate
  112. isomerase mutant TPI &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12051920&quot;&gt;peptide&lt;/a&gt;**
  113. antigens. This is the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25092608&quot;&gt;scheme&lt;/a&gt;
  114. that allows function-enhancing stability most significantly, the
  115. catalysis for deprotonation of DHAP or vice-versa GAP substrates of
  116. the TIM-barrel relative to TPI toward turnover of two-part substrate
  117. glycolaldehyde / phosphite dianion {GA + HPO32* the transition state
  118. for this enolising enzyme substrate pieces.} Km/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17444661&quot;&gt;obsd&lt;/a&gt;*
  119. group of the whole GAP substrate and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10194358&quot;&gt;H95&lt;/a&gt;
  120. (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8591044&quot;&gt;loop 4&lt;/a&gt;)
  121. is also optimal for small mutational changes in or reflects its
  122. compatibility with amino acid residues which stabilizes the
  123.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2204418&quot;&gt;enediolate&lt;/a&gt;
  124. intermediate (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24825099&quot;&gt;GA/HPO&lt;/a&gt;)
  125. activity from change in the products &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3025454&quot;&gt;scheme&lt;/a&gt;
  126. (a proton transfer &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24699188&quot;&gt;mechanism&lt;/a&gt;)
  127.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24825099&quot;&gt;DHAP/G3P&lt;/a&gt;
  128. or interconversion of these intermediates.
  129.  
  130. &lt;/div&gt;
  131. &lt;blockquote class=&quot;tr_bq&quot;&gt;
  132. &lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  133. &lt;br /&gt;&lt;/div&gt;
  134. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/KD_Xyv_CQmi2EFdIbuYC5Ee5AaBNy2u1ktIcw5STY3E?feat=directlink&quot;&gt;
  135.  &lt;img align=&quot;left&quot; alt=&quot;dhap-g3p&quot; border=&quot;0&quot; height=&quot;200&quot; name=&quot;Image2&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjkNz7aBSpEHfWJDrJoV-72AdDTVfXhu4RkJQ37gYFPYhH-Ctlu8htO7hPrHABuVauvjR4Bd3SWkd2sbLRq-3F8hEq5ylVMgcTVU0yMqZWitBXauVgr-9__4cBmnNJ6IMXGP-qqWg/s512-Ic42/image6.png&quot; width=&quot;200&quot; /&gt;
  136. &lt;/a&gt;
  137.  
  138. &lt;br /&gt;
  139. &lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;&quot;&gt;
  140. &lt;br /&gt;&lt;/div&gt;
  141. Closed (activated for catalysis) of optimal WT (TPI) molecular
  142. modeling PDB 1HTI_B using the human crystal structure of TPI human
  143. triosephosphate isomerase (HsTPI) conformation 1hti_b, calculated to
  144. the incidence residue Water-protein molecules and the protein cage
  145. that interacts within a hydrophobic catalytic pocket isolated and
  146. examined which coded for human triose-phosphate isomerase. [EC:
  147. 5.3.1.1]….&lt;/blockquote&gt;
  148. &lt;br /&gt;
  149. &lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;&quot;&gt;
  150. &lt;br /&gt;&lt;/div&gt;
  151. &lt;div style=&quot;text-align: justify;&quot;&gt;
  152. The
  153. active flexible site loop must &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12627960&quot;&gt;open&lt;/a&gt;
  154. before product &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8061610&quot;&gt;release&lt;/a&gt;,
  155. unliganded in trypanosomal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18298085&quot;&gt;Tb&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21533154&quot;&gt;TIM&lt;/a&gt;
  156. glycerol phosphate ester to liganded &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1880808&quot;&gt;Glu167&lt;/a&gt;
  157. in the catalytic cycle and the enzymes substrate transition state
  158. between &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24318986&quot;&gt;open
  159. and closed&lt;/a&gt;
  160. to protect the substrate for the turnover of DHAP and G3P (GAP) the
  161. natural substrates, and inhibiting the formation of a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19686666&quot;&gt;toxic&lt;/a&gt;
  162. by-product in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2185832&quot;&gt;absence&lt;/a&gt;
  163. of this equilibration reactions between dihydroxyacetone phosphate
  164. and glyceraldehyde 3-phosphate (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15001364&quot;&gt;G3P&lt;/a&gt;)
  165. enzymes by mutations that impair biosynthesis transforming competent
  166. cells, in the presence of an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24745552&quot;&gt;auxotrophic&lt;/a&gt;
  167. effect with these differences generated for an inability of the host
  168. organism to synthesize an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24406631&quot;&gt;essential&lt;/a&gt;
  169. compound during glycolysis in Tb-TIM. Trypanosomal-TIM is a
  170. glycolytic enzyme essential for the parasite &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25829097&quot;&gt;survival&lt;/a&gt;
  171. that causes &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/26190635&quot;&gt;Chagas&lt;/a&gt;*
  172. disease, in this study &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19733070&quot;&gt;G.
  173. bellum&lt;/a&gt;
  174. from the genus related Geraniaceae and its phenolic compound are
  175. leads which generates an unstable &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24699188&quot;&gt;epimer&lt;/a&gt;
  176. of an enzyme &lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pubmed/10346950&quot;&gt;Geranin&lt;/a&gt;
  177. A-containing changes resulting from &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17763928&quot;&gt;ligand&lt;/a&gt;
  178. adducts in the active site to capture in addition a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9556344/&quot;&gt;source&lt;/a&gt;
  179. of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18757725&quot;&gt;frustration&lt;/a&gt;
  180. that becomes more favourable. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21939233&quot;&gt;Glycolaldehyde&lt;/a&gt;
  181. (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23909928&quot;&gt;GA&lt;/a&gt;)
  182. the simplest sugar-related molecules uptake of a proton by Glu167
  183. preserves the small effect for inhibition by PGA (transition-state
  184. analog) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7599123&quot;&gt;relative
  185. to&lt;/a&gt;
  186. substrate, G3P produces a triosephosphate isomerase with wild-type
  187. activity, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17336327&quot;&gt;loop
  188. 6&lt;/a&gt;
  189. adopts the &quot;closed&quot; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22409228&quot;&gt;desolvated&lt;/a&gt;&amp;nbsp;
  190. (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/26206330&quot; target=&quot;_blank&quot;&gt;+&lt;/a&gt;) conformation to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20951028&quot;&gt;facilitate&lt;/a&gt;
  191. completion of catalysis by the formation of the › &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20481463&quot;&gt;Michaelis-Menten&lt;/a&gt;
  192. complex (on the ‹ &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16953564/&quot;&gt;micros-ms&lt;/a&gt;
  193. › time scale) utilization yields further corrected calculations
  194. with corresponding (slower Kcat) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15369325/&quot;&gt;motional&lt;/a&gt;
  195. rates*
  196. Km. Increase&#39;s are discussed in the context of the significance
  197. (Enzyme kinetics\Kcat) and may be estimated where the
  198. &#39;single-substrate&#39; is locked in a protein cage &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11419952&quot;&gt;probably&lt;/a&gt;&amp;nbsp; because of an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21905108&quot;&gt;active&lt;/a&gt;
  199. reaction site (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12454456&quot;&gt;loop
  200. 6&lt;/a&gt;)
  201. movement to the transition state for deprotonation; which are the
  202. on-average opened (substrate binding and release) and closed
  203. (activated for catalysis) of both monomers optimal WT (wild type) TIM
  204. conformations. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20822141&quot;&gt;Lys-12&lt;/a&gt;
  205. ‹ is expected to interact with both centers, where the enediol
  206. intermediate along with the catalytic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1967829&quot;&gt;glutamate&lt;/a&gt;
  207. base and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2007138/&quot;&gt;histidine-95&lt;/a&gt;
  208. the catalytic electrophile stabalizes the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8952501&quot;&gt;reversible&lt;/a&gt;
  209. reaction intermediate that polarizes the substrate &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22409228&quot;&gt;DHAP&lt;/a&gt;
  210. in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7869733&quot;&gt;Michaelis&lt;/a&gt;
  211. complex. Interconversion spans the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12522213&quot;&gt;C-terminal&lt;/a&gt;
  212. end of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22615547&quot;&gt;eight
  213. β&lt;/a&gt;-strands.
  214. For catalysis to occur &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7577950&quot;&gt;likley&lt;/a&gt;
  215. a low pKa value transition from DHAP - for the enolase reaction
  216. enzyme enhancement &#39;&lt;a href=&quot;https://www.ncbi.nlm.nih.gov/pubmed/2043623&quot;&gt;relative
  217. to&lt;/a&gt;
  218. the nonenzymatic reaction - (Bound &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20235230&quot;&gt;PGH&lt;/a&gt;
  219. - phosphoglycolohydroxamate mimics the (closed form) negative
  220. polarization (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2253277/#kursula-etal-2001&quot;&gt;•&lt;/a&gt;)
  221. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8130195&quot;&gt;charge&lt;/a&gt;••,
  222. while &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12522213&quot;&gt;PGA&lt;/a&gt;
  223. (2-phosphoglycolate) the positively charged residues in the two
  224. active conformation sites.) is similar for the two conformers&#39; in the
  225. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25463631&quot;&gt;closed&lt;/a&gt;
  226. conformation, on &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20694739&quot;&gt;ligand&lt;/a&gt;
  227. binding interacting with the reactive end&#39;s (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/26870617&quot;&gt;β&lt;/a&gt;)
  228. the deprotonated substrate-bound structures to be protonated by a
  229. single-base (Glu-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22583393&quot;&gt;165&lt;/a&gt;)
  230. proton transfer^ mechanism.&lt;/div&gt;
  231. &lt;br /&gt;
  232. &lt;blockquote class=&quot;tr_bq&quot;&gt;
  233. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/3XkL_VFNaI1loFdY6MjM9Ue5AaBNy2u1ktIcw5STY3E?feat=directlink&quot;&gt;
  234.  &lt;img align=&quot;left&quot; alt=&quot;philo&quot; border=&quot;0&quot; height=&quot;195&quot; name=&quot;Image1&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjv3qKtY5wFOf-aztvA_PqfenzoICK2tSSNgQxmL84TFMfiK4vOdQl4F_NemZBtY15RSqWvpOH-tO6oJvgW4EdpZLkt6lpxasX8GZrTfdYU-ozOf5yWRZq453q3uXpcyBi9HvIQ-g/s512-Ic42/16b.png&quot; width=&quot;200&quot; /&gt;
  235. &lt;/a&gt;
  236.  
  237. &lt;br /&gt;
  238. &lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;&quot;&gt;
  239. &lt;br /&gt;&lt;/div&gt;
  240. &lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;&quot;&gt;
  241. Structure of human triose phosphate isomerase at the positions of
  242. introns in homologous TPI genes from a number of phylogenetically
  243. diverse species. The introns motif are identified as calculated in
  244. phylogeny. &lt;br /&gt;
  245. Phylogenetic trees constructed on the basis of
  246. sequence comparisons for triosephosphate isomerases analysis, TIM
  247. sequences were constructed based phylogeny with similarity, to those
  248. adopting the same structural fold of interest from different species
  249. for the taxonomic groups and the K13M mutations involvement in the
  250. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/protein/P60174&quot;&gt;human&lt;/a&gt;
  251. triosephosphate isomerase gene &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11054297&quot; target=&quot;_blank&quot;&gt;family&lt;/a&gt;...
  252. &lt;/div&gt;
  253. &lt;/blockquote&gt;
  254. &lt;div align=&quot;justify&quot; style=&quot;line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;&quot;&gt;
  255. &lt;br /&gt;&lt;/div&gt;
  256. &lt;br /&gt;
  257. &lt;div style=&quot;text-align: justify;&quot;&gt;
  258. Interactions
  259. in the loop regions combine the effects of His95 and Lys13 for Glu165
  260. (loop &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21553855&quot;&gt;4, 1&lt;/a&gt;,
  261. and 6)  the three crucial catalytic residues in triose phosphate
  262. isomerase, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15840824&quot;&gt;all&lt;/a&gt;
  263. form the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20481463&quot;&gt;enediol&lt;/a&gt; intermediate necessary for the interconversion reaction catalyzed by
  264. TIM resulting in the natural substrates G3P formation. The introns
  265. motif are identified as calculated in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9037042&quot;&gt;phylogenic
  266. motifs&lt;/a&gt;.
  267. Poorly conserved residues as targets for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23894402&quot;&gt;specific&lt;/a&gt;••
  268. drug design are expected when compared to (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15840824&quot;&gt;TPI&lt;/a&gt;)
  269. Triosephosphate isomerase (•). Catalytic residues of the
  270. phylogenetic relationship pathways obtained by sequence based methods
  271. of specific key amino acids can than be calculated to the incidence
  272. residues and other TIMs which may influence the (human) HsTPI
  273. equilibrium.
  274.  
  275. &lt;/div&gt;
  276. &lt;br /&gt;
  277. &lt;a href=&quot;https://www.blogger.com/blogger.g?blogID=14256471&quot; imageanchor=&quot;1&quot; style=&quot;clear: right; float: right; margin-bottom: 1em; margin-left: 1em;&quot;&gt;&lt;/a&gt;&lt;a href=&quot;https://www.blogger.com/blogger.g?blogID=14256471&quot; imageanchor=&quot;1&quot; style=&quot;clear: right; float: right; margin-bottom: 1em; margin-left: 1em;&quot;&gt;&lt;/a&gt;&lt;a href=&quot;https://www.blogger.com/blogger.g?blogID=14256471&quot; imageanchor=&quot;1&quot; style=&quot;clear: right; float: right; margin-bottom: 1em; margin-left: 1em;&quot;&gt;&lt;/a&gt;&lt;a href=&quot;https://www.blogger.com/blogger.g?blogID=14256471&quot; imageanchor=&quot;1&quot; style=&quot;clear: right; float: right; margin-bottom: 1em; margin-left: 1em;&quot;&gt;&lt;/a&gt;&lt;a href=&quot;https://www.blogger.com/blogger.g?blogID=14256471&quot; imageanchor=&quot;1&quot; style=&quot;clear: right; float: right; margin-bottom: 1em; margin-left: 1em;&quot;&gt;&lt;/a&gt;&lt;a href=&quot;https://www.blogger.com/blogger.g?blogID=14256471&quot; imageanchor=&quot;1&quot; style=&quot;clear: right; float: right; margin-bottom: 1em; margin-left: 1em;&quot;&gt;&lt;/a&gt;&lt;br /&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  278. google_ad_client=&quot;pub-9610428118332343&quot;;
  279. google_ad_host=&quot;&quot;;
  280. google_ad_width=200;
  281. google_ad_height=90;
  282. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  283. google_color_border=&quot;EEEECC&quot;;
  284. google_color_bg=&quot;EEEECC&quot;;
  285. google_color_link=&quot;445566&quot;;
  286. google_color_url=&quot;445566&quot;;
  287. google_color_text=&quot;333333&quot;;
  288. //--&gt;&lt;/script&gt;
  289. &lt;script type=&quot;text/javascript&quot;
  290.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  291. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2016/04/triosephosphate-isomerase-tpi-dimeric.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhQnTjh7TAPVthBESca2aLu-yHyJDLLZFWZ-XB92XIupzA2PKw6m0b3M3cBsRDfWBm7ackpLz_AjeXPBjwN_onfxg_EPGGShYaOgdwW4ZskQpBo1zXZRJju008orCctYthH7DsCfw/s72-c-Ic42/image7.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-7424117003350595023</guid><pubDate>Fri, 20 Nov 2015 17:35:00 +0000</pubDate><atom:updated>2015-11-20T07:39:48.889-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">1 2 3-bpg</category><category domain="http://www.blogger.com/atom/ns#">3pg</category><category domain="http://www.blogger.com/atom/ns#">atp</category><category domain="http://www.blogger.com/atom/ns#">cgp-3466</category><category domain="http://www.blogger.com/atom/ns#">embden-meyerhof</category><category domain="http://www.blogger.com/atom/ns#">g3p</category><category domain="http://www.blogger.com/atom/ns#">gait</category><category domain="http://www.blogger.com/atom/ns#">gapc</category><category domain="http://www.blogger.com/atom/ns#">gapdh</category><category domain="http://www.blogger.com/atom/ns#">nad</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">pgk</category><category domain="http://www.blogger.com/atom/ns#">rp-l13</category><category domain="http://www.blogger.com/atom/ns#">s-nitrosylation</category><category domain="http://www.blogger.com/atom/ns#">siah1</category><category domain="http://www.blogger.com/atom/ns#">tpi</category><title>Non-Phosphorylating And Phosphorylating Oxidoreductase Glyceraldehyde-3-Phosphate Dehydrogenase As Part Of A Structure-Based Design In Glycolysis As The Glycolytic Protein G3PD.</title><description>Glyceraldehyde-3-phosphate
  292. dehydrogenase (EC 1.2.1.12) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15770658&quot;&gt;GAPDH&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt;/G3PD,
  293. is located in band 12p13.31; related to both &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23620736&quot;&gt;glycolysis&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt;
  294. and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/biosystems/198814&quot;&gt;gluconeogenesis&lt;/a&gt;-pathways.
  295. G3PD catalyzes reversible oxidative phosphorylation of inorganic
  296. phosphate and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25176140&quot;&gt;nicotinamide&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt;
  297. adenine dinucleotide (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16510976&quot;&gt;NAD&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt;
  298. converting in glycolysis the glycolytic protein &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10407139&quot;&gt;GAPDH&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;5&lt;/sup&gt;&lt;/span&gt;
  299. in which adenosine-triphosphate (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6273495&quot;&gt;ATP&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;6&lt;/sup&gt;&lt;/span&gt;
  300. is generated when phosphoglycerate kinase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9308888&quot;&gt;PGK&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;7&lt;/sup&gt;&lt;/span&gt;
  301. is produced in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8075252&quot;&gt;GAPDH&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;8&lt;/sup&gt;&lt;/span&gt;-catalyzed
  302. reaction. These intermediate metabolites (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19937139&quot;&gt;aldolase&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;9&lt;/sup&gt;&lt;/span&gt;,
  303. triose-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10677844&quot;&gt;phosphate&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;10&lt;/sup&gt;&lt;/span&gt;-isomerase
  304. (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21905108&quot;&gt;TPI&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;11&lt;/sup&gt;&lt;/span&gt;)
  305. catalyze the Glycolysis reactions, in the sequence of the ten
  306. enzyme-catalyzed &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6460465&quot;&gt;Embden&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;12&lt;/sup&gt;&lt;/span&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/176725&quot;&gt;Meyerhof&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;13&lt;/sup&gt;&lt;/span&gt;
  307. reactions in the metabolic pathway. Converting phosphoglycerate
  308. mutase 1 (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21424281&quot;&gt;PGM&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;14&lt;/sup&gt;&lt;/span&gt;
  309. catalyzing the internal steps by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3548716&quot;&gt;2,3-BPG&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;15&lt;/sup&gt;&lt;/span&gt;
  310. phosphatase to form by converting D-glyceraldehyde 3-phosphate (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11205159&quot;&gt;G3P&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;16&lt;/sup&gt;&lt;/span&gt;
  311. into 1,3-bisphosphoglycerate (1,3-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20164570&quot;&gt;BPG&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;17&lt;/sup&gt;&lt;/span&gt;
  312. from its role as 3-Phosphoglyceric acid (3PG) in glycolysis as the
  313. glycolytic protein &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10407139&quot;&gt;GAPDH&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;18&lt;/sup&gt;&lt;/span&gt;
  314. that catalyzes the first step (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19542219&quot;&gt;G3P&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;19&lt;/sup&gt;&lt;/span&gt;
  315. into &lt;a href=&quot;http://www.uniprot.org/uniprot/P04406&quot;&gt;1,3-BPG&lt;/a&gt;) of
  316. the pathway. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16927206&quot;&gt;Plant&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;20&lt;/sup&gt;&lt;/span&gt;
  317. cells contain several reactions of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12885964&quot;&gt;photosynthesis&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;21&lt;/sup&gt;&lt;/span&gt;
  318. participating in glycolysis and the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24282406&quot;&gt;Calvin-Benson&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;22&lt;/sup&gt;&lt;/span&gt;
  319. cycle signaling pathways in plants (cytosolic-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23569110&quot;&gt;GAPC&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;23&lt;/sup&gt;&lt;/span&gt;
  320. (Arabidopsis &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23749990&quot;&gt;thaliana&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;24&lt;/sup&gt;&lt;/span&gt;
  321. functions in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24282406&quot;&gt;plant&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;25&lt;/sup&gt;&lt;/span&gt;
  322. cells.) its final byproduct is also another Glyceraldehyde-3-P. GAPDH
  323. is a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6498188&quot;&gt;band 3&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;26&lt;/sup&gt;&lt;/span&gt;
  324. protein that associates with the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1590432&quot;&gt;cytoplasmic&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;27&lt;/sup&gt;&lt;/span&gt;
  325. face of human &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25196942&quot;&gt;erythrocyte&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;28&lt;/sup&gt;&lt;/span&gt;
  326. (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17714694&quot;&gt;RBC&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;29&lt;/sup&gt;&lt;/span&gt;
  327. membranes. The cytoplasmic GAPDH exists primarily as a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10677844&quot;&gt;tetrameric&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;30&lt;/sup&gt;&lt;/span&gt;
  328. isoform, 4 identical &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19022411&quot;&gt;37
  329. kDa&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;31&lt;/sup&gt;&lt;/span&gt;
  330. subunits. By subcellular translocation &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22388977&quot;&gt;GAPDH&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;32&lt;/sup&gt;&lt;/span&gt;
  331. participates in nuclear events [In nuclear membrane the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20727968&quot;&gt;vesicular&lt;/a&gt;*&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;33&lt;/sup&gt;&lt;/span&gt;
  332. tubular cluster &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22957700&quot;&gt;fractions&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;34&lt;/sup&gt;&lt;/span&gt;
  333. (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15485821&quot;&gt;VTC&lt;/a&gt;s)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;35&lt;/sup&gt;&lt;/span&gt;
  334. - anterograde transport or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10592347&quot;&gt;retrograde&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;36&lt;/sup&gt;&lt;/span&gt;
  335. membrane transport &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11724794&quot;&gt;complexes&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;37&lt;/sup&gt;&lt;/span&gt;
  336. between the intermediates, these are the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14570876&quot;&gt;Golgi&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;38&lt;/sup&gt;&lt;/span&gt;
  337. complex and the endoplasmic reticulum (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18620527&quot;&gt;ER&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;39&lt;/sup&gt;&lt;/span&gt;,
  338. in the nucleus a function is lost in disease* that exploits this
  339. process.], this a change to a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12829261&quot;&gt;non&lt;/a&gt;-cytosolic&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;40&lt;/sup&gt;&lt;/span&gt;
  340. localization due to the signal transduction pathways (considering
  341.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9571030&quot;&gt;Lm&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;41&lt;/sup&gt;&lt;/span&gt;GAPG
  342.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7578111&quot;&gt;L&lt;/a&gt;.&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;42&lt;/sup&gt;&lt;/span&gt;
  343.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10200252&quot;&gt;mexicana&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;43&lt;/sup&gt;&lt;/span&gt;-like
  344. functions.) involved in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25417112&quot;&gt;s-nitrosylase&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;44&lt;/sup&gt;&lt;/span&gt;
  345. activity that mediates, governed by the equilibrium between four
  346. cysteine residues (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23749990&quot;&gt;nitrosylation&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;45&lt;/sup&gt;&lt;/span&gt;
  347. and denitrosylation &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=rs3211600#locus&quot;&gt;reactions&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;46&lt;/sup&gt;&lt;/span&gt;,
  348. inhibition of GAPDH nuclear translocation, as a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766228/#B28&quot;&gt;basis&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;47&lt;/sup&gt;&lt;/span&gt;
  349. for its &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16510976&quot;&gt;multifunctional&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;48&lt;/sup&gt;&lt;/span&gt;
  350. activities relating to the extraglycolytic functions of GAPDH.
  351. Nuclear &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17540167&quot;&gt;GAPDH&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;49&lt;/sup&gt;&lt;/span&gt;
  352. promotes glucose metabolism to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21895736&quot;&gt;sustain&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;50&lt;/sup&gt;&lt;/span&gt;
  353. cellular &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2394733&quot;&gt;ATP&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;51&lt;/sup&gt;&lt;/span&gt;
  354. levels, or potentially by inhibiting &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18552833&quot;&gt;targets&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;52&lt;/sup&gt;&lt;/span&gt;
  355. of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25391652&quot;&gt;p300&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;53&lt;/sup&gt;&lt;/span&gt;/CBP
  356. such as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19940145&quot;&gt;p53&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;54&lt;/sup&gt;&lt;/span&gt;
  357. dependent phosphorylation. Nitric oxide synthase or neuronal NOS (
  358. involved in cellular and human &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19628630&quot;&gt;intracellular&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;55&lt;/sup&gt;&lt;/span&gt;
  359. nuclei &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22851448&quot;&gt;events&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;56&lt;/sup&gt;&lt;/span&gt;,
  360. in addition to the cytoplasm) could generate &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24362262&quot;&gt;nitric
  361. oxide&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;57&lt;/sup&gt;&lt;/span&gt;
  362. (NO). GAPDH has &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17613523&quot;&gt;four&lt;/a&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17613523&quot;&gt;
  363. cysteine&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;58&lt;/sup&gt;&lt;/span&gt;
  364. residues which are associated with S-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15951807&quot;&gt;nitrosylation&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;59&lt;/sup&gt;&lt;/span&gt;-yielding
  365.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18552833&quot;&gt;NOS&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;60&lt;/sup&gt;&lt;/span&gt;-GAPDH
  366. which “recruited” its glycolysis &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3170585&quot;&gt;subunit&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;61&lt;/sup&gt;&lt;/span&gt;
  367. from the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24662796&quot;&gt;three&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;63&lt;/sup&gt;&lt;/span&gt;
  368. molecular axes translocation roles (S-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25581756&quot;&gt;thiolation&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;64&lt;/sup&gt;&lt;/span&gt;,
  369. S-nitrosylation or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19837666&quot;&gt;aggregated&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;65&lt;/sup&gt;&lt;/span&gt;
  370. enzymes (Cys-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25196942&quot;&gt;152&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;66&lt;/sup&gt;&lt;/span&gt;
  371. and nearby &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24662796&quot;&gt;156&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;67&lt;/sup&gt;&lt;/span&gt;
  372. converted into a &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25086035/&quot;&gt;cross-linked&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;68&lt;/sup&gt;&lt;/span&gt;
  373. soluble&#39; states)), and (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20972425&quot;&gt;SNO&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;69&lt;/sup&gt;&lt;/span&gt;-GAPDH)
  374. nitrosylated &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25347796&quot;&gt;S-nitrosoglutathione&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;70&lt;/sup&gt;&lt;/span&gt;
  375. (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7573405&quot;&gt;GSNO&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;71&lt;/sup&gt;&lt;/span&gt;
  376. the active site cysteine residue in GAPDH at its &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16574384&quot;&gt;Cys
  377. 150&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;72&lt;/sup&gt;&lt;/span&gt;
  378. residue that binds to Siah1 (seven in absentia homolog 1) acquisition
  379. and the translocation of GAPDH into the nucleus, and denitrosylation
  380. using a combination of approaches, including &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22847419&quot;&gt;G3P&lt;/a&gt;&lt;span style=&quot;font-family: &amp;quot;liberation&amp;quot; serif , serif;&quot;&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;73 &lt;/sup&gt;&lt;/span&gt;&lt;/span&gt;.
  381. And NADPH may play a role in (VTC) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16492755&quot;&gt;vesicle&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;74&lt;/sup&gt;&lt;/span&gt;
  382. function. The complex would function in the apoptosis &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15951807&quot;&gt;cascade&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;75&lt;/sup&gt;&lt;/span&gt;
  383. by its molecules translocation, this &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24953302&quot;&gt;may&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;76&lt;/sup&gt;&lt;/span&gt;
  384. depend on lysine &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20601085&quot;&gt;227&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;77&lt;/sup&gt;&lt;/span&gt;
  385. in the human &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22534308&quot;&gt;GAPDH&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;78&lt;/sup&gt;&lt;/span&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16633896&quot;&gt;Siah&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;79&lt;/sup&gt;&lt;/span&gt;
  386. interaction to another intracellular &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21979951&quot;&gt;position&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;80&lt;/sup&gt;&lt;/span&gt;
  387. induced by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20601085&quot;&gt;apoptotic&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;81&lt;/sup&gt;&lt;/span&gt;
  388. stimuli, augments &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25391652&quot;&gt;p300&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;82&lt;/sup&gt;&lt;/span&gt;/CREB
  389. binding protein (CBP)-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19607794&quot;&gt;associated&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;83&lt;/sup&gt;&lt;/span&gt;
  390. acetylation of nuclear proteins. &#39;Engineering the cofactor
  391. (GAPDH-(Lys) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18552833&quot;&gt;K160R&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;84&lt;/sup&gt;&lt;/span&gt;-K227A)
  392. availability &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/26022259&quot;&gt;prevents&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;85&lt;/sup&gt;&lt;/span&gt;
  393. activation of p300/CBP that interferes with GAPDH-Siah1
  394.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16391220&quot;&gt;binding&lt;/a&gt;&#39;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;86&lt;/sup&gt;&lt;/span&gt;-prevents
  395. the ternary (GAPDH-Siah1) complex associations translocation; that
  396.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16510976&quot;&gt;CGP-3466&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;87&lt;/sup&gt;&lt;/span&gt;
  397. can &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10617673&quot;&gt;reduce&lt;/a&gt;
  398. independently with both &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12893257&quot;&gt;cofactors&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;88&lt;/sup&gt;&lt;/span&gt;.
  399. Dysregulation of protein S-nitrosylation (S-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20675567&quot;&gt;nitrosocysteine&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;89&lt;/sup&gt;&lt;/span&gt;
  400. - &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22771119&quot;&gt;247&lt;/a&gt;) by
  401. lipopolysaccharide (LPS) is associated with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17072346&quot;&gt;pathological&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;90&lt;/sup&gt;&lt;/span&gt;
  402. conditions which contributes to disease phenotype, where GAPDH
  403. protects ribosomal protein &lt;a href=&quot;http://www.uniprot.org/uniprot/P04406#interaction&quot;&gt;RP&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;91&lt;/sup&gt;&lt;/span&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22771119&quot;&gt;L13a&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;92&lt;/sup&gt;&lt;/span&gt;
  404. from degradation, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23071094&quot;&gt;L13a&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;93&lt;/sup&gt;&lt;/span&gt;
  405. and &lt;a href=&quot;http://genome.ucsc.edu/cgi-bin/hgGene?hgg_gene=uc001qop.2&amp;amp;hgg_prot=P04406&amp;amp;hgg_chrom=chr12&amp;amp;hgg_start=6643584&amp;amp;hgg_end=6647537&amp;amp;hgg_type=knownGene&amp;amp;db=hg19&amp;amp;hgsid=438543837_AECMyFtGZFgrGOiB3w6xFsAeYUoL#links&quot;&gt;GAPDH&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;94&lt;/sup&gt;&lt;/span&gt;
  406. forms a functional &lt;a href=&quot;http://www.uniprot.org/uniprot/P04406&quot;&gt;GAIT&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;95&lt;/sup&gt;&lt;/span&gt;
  407. complex. One of the functions of GAPDH proteins role in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10740219&quot;&gt;glycolysis&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;96&lt;/sup&gt;&lt;/span&gt;
  408. in relation to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8451199&quot;&gt;DNA&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;97&lt;/sup&gt;&lt;/span&gt;
  409. synthesis is nuclear accumulation associated by the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7540026&quot;&gt;NAD&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;98&lt;/sup&gt;&lt;/span&gt;(+)-dependent
  410. s-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10037463&quot;&gt;nitrosylation&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;99&lt;/sup&gt;&lt;/span&gt;
  411. and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1924305&quot;&gt;denitrosylation&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;01&lt;/sup&gt;&lt;/span&gt;
  412. reactions both of these isforms are &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12369930&quot;&gt;distinct&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;02&lt;/sup&gt;&lt;/span&gt;
  413. parallel to the uracil DNA glycosylase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9343699&quot;&gt;UDG&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;03&lt;/sup&gt;&lt;/span&gt;
  414. gene in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9705330&quot;&gt;mitochondria&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;04&lt;/sup&gt;&lt;/span&gt;
  415. and in the nucleus is N-terminally processed is the 37-kDa &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19246543&quot;&gt;subunit&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;05&lt;/sup&gt;&lt;/span&gt;
  416. of the (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3027061&quot;&gt;GAPDH&lt;/a&gt;)&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;06&lt;/sup&gt;&lt;/span&gt;
  417. glyceraldehyde-3-phosphate dehydrogenase protein. This enzyme is an
  418. example of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23134369&quot;&gt;moonlighting&lt;/a&gt;
  419. protein which is validated and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24858725&quot;&gt;replaced&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;07&lt;/sup&gt;&lt;/span&gt;
  420. by alternative reference genes that link (in their nuclear forms) on
  421. the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24282406&quot;&gt;multifunctional&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;08&lt;/sup&gt;&lt;/span&gt;
  422. properties of the enzyme &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25581756&quot;&gt;GAPDH&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;09&lt;/sup&gt;&lt;/span&gt;
  423. known as a key enzyme in glycolysis that contributes to a number of
  424. diverse cellular functions &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11205159&quot;&gt;unrelated&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;00&lt;/sup&gt;&lt;/span&gt;
  425. to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12657368&quot;&gt;glycolysis&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;001&lt;/sup&gt;&lt;/span&gt;
  426. depending upon its subcellular location. GAPDH is a key enzyme in
  427. glycolysis the most commonly used expression is as a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15769908&quot;&gt;housekeeping&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;002&lt;/sup&gt;&lt;/span&gt;
  428. gene.&lt;br /&gt;
  429. &lt;br /&gt;
  430. &lt;br /&gt;
  431. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/nS9zjx0-GUosSqtiwRX1VSeGf7vmrxo6xdmGnNnfdm8?feat=directlink&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;GAPDH-Siah1&quot; border=&quot;0&quot; height=&quot;115&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiuFzGs9HneTnSY8w96jVhaQKm7BsL-SSfwjC8UTEEbDCnCaT7ffN71I2ltbQnlEEl3gSiAG5NJVMoVZyEktxoqDl-ZMMQcNmIz6BC4JhbVJNRlWYW0B0v889-HS6jwEhoyokbYhg/s800-Ic42/Siah1-GAPDH4A.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;Cytotoxic
  432. stimuli [1a.] or Programmed cell death, via nitric oxide generation,
  433. lead to the binding of GAPDH from its usual tetrameric form to a
  434. dimeric form, to the protein Siah1 [1.] intracellular G-3-P [2.]
  435. substrate [3.] protects GAPDH from S-nitrosylation [4.]. The
  436. GAPDH-Siah interaction depends on lysine &lt;a href=&quot;http://www.phosphosite.org/siteAction.do?id=35072&quot;&gt;227&lt;/a&gt;
  437. [5.], in human GAPDH that interacts with a large groove [6.] of the
  438. Siah1 dimer, that connects the GAPDH dimer to PGK in the cytoplasm.
  439. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/Ku7bovf8w120kI5ZYKGxidMTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;figure7&quot; border=&quot;0&quot; height=&quot;198&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhRQRSZ6ooR0mCZFluRgwqSP5yvcmOybP68QnC_W2jW0tTIpHfA6o-PN9JPEvWToUPjoLJlwUcsqIT8wFngBrgC5kzcyDBlkP5Ydzcz36nRIb2VsqrqS5ZZnY5X77VgphexMhOb3Q/s512-Ic42/i8uf-R1a1a.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;The
  440. S-nitrosylation
  441. [7.,8.] abolishes catalytic activity and confers upon GAPDH the
  442. ability to bind to Siah [9.]. (GAPDH) is physiologically nitrosylated
  443. at its Cys 150 residue. GAPDH (SNO-GAPDH) [10.] binds to Siah1 [11.]
  444. by forming a protein complex. In the nucleus [12.] GAPDH is
  445. acetylated at Lys 160 [13.] and binds to the protein
  446. acetyltransferase p300/CBP. Under these conditions siah-1 formed a
  447. complex with GAPDH (PDB:4O63) and localized in the nucleus of Müller
  448. cells [14.]. GAPDH mutants [15.] that cannot bind Siah1 prevents
  449. translocation [16.] to the nucleus to elicit neurotoxicity [17.] and
  450. cell apoptosis.&lt;br /&gt;
  451. [1a.] &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16492755&quot;&gt;16492755&lt;/a&gt;,
  452. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8769851&quot;&gt;8769851&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;003&lt;/sup&gt;&lt;/span&gt;
  453. [1.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16391220&quot;&gt;16391220&lt;/a&gt;,
  454. [2.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19542219&quot;&gt;19542219&lt;/a&gt;,
  455. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22534308&quot;&gt;22534308&lt;/a&gt;,
  456. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3350006&quot;&gt;3350006&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;004&lt;/sup&gt;&lt;/span&gt;,
  457. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19937139&quot;&gt;19937139&lt;/a&gt;,
  458. [3.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22847419&quot;&gt;22847419&lt;/a&gt;,
  459. [4.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15951807&quot;&gt;15951807&lt;/a&gt;,
  460. [5.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20601085&quot;&gt;20601085&lt;/a&gt;,
  461. [6.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16510976&quot;&gt;16510976&lt;/a&gt;,
  462. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20392205&quot;&gt;20392205&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;005&lt;/sup&gt;&lt;/span&gt;,
  463. [7.,8.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22817468&quot;&gt;22817468&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;006&lt;/sup&gt;&lt;/span&gt;,
  464. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16505364&quot;&gt;16505364&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;007&lt;/sup&gt;&lt;/span&gt;,
  465. [9.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16633896&quot;&gt;16633896&lt;/a&gt;,
  466. [10.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16574384&quot;&gt;16574384&lt;/a&gt;,
  467. [11.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20972425&quot;&gt;20972425&lt;/a&gt;,
  468. [12.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19607794&quot;&gt;19607794&lt;/a&gt;,
  469. [13.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18552833&quot;&gt;18552833&lt;/a&gt;,
  470. [14.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19940145&quot;&gt;19940145&lt;/a&gt;,
  471. [15.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23027902,22534308&quot;&gt;23027902&lt;/a&gt;&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;008&lt;/sup&gt;&lt;/span&gt;,
  472. [16.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24362262&quot;&gt;24362262&lt;/a&gt;,
  473. [17.]&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16492755&quot;&gt;16492755&lt;/a&gt;.
  474. &lt;br /&gt;
  475. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  476. &lt;br /&gt;&lt;/div&gt;
  477. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  478. &lt;br /&gt;&lt;/div&gt;
  479. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  480. &lt;br /&gt;&lt;/div&gt;
  481. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  482. &lt;br /&gt;&lt;/div&gt;
  483. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  484. &lt;br /&gt;
  485. &lt;br /&gt;
  486. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/_A2Mtj-soPfQruYIryTzZdMTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;H placental GAPDH&quot; border=&quot;0&quot; height=&quot;181&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgyVpTuO6nOL1TmgnY4IE3OmoHbIzUFdOgcebzS8gCHMcN4kPb2SkQuQlkvU0G1nvI4w8QPJNJl9riR25ZeQmvK_6VC2UBmo_r5xZd5K3Hd6xp2ysbKfKLRHujy6SmsyYjHSfjiYQ/s512-Ic42/1U8F-2feh__.pdb.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;Analysis
  487. of CGP-3466 Docking (NAD) to Human Placental GAPDH which decreases
  488. the synthesis of pro-apoptotic proteins is N-terminally
  489. PMID:10677844, processed to which a Rossmann NAD(P) binding fold as
  490. seen in figure 1 is a C-terminal domain as seen on this &lt;a href=&quot;http://pfam.xfam.org/family/PF02800&quot;&gt;page&lt;/a&gt;,
  491. PMID:10617673, 26022259, 16510976 ...The structure is also used to
  492. build a model of the complex between GAPDH and the E3 ubiquitin
  493. ligase Siah1. (Purple Ribbon-1U8F_Q Figure 1.)&lt;/div&gt;
  494. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  495. &lt;br /&gt;&lt;/div&gt;
  496. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  497. &lt;br /&gt;&lt;/div&gt;
  498. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  499. &lt;br /&gt;&lt;/div&gt;
  500. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  501. &lt;br /&gt;&lt;/div&gt;
  502. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  503. &lt;/div&gt;
  504. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  505. &lt;br /&gt;
  506. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/gYTLHoTpfyMTaOMlEymbD9MTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;(Figure 3.) Glycolysis and Glyconeogenesis&quot; border=&quot;0&quot; height=&quot;194&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiZ4hLHHyVVnpJSUVoHsUYbg6IwvM9F4TnSqqe81_8nGuF-v5vsyls1Su_ArDTgr6ncyKwR7yzR9hPFuRYr8XBSTQhDxImg99hiOPQoIUo1-JBWiLQwivyl_gTD3JGqU1qKpoc_qg/s387-Ic42/Glycolysis%252520and%252520Glyconeogenesis1.PNG&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;In
  507. the GAPDH-catalyzed reaction these intermediate metabolites
  508. (aldolase, triose-phosphate-isomerase Glycolysis and Glyconeogenesis
  509. (TPI)) catalyze the Glycolysis reactions, in the sequence of the ten
  510. enzyme-catalyzed Embden-Meyerhof reactions in the&amp;nbsp; metabolic
  511. pathway. Converting phosphoglycerate mutase 1 (PGM) catalyzing the
  512. internal steps by 2,3-BPG phosphatase to form by converting
  513. D-glyceraldehyde 3-phosphate g3p(G3P) into 1,3-bisphosphoglycerate
  514. (1,3-BPG) from its role as 3-Phosphoglyceric acid (3PG) in glycolysis
  515. as the glycolytic protein GAPDH that catalyzes the first step (G3P
  516. into 1,3-BPG) of the pathway.
  517. &lt;/div&gt;
  518. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  519. &lt;br /&gt;&lt;/div&gt;
  520. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  521. &lt;br /&gt;
  522. &lt;br /&gt;
  523. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/35oSmQ5UgbOgyHiWBc20_NMTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;(Figure 4.) GAPDH homotetramer&quot; border=&quot;0&quot; height=&quot;105&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhEz_4JyLl4vQWAW9eyBDTCB_NqsXncjXVfW03dIsDXhUqDyAe6iz58VhrTzHqF2RzdDTX520GKayl7jk3MFyT8ac9CJz5F5Q4zp75jKJSIQPSVskujUVzK0eSruhUxMIunVak6dw/s459-Ic42/trans.electron-microscopy-gapdh25086035.PNG&quot; width=&quot;100&quot; /&gt;&lt;/a&gt;GAPDH
  524. homotetramer was studied as represented an assembly of repeating
  525. spherical units that harbored a distinct birefringent crystal
  526. structure to the optic axis for the p polarization, also (r axis)
  527. discernible via transmission electron microscopy. of the relative
  528. amount of soluble monomeric GAPDH to G3P in the binding pocket of the
  529. NAD(+)-binding site residue located at the active site linked to
  530. GAPDH in Figures 5 and 6. PMID:10407144&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;009&lt;/sup&gt;&lt;/span&gt;,
  531. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25086035&quot;&gt;25086035&lt;/a&gt;.&lt;/div&gt;
  532. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  533. &lt;br /&gt;&lt;/div&gt;
  534. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  535. &lt;br /&gt;&lt;/div&gt;
  536. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  537. &lt;br /&gt;
  538. &lt;br /&gt;
  539. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/_x_BJ7G2ZOmoNuccN4414NMTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;g3p&quot; border=&quot;0&quot; height=&quot;120&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg0BYLD8AxsPmh1O4PCg5LHJhVAeEAvb4ZvoG7FXvn58cEEBvnZrQFRbIsuECyqhRcjcY7mDworMJ068vqmPJjwTFfNb7ELq6XIHHJg4-tUqlfls5Fl-z_8STDSetGdkD-vBMlHpg/s800-Ic42/g3p.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;Another
  540. model building studie indicates that a structure obtained where
  541. glyceraldehyde 3-phosphate PDB:3CMC_Q binds in the P(s) pocket of the
  542. natural substrate G3P phosphorylating GAPDH (PDB:1U8F_Q) at the
  543. catalytic cysteine residue site. To define the conditions suitable
  544. for affinity for the cosubstrate, the isolation and accumulation of
  545. the intermediate metabolites per G3P monomer found in Figure 8 of the
  546. equivalent Glc-3-P structure in the binding pocket of the
  547. NAD(+)-binding site residue located at the active site linked to
  548. GAPDH. PMID:&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19542219&quot;&gt;19542219&lt;/a&gt;,
  549. 22534308&lt;/div&gt;
  550. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  551. &lt;br /&gt;
  552. &lt;br /&gt;
  553. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/oe8EpWPKQWyOVCAJeNrlztMTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;APO/STP&quot; border=&quot;0&quot; height=&quot;120&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjt7k-U0zY5okbr5QYXqmFLZlTZy7qFW9VXOL8BSHhDijhyphenhyphenpGBHbMoCWxdb0jsKWnPzRcvqTtLxJmBg0MB8zm6Lgqlr4PX_bqbh-YkKNfoj4H8i-y3sgivR-1dfoAB8FB6H9urbPQ/s800-Ic42/g3p-waters4.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;Correctly
  554. known binding sites on ((GAPD/NAD)) structures, polar spheres of the
  555. binding catalytic pocket that corresponds to G3P (glyceraldehyde
  556. 3-phosphate) aligned to the holographical structure nonbounded
  557. spheres (salmon color), these apoenzymes together with the
  558. cofactor(s) Cys 151, 152 which corresponds as below the Ps pocket of
  559. G3P, on the Green ribbon required for cofactor activity. Together
  560. with eliminated crystallographic waters and other possible spheres,
  561. these are at least one atom of a amino acid residue in contact with
  562. at least one alpha sphere of one binding pocket on the holo protein
  563. NAD structure 1U8F_Q needed to align holo and apo structures included
  564. in this data set with G3P (PDB:3CMC_Q) was tested only on holo
  565. structure (NAD), obtained via Pea Green spheres aligned to 1U8F_Q
  566. ribbons/ligand structure which provide structural recognition
  567. insights into the biological 1U8F-Q assembly this includes 29
  568. asymmetric units of its dimeric form, along the tetrameric 1U8F
  569. biological forms axis. PMID:9461340&lt;span class=&quot;sdendnoteanc&quot;&gt;&lt;sup&gt;010&lt;/sup&gt;&lt;/span&gt;&lt;/div&gt;
  570. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  571. &lt;br /&gt;
  572. &lt;br /&gt;
  573. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/k_OdRgrK6WfD02qjzkA56dMTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;siah1-pdb:4i7d_g3pd-pdb:1u8f&quot; border=&quot;0&quot; height=&quot;235&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjfCY076TFx1zFpOStuPlxVFRPqD0CC2mSumNGV6mINDAk-xCARTCE79f5OEamCCs-gnSzI3dxoXVqbYGr2q-y57zxXMQ2Q6cP5gsQAOLIQ_inR6GpGnoihAaSRU1X7NDIoHdzttA/s512-Ic42/1u8f-4i7d-graph.PNG&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;(Figure
  574. 8.) These are the results without the liquid chromatography coupled
  575. mass spectrometer, that are known 3D products by two-dimensional
  576. sequence analyses with the STRAP alignment tools data sets and which
  577. may have any effect on the functions of further analysis involved in
  578. more ordered results than this study attempts to show, of the
  579. analysis that may be included are identified separated into multiple
  580. gradients here in these paired graphs. Therefore in the present work
  581. to uncover the exact coincidence of 1U8F_R and 4I7D_C, the 3D
  582. coordinates of GAPDH (PDB:1U8F_Q) to the protein Siah1 4I7D were not
  583. presenting when subjected to STRAP&amp;nbsp; alignment this apparent
  584. discrepancy (Figure 1.) was partially resolved by a (Figure 7)
  585. rendering from a more reactive native GAPDH_R homotetramer model.
  586. &lt;/div&gt;
  587. &lt;div style=&quot;line-height: 100%; margin-bottom: 0in;&quot;&gt;
  588. &lt;br /&gt;&lt;/div&gt;
  589. &lt;br /&gt;
  590. &lt;br /&gt;
  591. References:&lt;br /&gt;
  592. &lt;br /&gt;
  593. &lt;a name=&#39;more&#39;&gt;&lt;/a&gt;&lt;br /&gt;&lt;br /&gt;
  594. &lt;div id=&quot;sdendnote1&quot;&gt;
  595. &lt;div class=&quot;sdendnote&quot;&gt;
  596. &lt;span class=&quot;sdendnotesym&quot;&gt;1&lt;/span&gt;:
  597. Baker BY, Shi W, Wang B, Palczewski K. High-resolution crystal
  598. structures of&lt;br /&gt;
  599. the photoreceptor glyceraldehyde 3-phosphate
  600. dehydrogenase (GAPDH) with three and&lt;br /&gt;
  601. four-bound NAD molecules.
  602. Protein Sci. 2014 Nov;23(11):1629-39. doi:&lt;br /&gt;
  603. 10.1002/pro.2543.
  604. Epub 2014 Sep 25. PubMed PMID: 25176140; PubMed Central PMCID:
  605. &lt;br /&gt;
  606. PMC4241113.
  607. &lt;/div&gt;
  608. &lt;/div&gt;
  609. &lt;div id=&quot;sdendnote2&quot;&gt;
  610. &lt;div class=&quot;sdendnote&quot;&gt;
  611. &lt;span class=&quot;sdendnotesym&quot;&gt;2&lt;/span&gt;:
  612. Wang D, Moothart DR, Lowy DR, Qian X. The expression
  613. of&lt;br /&gt;
  614. glyceraldehyde-3-phosphate dehydrogenase associated cell
  615. cycle (GACC) genes&lt;br /&gt;
  616. correlates with cancer stage and poor
  617. survival in patients with solid tumors.&lt;br /&gt;
  618. PLoS One. 2013 Apr
  619. 19;8(4):e61262. doi: 10.1371/journal.pone.0061262. Print
  620. 2013.&lt;br /&gt;
  621. PubMed PMID: 23620736; PubMed Central PMCID: PMC3631177.
  622. &lt;/div&gt;
  623. &lt;/div&gt;
  624. &lt;div id=&quot;sdendnote3&quot;&gt;
  625. &lt;div class=&quot;sdendnote&quot;&gt;
  626. &lt;span class=&quot;sdendnotesym&quot;&gt;3&lt;/span&gt;:
  627. Jenkins JL, Tanner JJ. High-resolution structure of
  628. human&lt;br /&gt;
  629. D-glyceraldehyde-3-phosphate dehydrogenase. Acta
  630. Crystallogr D Biol Crystallogr. &lt;br /&gt;
  631. 2006 Mar;62(Pt 3):290-301.
  632. Epub 2006 Feb 22. PubMed PMID: 16510976.
  633. &lt;/div&gt;
  634. &lt;/div&gt;
  635. &lt;div id=&quot;sdendnote4&quot;&gt;
  636. &lt;div class=&quot;sdendnote&quot;&gt;
  637. &lt;span class=&quot;sdendnotesym&quot;&gt;4&lt;/span&gt;:
  638. Sirover MA. New nuclear functions of the glycolytic
  639. protein,&lt;br /&gt;
  640. glyceraldehyde-3-phosphate dehydrogenase, in mammalian
  641. cells. J Cell Biochem.&lt;br /&gt;
  642. 2005 May 1;95(1):45-52. Review. PubMed
  643. PMID: 15770658.
  644. &lt;/div&gt;
  645. &lt;/div&gt;
  646. &lt;div id=&quot;sdendnote5&quot;&gt;
  647. &lt;div class=&quot;sdendnote&quot;&gt;
  648. &lt;span class=&quot;sdendnotesym&quot;&gt;5&lt;/span&gt;:
  649. Sirover MA. New insights into an old protein: the functional
  650. diversity of&lt;br /&gt;
  651. mammalian glyceraldehyde-3-phosphate
  652. dehydrogenase. Biochim Biophys Acta. 1999&lt;br /&gt;
  653. Jul
  654. 13;1432(2):159-84. Review. PubMed PMID: 10407139.
  655. &lt;/div&gt;
  656. &lt;/div&gt;
  657. &lt;div id=&quot;sdendnote6&quot;&gt;
  658. &lt;div class=&quot;sdendnote&quot;&gt;
  659. &lt;span class=&quot;sdendnotesym&quot;&gt;6&lt;/span&gt;:
  660. Mercer RW, Dunham PB. Membrane-bound ATP fuels the Na/K pump.
  661. Studies on&lt;br /&gt;
  662. membrane-bound glycolytic enzymes on inside-out
  663. vesicles from human red cell&lt;br /&gt;
  664. membranes. J Gen Physiol. 1981
  665. Nov;78(5):547-68. PubMed PMID: 6273495; PubMed&lt;br /&gt;
  666. Central PMCID:
  667. PMC2228637.
  668. &lt;/div&gt;
  669. &lt;/div&gt;
  670. &lt;div id=&quot;sdendnote7&quot;&gt;
  671. &lt;div class=&quot;sdendnote&quot;&gt;
  672. &lt;span class=&quot;sdendnotesym&quot;&gt;7&lt;/span&gt;:
  673. Fokina KV, Dainyak MB, Nagradova NK, Muronetz VI. A study on the
  674. complexes&lt;br /&gt;
  675. between human erythrocyte enzymes participating in
  676. the conversions of&lt;br /&gt;
  677. 1,3-diphosphoglycerate. Arch Biochem
  678. Biophys. 1997 Sep 15;345(2):185-92. PubMed&lt;br /&gt;
  679. PMID: 9308888.
  680. &lt;/div&gt;
  681. &lt;/div&gt;
  682. &lt;div id=&quot;sdendnote8&quot;&gt;
  683. &lt;div class=&quot;sdendnote&quot;&gt;
  684. &lt;span class=&quot;sdendnotesym&quot;&gt;8&lt;/span&gt;:
  685. Ashmarina LI, Muronets VI, Nagradova NK. [Glycolytic enzymes in
  686. human&lt;br /&gt;
  687. erythrocytes: association of glyceraldehyde-3-phosphate
  688. dehydrogenase with&lt;br /&gt;
  689. 3-phosphoglycerate kinase]. Biokhimiia. 1994
  690. Jun;59(6):873-80. Russian. PubMed&lt;br /&gt;
  691. PMID: 8075252.
  692. &lt;/div&gt;
  693. &lt;/div&gt;
  694. &lt;div id=&quot;sdendnote9&quot;&gt;
  695. &lt;div class=&quot;sdendnote&quot;&gt;
  696. &lt;span class=&quot;sdendnotesym&quot;&gt;9&lt;/span&gt;:
  697. Jang M, Kang HJ, Lee SY, Chung SJ, Kang S, Chi SW, Cho S, Lee SC,
  698. Lee CK, Park&lt;br /&gt;
  699. BC, Bae KH, Park SG. Glyceraldehyde-3-phosphate, a
  700. glycolytic intermediate, plays&lt;br /&gt;
  701. a key role in controlling cell
  702. fate via inhibition of caspase activity. Mol&lt;br /&gt;
  703. Cells. 2009 Dec
  704. 31;28(6):559-63. doi: 10.1007/s10059-009-0151-7. Epub 2009 Nov&lt;br /&gt;
  705. 19.
  706. PubMed PMID: 19937139.
  707. &lt;/div&gt;
  708. &lt;/div&gt;
  709. &lt;div id=&quot;sdendnote10&quot;&gt;
  710. &lt;div class=&quot;sdendnote&quot;&gt;
  711. &lt;span class=&quot;sdendnotesym&quot;&gt;10&lt;/span&gt;:
  712. Liaud MF, Lichtlé C, Apt K, Martin W, Cerff R.
  713. Compartment-specific isoforms&lt;br /&gt;
  714. of TPI and GAPDH are imported
  715. into diatom mitochondria as a fusion protein:&lt;br /&gt;
  716. evidence in favor
  717. of a mitochondrial origin of the eukaryotic glycolytic pathway.&lt;br /&gt;
  718. Mol
  719. Biol Evol. 2000 Feb;17(2):213-23. PubMed PMID: 10677844.
  720. &lt;/div&gt;
  721. &lt;/div&gt;
  722. &lt;div id=&quot;sdendnote11&quot;&gt;
  723. &lt;div class=&quot;sdendnote&quot;&gt;
  724. &lt;span class=&quot;sdendnotesym&quot;&gt;11&lt;/span&gt;:
  725. Forlemu NY, Njabon EN, Carlson KL, Schmidt ES, Waingeh VF, Thomasson
  726. KA. Ionic&lt;br /&gt;
  727. strength dependence of F-actin and glycolytic enzyme
  728. associations: a Brownian&lt;br /&gt;
  729. dynamics simulations approach.
  730. Proteins. 2011 Oct;79(10):2813-27. doi:&lt;br /&gt;
  731. 10.1002/prot.23107.
  732. Epub 2011 Aug 22. PubMed PMID: 21905108; PubMed Central&lt;br /&gt;
  733. PMCID:
  734. PMC3179185.
  735. &lt;/div&gt;
  736. &lt;/div&gt;
  737. &lt;div id=&quot;sdendnote12&quot;&gt;
  738. &lt;div class=&quot;sdendnote&quot;&gt;
  739. &lt;span class=&quot;sdendnotesym&quot;&gt;12&lt;/span&gt;:
  740. Vaca G, Medina C, Wunsch C, Garcia-Cruz D, Sanchez-Corona J,
  741. Gonzalez-Quiroga &lt;br /&gt;
  742. G, Cantu JM. A simple screening procedure for
  743. glucose phosphate isomerase,&lt;br /&gt;
  744. phosphofructokinase, aldolase and
  745. glyceraldehyde-3-phosphate dehydrogenase&lt;br /&gt;
  746. deficiencies. Ann
  747. Genet. 1981;24(4):251-3. PubMed PMID: 6460465.
  748. &lt;/div&gt;
  749. &lt;/div&gt;
  750. &lt;div id=&quot;sdendnote13&quot;&gt;
  751. &lt;div class=&quot;sdendnote&quot;&gt;
  752. &lt;span class=&quot;sdendnotesym&quot;&gt;13&lt;/span&gt;:
  753. Bruns GA, Gerald PS. Human glyceraldehyde-3-phosphate dehydrogenase
  754. in&lt;br /&gt;
  755. man-rodent somatic cell hybrids. Science. 1976 Apr
  756. 2;192(4234):54-6. PubMed PMID:&lt;br /&gt;
  757. 176725.
  758. &lt;/div&gt;
  759. &lt;/div&gt;
  760. &lt;div id=&quot;sdendnote14&quot;&gt;
  761. &lt;div class=&quot;sdendnote&quot;&gt;
  762. &lt;span class=&quot;sdendnotesym&quot;&gt;14&lt;/span&gt;:
  763. Miyamae Y, Han J, Sasaki K, Terakawa M, Isoda H, Shigemori
  764. H.&lt;br /&gt;
  765. 3,4,5-tri-O-caffeoylquinic acid inhibits amyloid β-mediated
  766. cellular toxicity on &lt;br /&gt;
  767. SH-SY5Y cells through the upregulation of
  768. PGAM1 and G3PDH. Cytotechnology. 2011&lt;br /&gt;
  769. Mar;63(2):191-200. doi:
  770. 10.1007/s10616-011-9341-1. Epub 2011 Mar 19. PubMed PMID:&lt;br /&gt;
  771. 21424281;
  772. PubMed Central PMCID: PMC3080471.
  773. &lt;/div&gt;
  774. &lt;/div&gt;
  775. &lt;div id=&quot;sdendnote15&quot;&gt;
  776. &lt;div class=&quot;sdendnote&quot;&gt;
  777. &lt;span class=&quot;sdendnotesym&quot;&gt;15&lt;/span&gt;:
  778. Roche E, Knecht E, Grisolía S. 2,3-Bisphosphoglycerate
  779. protects mitochondrial &lt;br /&gt;
  780. and cytosolic proteins from proteolytic
  781. inactivation. Biochem Biophys Res Commun.&lt;br /&gt;
  782. 1987 Feb
  783. 13;142(3):680-7. PubMed PMID: 3548716.
  784. &lt;/div&gt;
  785. &lt;/div&gt;
  786. &lt;div id=&quot;sdendnote16&quot;&gt;
  787. &lt;div class=&quot;sdendnote&quot;&gt;
  788. &lt;span class=&quot;sdendnotesym&quot;&gt;16&lt;/span&gt;:
  789. Tatton WG, Chalmers-Redman RM, Elstner M, Leesch W, Jagodzinski FB,
  790. Stupak DP,&lt;br /&gt;
  791. Sugrue MM, Tatton NA. Glyceraldehyde-3-phosphate
  792. dehydrogenase in&lt;br /&gt;
  793. neurodegeneration and apoptosis signaling. J
  794. Neural Transm Suppl.&lt;br /&gt;
  795. 2000;(60):77-100. Review. PubMed PMID:
  796. 11205159.
  797. &lt;/div&gt;
  798. &lt;/div&gt;
  799. &lt;div id=&quot;sdendnote17&quot;&gt;
  800. &lt;div class=&quot;sdendnote&quot;&gt;
  801. &lt;span class=&quot;sdendnotesym&quot;&gt;17&lt;/span&gt;:
  802. Butterfield DA, Hardas SS, Lange ML. Oxidatively
  803. modified&lt;br /&gt;
  804. glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and
  805. Alzheimer&#39;s disease: many&lt;br /&gt;
  806. pathways to neurodegeneration. J
  807. Alzheimers Dis. 2010;20(2):369-93. doi:&lt;br /&gt;
  808. 10.3233/JAD-2010-1375.
  809. Review. PubMed PMID: 20164570; PubMed Central PMCID:&lt;br /&gt;
  810. PMC2922983.
  811.  &lt;/div&gt;
  812. &lt;/div&gt;
  813. &lt;div id=&quot;sdendnote18&quot;&gt;
  814. &lt;div class=&quot;sdendnote&quot;&gt;
  815. &lt;span class=&quot;sdendnotesym&quot;&gt;18&lt;/span&gt;:
  816. Sirover MA. New insights into an old protein: the functional
  817. diversity of&lt;br /&gt;
  818. mammalian glyceraldehyde-3-phosphate
  819. dehydrogenase. Biochim Biophys Acta. 1999&lt;br /&gt;
  820. Jul
  821. 13;1432(2):159-84. Review. PubMed PMID: 10407139.
  822. &lt;/div&gt;
  823. &lt;/div&gt;
  824. &lt;div id=&quot;sdendnote19&quot;&gt;
  825. &lt;div class=&quot;sdendnote&quot;&gt;
  826. &lt;span class=&quot;sdendnotesym&quot;&gt;19&lt;/span&gt;:
  827. Frayne J, Taylor A, Cameron G, Hadfield AT. Structure of insoluble
  828. rat sperm&lt;br /&gt;
  829. glyceraldehyde-3-phosphate dehydrogenase (GAPDH) via
  830. heterotetramer formation&lt;br /&gt;
  831. with Escherichia coli GAPDH reveals
  832. target for contraceptive design. J Biol Chem.&lt;br /&gt;
  833. 2009 Aug
  834. 21;284(34):22703-12. doi: 10.1074/jbc.M109.004648. Epub 2009 Jun
  835. 19.&lt;br /&gt;
  836. PubMed PMID: 19542219; PubMed Central PMCID: PMC2755679.
  837. &lt;/div&gt;
  838. &lt;/div&gt;
  839. &lt;div id=&quot;sdendnote20&quot;&gt;
  840. &lt;div class=&quot;sdendnote&quot;&gt;
  841. &lt;span class=&quot;sdendnotesym&quot;&gt;20&lt;/span&gt;:
  842. Rius SP, Casati P, Iglesias AA, Gomez-Casati DF. Characterization of
  843. an&lt;br /&gt;
  844. Arabidopsis thaliana mutant lacking a cytosolic
  845. non-phosphorylating&lt;br /&gt;
  846. glyceraldehyde-3-phosphate dehydrogenase.
  847. Plant Mol Biol. 2006 Aug;61(6):945-57. &lt;br /&gt;
  848. PubMed PMID: 16927206.
  849. &lt;/div&gt;
  850. &lt;/div&gt;
  851. &lt;div id=&quot;sdendnote21&quot;&gt;
  852. &lt;div class=&quot;sdendnote&quot;&gt;
  853. &lt;span class=&quot;sdendnotesym&quot;&gt;21&lt;/span&gt;:
  854. Harper JT, Keeling PJ. Nucleus-encoded,
  855. plastid-targeted&lt;br /&gt;
  856. glyceraldehyde-3-phosphate dehydrogenase
  857. (GAPDH) indicates a single origin for&lt;br /&gt;
  858. chromalveolate plastids.
  859. Mol Biol Evol. 2003 Oct;20(10):1730-5. Epub 2003 Jul 28.&lt;br /&gt;
  860. PubMed
  861. PMID: 12885964.
  862. &lt;/div&gt;
  863. &lt;/div&gt;
  864. &lt;div id=&quot;sdendnote22&quot;&gt;
  865. &lt;div class=&quot;sdendnote&quot;&gt;
  866. &lt;span class=&quot;sdendnotesym&quot;&gt;22&lt;/span&gt;:
  867. Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant
  868. cytoplasmic&lt;br /&gt;
  869. GAPDH: redox post-translational modifications and
  870. moonlighting properties. Front &lt;br /&gt;
  871. Plant Sci. 2013 Nov 12;4:450.
  872. doi: 10.3389/fpls.2013.00450. eCollection 2013.&lt;br /&gt;
  873. Review. PubMed
  874. PMID: 24282406; PubMed Central PMCID: PMC3824636.
  875. &lt;/div&gt;
  876. &lt;/div&gt;
  877. &lt;div id=&quot;sdendnote23&quot;&gt;
  878. &lt;div class=&quot;sdendnote&quot;&gt;
  879. &lt;span class=&quot;sdendnotesym&quot;&gt;23&lt;/span&gt;:
  880. Vescovi M, Zaffagnini M, Festa M, Trost P, Lo Schiavo F, Costa A.
  881. Nuclear&lt;br /&gt;
  882. accumulation of cytosolic glyceraldehyde-3-phosphate
  883. dehydrogenase in&lt;br /&gt;
  884. cadmium-stressed Arabidopsis roots. Plant
  885. Physiol. 2013 May;162(1):333-46. doi:&lt;br /&gt;
  886. 10.1104/pp.113.215194.
  887. Epub 2013 Apr 8. PubMed PMID: 23569110; PubMed Central&lt;br /&gt;
  888. PMCID:
  889. PMC3641213.
  890. &lt;/div&gt;
  891. &lt;/div&gt;
  892. &lt;div id=&quot;sdendnote24&quot;&gt;
  893. &lt;div class=&quot;sdendnote&quot;&gt;
  894. &lt;span class=&quot;sdendnotesym&quot;&gt;24&lt;/span&gt;:
  895. Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier
  896. N, Lemaire &lt;br /&gt;
  897. SD, Trost P. Mechanisms of nitrosylation and
  898. denitrosylation of cytoplasmic&lt;br /&gt;
  899. glyceraldehyde-3-phosphate
  900. dehydrogenase from Arabidopsis thaliana. J Biol Chem. &lt;br /&gt;
  901. 2013 Aug
  902. 2;288(31):22777-89. doi: 10.1074/jbc.M113.475467. Epub 2013 Jun
  903. 7.&lt;br /&gt;
  904. PubMed PMID: 23749990; PubMed Central PMCID: PMC3829362.
  905. &lt;/div&gt;
  906. &lt;/div&gt;
  907. &lt;div id=&quot;sdendnote25&quot;&gt;
  908. &lt;div class=&quot;sdendnote&quot;&gt;
  909. &lt;span class=&quot;sdendnotesym&quot;&gt;25&lt;/span&gt;:
  910. Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant
  911. cytoplasmic&lt;br /&gt;
  912. GAPDH: redox post-translational modifications and
  913. moonlighting properties. Front &lt;br /&gt;
  914. Plant Sci. 2013 Nov 12;4:450.
  915. doi: 10.3389/fpls.2013.00450. eCollection 2013.&lt;br /&gt;
  916. Review. PubMed
  917. PMID: 24282406; PubMed Central PMCID: PMC3824636.
  918. &lt;/div&gt;
  919. &lt;/div&gt;
  920. &lt;div id=&quot;sdendnote26&quot;&gt;
  921. &lt;div class=&quot;sdendnote&quot;&gt;
  922. &lt;span class=&quot;sdendnotesym&quot;&gt;26&lt;/span&gt;:
  923. Kelley GE, Winzor DJ. Quantitative characterization of the
  924. interactions of&lt;br /&gt;
  925. aldolase and glyceraldehyde-3-phosphate
  926. dehydrogenase with erythrocyte membranes.&lt;br /&gt;
  927. Biochim Biophys Acta.
  928. 1984 Nov 21;778(1):67-73. PubMed PMID: 6498188.
  929. &lt;/div&gt;
  930. &lt;/div&gt;
  931. &lt;div id=&quot;sdendnote27&quot;&gt;
  932. &lt;div class=&quot;sdendnote&quot;&gt;
  933. &lt;span class=&quot;sdendnotesym&quot;&gt;27&lt;/span&gt;:
  934. Ercolani L, Brown D, Stuart-Tilley A, Alper SL. Colocalization of
  935. GAPDH and&lt;br /&gt;
  936. band 3 (AE1) proteins in rat erythrocytes and kidney
  937. intercalated cell membranes.&lt;br /&gt;
  938. Am J Physiol. 1992 May;262(5 Pt
  939. 2):F892-6. PubMed PMID: 1590432.
  940. &lt;/div&gt;
  941. &lt;/div&gt;
  942. &lt;div id=&quot;sdendnote28&quot;&gt;
  943. &lt;div class=&quot;sdendnote&quot;&gt;
  944. &lt;span class=&quot;sdendnotesym&quot;&gt;28&lt;/span&gt;:
  945. Rinalducci S, Marrocco C, Zolla L. Thiol-based regulation
  946. of&lt;br /&gt;
  947. glyceraldehyde-3-phosphate dehydrogenase in blood
  948. bank-stored red blood cells: a &lt;br /&gt;
  949. strategy to counteract
  950. oxidative stress. Transfusion. 2015 Mar;55(3):499-506.&lt;br /&gt;
  951. doi:
  952. 10.1111/trf.12855. Epub 2014 Sep 4. PubMed PMID: 25196942.
  953. &lt;/div&gt;
  954. &lt;/div&gt;
  955. &lt;div id=&quot;sdendnote29&quot;&gt;
  956. &lt;div class=&quot;sdendnote&quot;&gt;
  957. &lt;span class=&quot;sdendnotesym&quot;&gt;29&lt;/span&gt;:
  958. Omodeo-Salè F, Cortelezzi L, Riva E, Vanzulli E, Taramelli D.
  959. Modulation of&lt;br /&gt;
  960. glyceraldehyde 3 phosphate dehydrogenase activity
  961. and tyr-phosphorylation of Band&lt;br /&gt;
  962. 3 in human erythrocytes treated
  963. with ferriprotoporphyrin IX. Biochem Pharmacol.&lt;br /&gt;
  964. 2007 Nov
  965. 1;74(9):1383-9. Epub 2007 Jul 17. PubMed PMID: 17714694.
  966. &lt;/div&gt;
  967. &lt;/div&gt;
  968. &lt;div id=&quot;sdendnote30&quot;&gt;
  969. &lt;div class=&quot;sdendnote&quot;&gt;
  970. &lt;span class=&quot;sdendnotesym&quot;&gt;30&lt;/span&gt;:
  971. Liaud MF, Lichtlé C, Apt K, Martin W, Cerff R.
  972. Compartment-specific isoforms&lt;br /&gt;
  973. of TPI and GAPDH are imported
  974. into diatom mitochondria as a fusion protein:&lt;br /&gt;
  975. evidence in favor
  976. of a mitochondrial origin of the eukaryotic glycolytic pathway.&lt;br /&gt;
  977. Mol
  978. Biol Evol. 2000 Feb;17(2):213-23. PubMed PMID: 10677844.
  979. &lt;/div&gt;
  980. &lt;/div&gt;
  981. &lt;div id=&quot;sdendnote31&quot;&gt;
  982. &lt;div class=&quot;sdendnote&quot;&gt;
  983. &lt;span class=&quot;sdendnotesym&quot;&gt;31&lt;/span&gt;:
  984. Park J, Han D, Kim K, Kang Y, Kim Y. O-GlcNAcylation
  985. disrupts&lt;br /&gt;
  986. glyceraldehyde-3-phosphate dehydrogenase homo-tetramer
  987. formation and mediates its&lt;br /&gt;
  988. nuclear translocation. Biochim
  989. Biophys Acta. 2009 Feb;1794(2):254-62.
  990. doi:&lt;br /&gt;
  991. 10.1016/j.bbapap.2008.10.003. Epub 2008 Oct 31. PubMed
  992. PMID: 19022411.
  993. &lt;/div&gt;
  994. &lt;/div&gt;
  995. &lt;div id=&quot;sdendnote32&quot;&gt;
  996. &lt;div class=&quot;sdendnote&quot;&gt;
  997. &lt;span class=&quot;sdendnotesym&quot;&gt;32&lt;/span&gt;:
  998. Sirover MA. Subcellular dynamics of multifunctional protein
  999. regulation:&lt;br /&gt;
  1000. mechanisms of GAPDH intracellular translocation. J
  1001. Cell Biochem. 2012&lt;br /&gt;
  1002. Jul;113(7):2193-200. doi: 10.1002/jcb.24113.
  1003. Review. PubMed PMID: 22388977;&lt;br /&gt;
  1004. PubMed Central PMCID:
  1005. PMC3350569.
  1006. &lt;/div&gt;
  1007. &lt;/div&gt;
  1008. &lt;div id=&quot;sdendnote33&quot;&gt;
  1009. &lt;div class=&quot;sdendnote&quot;&gt;
  1010. &lt;span class=&quot;sdendnotesym&quot;&gt;33&lt;/span&gt;:
  1011. Tristan C, Shahani N, Sedlak TW, Sawa A. The diverse functions of
  1012. GAPDH: views&lt;br /&gt;
  1013. from different subcellular compartments. Cell
  1014. Signal. 2011 Feb;23(2):317-23. doi:&lt;br /&gt;
  1015. 10.1016/j.cellsig.2010.08.003.
  1016. Epub 2010 Aug 19. Review. PubMed PMID: 20727968;&lt;br /&gt;
  1017. PubMed Central
  1018. PMCID: PMC3084531.
  1019. &lt;/div&gt;
  1020. &lt;/div&gt;
  1021. &lt;div id=&quot;sdendnote34&quot;&gt;
  1022. &lt;div class=&quot;sdendnote&quot;&gt;
  1023. &lt;span class=&quot;sdendnotesym&quot;&gt;34&lt;/span&gt;:
  1024. Hannibal L, Collins D, Brassard J, Chakravarti R, Vempati R, Dorlet
  1025. P,&lt;br /&gt;
  1026. Santolini J, Dawson JH, Stuehr DJ. Heme binding properties
  1027. of&lt;br /&gt;
  1028. glyceraldehyde-3-phosphate dehydrogenase. Biochemistry. 2012
  1029. Oct&lt;br /&gt;
  1030. 30;51(43):8514-29. doi: 10.1021/bi300863a. Epub 2012 Oct
  1031. 15. PubMed PMID:&lt;br /&gt;
  1032. 22957700; PubMed Central PMCID: PMC3549054.
  1033. &lt;/div&gt;
  1034. &lt;/div&gt;
  1035. &lt;div id=&quot;sdendnote35&quot;&gt;
  1036. &lt;div class=&quot;sdendnote&quot;&gt;
  1037. &lt;span class=&quot;sdendnotesym&quot;&gt;35&lt;/span&gt;:
  1038. Tisdale EJ, Kelly C, Artalejo CR. Glyceraldehyde-3-phosphate
  1039. dehydrogenase&lt;br /&gt;
  1040. interacts with Rab2 and plays an essential role
  1041. in endoplasmic reticulum to Golgi&lt;br /&gt;
  1042. transport exclusive of its
  1043. glycolytic activity. J Biol Chem. 2004 Dec&lt;br /&gt;
  1044. 24;279(52):54046-52.
  1045. Epub 2004 Oct 14. PubMed PMID: 15485821.
  1046. &lt;/div&gt;
  1047. &lt;/div&gt;
  1048. &lt;div id=&quot;sdendnote36&quot;&gt;
  1049. &lt;div class=&quot;sdendnote&quot;&gt;
  1050. &lt;span class=&quot;sdendnotesym&quot;&gt;36&lt;/span&gt;:
  1051. Comer AM, Gibbons HM, Qi J, Kawai Y, Win J, Lipski J. Detection of
  1052. mRNA&lt;br /&gt;
  1053. species in bulbospinal neurons isolated from the rostral
  1054. ventrolateral medulla&lt;br /&gt;
  1055. using single-cell RT-PCR. Brain Res Brain
  1056. Res Protoc. 1999 Dec;4(3):367-77.&lt;br /&gt;
  1057. PubMed PMID: 10592347.
  1058. &lt;/div&gt;
  1059. &lt;/div&gt;
  1060. &lt;div id=&quot;sdendnote37&quot;&gt;
  1061. &lt;div class=&quot;sdendnote&quot;&gt;
  1062. &lt;span class=&quot;sdendnotesym&quot;&gt;37&lt;/span&gt;:
  1063. Tisdale EJ. Glyceraldehyde-3-phosphate dehydrogenase is
  1064. phosphorylated by&lt;br /&gt;
  1065. protein kinase Ciota /lambda and plays a role
  1066. in microtubule dynamics in the&lt;br /&gt;
  1067. early secretory pathway. J Biol
  1068. Chem. 2002 Feb 1;277(5):3334-41. Epub 2001 Nov&lt;br /&gt;
  1069. 27. PubMed PMID:
  1070. 11724794.
  1071. &lt;/div&gt;
  1072. &lt;/div&gt;
  1073. &lt;div id=&quot;sdendnote38&quot;&gt;
  1074. &lt;div class=&quot;sdendnote&quot;&gt;
  1075. &lt;span class=&quot;sdendnotesym&quot;&gt;38&lt;/span&gt;:
  1076. Tisdale EJ. Rab2 interacts directly with atypical protein kinase C
  1077. (aPKC)&lt;br /&gt;
  1078. iota/lambda and inhibits aPKCiota/lambda-dependent
  1079. glyceraldehyde-3-phosphate&lt;br /&gt;
  1080. dehydrogenase phosphorylation. J
  1081. Biol Chem. 2003 Dec 26;278(52):52524-30. Epub&lt;br /&gt;
  1082. 2003 Oct 21.
  1083. PubMed PMID: 14570876.
  1084. &lt;/div&gt;
  1085. &lt;/div&gt;
  1086. &lt;div id=&quot;sdendnote39&quot;&gt;
  1087. &lt;div class=&quot;sdendnote&quot;&gt;
  1088. &lt;span class=&quot;sdendnotesym&quot;&gt;39&lt;/span&gt;:
  1089. Bryksin AV, Laktionov PP. Role of glyceraldehyde-3-phosphate
  1090. dehydrogenase in &lt;br /&gt;
  1091. vesicular transport from golgi apparatus to
  1092. endoplasmic reticulum. Biochemistry&lt;br /&gt;
  1093. (Mosc). 2008
  1094. Jun;73(6):619-25. Review. PubMed PMID: 18620527.
  1095. &lt;/div&gt;
  1096. &lt;/div&gt;
  1097. &lt;div id=&quot;sdendnote40&quot;&gt;
  1098. &lt;div class=&quot;sdendnote&quot;&gt;
  1099. &lt;span class=&quot;sdendnotesym&quot;&gt;40&lt;/span&gt;:
  1100. Mazzola JL, Sirover MA. Subcellular localization of
  1101. human&lt;br /&gt;
  1102. glyceraldehyde-3-phosphate dehydrogenase is independent
  1103. of its glycolytic&lt;br /&gt;
  1104. function. Biochim Biophys Acta. 2003 Jun
  1105. 20;1622(1):50-6. PubMed PMID: 12829261.
  1106. &lt;/div&gt;
  1107. &lt;/div&gt;
  1108. &lt;div id=&quot;sdendnote41&quot;&gt;
  1109. &lt;div class=&quot;sdendnote&quot;&gt;
  1110. &lt;span class=&quot;sdendnotesym&quot;&gt;41&lt;/span&gt;:
  1111. Kim H, Hol WG. Crystal structure of Leishmania mexicana
  1112. glycosomal&lt;br /&gt;
  1113. glyceraldehyde-3-phosphate dehydrogenase in a new
  1114. crystal form confirms the&lt;br /&gt;
  1115. putative physiological active site
  1116. structure. J Mol Biol. 1998 Apr&lt;br /&gt;
  1117. 24;278(1):5-11. PubMed PMID:
  1118. 9571030.
  1119. &lt;/div&gt;
  1120. &lt;/div&gt;
  1121. &lt;div id=&quot;sdendnote42&quot;&gt;
  1122. &lt;div class=&quot;sdendnote&quot;&gt;
  1123. &lt;span class=&quot;sdendnotesym&quot;&gt;42&lt;/span&gt;:
  1124. Kim H, Feil IK, Verlinde CL, Petra PH, Hol WG. Crystal structure of
  1125. glycosomal&lt;br /&gt;
  1126. glyceraldehyde-3-phosphate dehydrogenase from
  1127. Leishmania mexicana: implications&lt;br /&gt;
  1128. for structure-based drug
  1129. design and a new position for the inorganic phosphate&lt;br /&gt;
  1130. binding
  1131. site. Biochemistry. 1995 Nov 21;34(46):14975-86. PubMed PMID:
  1132. 7578111.
  1133. &lt;/div&gt;
  1134. &lt;/div&gt;
  1135. &lt;div id=&quot;sdendnote43&quot;&gt;
  1136. &lt;div class=&quot;sdendnote&quot;&gt;
  1137. &lt;span class=&quot;sdendnotesym&quot;&gt;43&lt;/span&gt;:
  1138. Aronov AM, Suresh S, Buckner FS, Van Voorhis WC, Verlinde CL,
  1139. Opperdoes FR,&lt;br /&gt;
  1140. Hol WG, Gelb MH. Structure-based design of
  1141. submicromolar, biologically active&lt;br /&gt;
  1142. inhibitors of trypanosomatid
  1143. glyceraldehyde-3-phosphate dehydrogenase. Proc Natl &lt;br /&gt;
  1144. Acad Sci U
  1145. S A. 1999 Apr 13;96(8):4273-8. PubMed PMID: 10200252; PubMed
  1146. Central&lt;br /&gt;
  1147. PMCID: PMC16322.
  1148. &lt;/div&gt;
  1149. &lt;/div&gt;
  1150. &lt;div id=&quot;sdendnote44&quot;&gt;
  1151. &lt;div class=&quot;sdendnote&quot;&gt;
  1152. &lt;span class=&quot;sdendnotesym&quot;&gt;44&lt;/span&gt;:
  1153. Jia J, Arif A, Terenzi F, Willard B, Plow EF, Hazen SL, Fox
  1154. PL.&lt;br /&gt;
  1155. Target-selective protein S-nitrosylation by sequence motif
  1156. recognition. Cell.&lt;br /&gt;
  1157. 2014 Oct 23;159(3):623-34. doi:
  1158. 10.1016/j.cell.2014.09.032. Epub 2014 Oct 16.&lt;br /&gt;
  1159. PubMed PMID:
  1160. 25417112; PubMed Central PMCID: PMC4243042.
  1161. &lt;/div&gt;
  1162. &lt;/div&gt;
  1163. &lt;div id=&quot;sdendnote45&quot;&gt;
  1164. &lt;div class=&quot;sdendnote&quot;&gt;
  1165. &lt;span class=&quot;sdendnotesym&quot;&gt;45&lt;/span&gt;:
  1166. Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier
  1167. N, Lemaire &lt;br /&gt;
  1168. SD, Trost P. Mechanisms of nitrosylation and
  1169. denitrosylation of cytoplasmic&lt;br /&gt;
  1170. glyceraldehyde-3-phosphate
  1171. dehydrogenase from Arabidopsis thaliana. J Biol Chem. &lt;br /&gt;
  1172. 2013 Aug
  1173. 2;288(31):22777-89. doi: 10.1074/jbc.M113.475467. Epub 2013 Jun
  1174. 7.&lt;br /&gt;
  1175. PubMed PMID: 23749990; PubMed Central PMCID: PMC3829362.
  1176. &lt;/div&gt;
  1177. &lt;/div&gt;
  1178. &lt;div id=&quot;sdendnote46&quot;&gt;
  1179. &lt;div class=&quot;sdendnote&quot;&gt;
  1180. &lt;span class=&quot;sdendnotesym&quot;&gt;46&lt;/span&gt;:
  1181. Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A,
  1182. Sampas N,&lt;br /&gt;
  1183. Bruhn L, Shendure J; 1000 Genomes Project, Eichler
  1184. EE. Diversity of human copy&lt;br /&gt;
  1185. number variation and multicopy
  1186. genes. Science. 2010 Oct 29;330(6004):641-6. doi:
  1187. &lt;br /&gt;
  1188. 10.1126/science.1197005. PubMed PMID: 21030649; PubMed Central
  1189. PMCID: PMC3020103.
  1190. &lt;/div&gt;
  1191. &lt;/div&gt;
  1192. &lt;div id=&quot;sdendnote47&quot;&gt;
  1193. &lt;div class=&quot;sdendnote&quot;&gt;
  1194. &lt;span class=&quot;sdendnotesym&quot;&gt;47&lt;/span&gt;:
  1195. Phadke MS, Krynetskaia NF, Mishra AK, Krynetskiy E. Glyceraldehyde
  1196. 3-phosphate&lt;br /&gt;
  1197. dehydrogenase depletion induces cell cycle arrest
  1198. and resistance to&lt;br /&gt;
  1199. antimetabolites in human carcinoma cell
  1200. lines. J Pharmacol Exp Ther. 2009&lt;br /&gt;
  1201. Oct;331(1):77-86. doi:
  1202. 10.1124/jpet.109.155671. Epub 2009 Jul 23. PubMed PMID:&lt;br /&gt;
  1203. 19628630;
  1204. PubMed Central PMCID: PMC2766228.
  1205. &lt;/div&gt;
  1206. &lt;/div&gt;
  1207. &lt;div id=&quot;sdendnote48&quot;&gt;
  1208. &lt;div class=&quot;sdendnote&quot;&gt;
  1209. &lt;span class=&quot;sdendnotesym&quot;&gt;48&lt;/span&gt;:
  1210. Jenkins JL, Tanner JJ. High-resolution structure of
  1211. human&lt;br /&gt;
  1212. D-glyceraldehyde-3-phosphate dehydrogenase. Acta
  1213. Crystallogr D Biol Crystallogr. &lt;br /&gt;
  1214. 2006 Mar;62(Pt 3):290-301.
  1215. Epub 2006 Feb 22. PubMed PMID: 16510976.
  1216. &lt;/div&gt;
  1217. &lt;/div&gt;
  1218. &lt;div id=&quot;sdendnote49&quot;&gt;
  1219. &lt;div class=&quot;sdendnote&quot;&gt;
  1220. &lt;span class=&quot;sdendnotesym&quot;&gt;49&lt;/span&gt;:
  1221. Rathmell JC, Kornbluth S. Filling a GAP(DH) in caspase-independent
  1222. cell death.&lt;br /&gt;
  1223. Cell. 2007 Jun 1;129(5):861-3. PubMed PMID:
  1224. 17540167; PubMed Central PMCID:&lt;br /&gt;
  1225. PMC2592604.
  1226. &lt;/div&gt;
  1227. &lt;/div&gt;
  1228. &lt;div id=&quot;sdendnote50&quot;&gt;
  1229. &lt;div class=&quot;sdendnote&quot;&gt;
  1230. &lt;span class=&quot;sdendnotesym&quot;&gt;50&lt;/span&gt;:
  1231. Nicholls C, Li H, Liu JP. GAPDH: a common enzyme with uncommon
  1232. functions. Clin&lt;br /&gt;
  1233. Exp Pharmacol Physiol. 2012 Aug;39(8):674-9.
  1234. doi:&lt;br /&gt;
  1235. 10.1111/j.1440-1681.2011.05599.x. Review. PubMed PMID:
  1236. 21895736.
  1237. &lt;/div&gt;
  1238. &lt;/div&gt;
  1239. &lt;div id=&quot;sdendnote51&quot;&gt;
  1240. &lt;div class=&quot;sdendnote&quot;&gt;
  1241. &lt;span class=&quot;sdendnotesym&quot;&gt;51&lt;/span&gt;:
  1242. Lachaal M, Berenski CJ, Kim J, Jung CY. An ATP-modulated specific
  1243. association &lt;br /&gt;
  1244. of glyceraldehyde-3-phosphate dehydrogenase with
  1245. human erythrocyte glucose&lt;br /&gt;
  1246. transporter. J Biol Chem. 1990 Sep
  1247. 15;265(26):15449-54. PubMed PMID: 2394733.
  1248. &lt;/div&gt;
  1249. &lt;/div&gt;
  1250. &lt;div id=&quot;sdendnote52&quot;&gt;
  1251. &lt;div class=&quot;sdendnote&quot;&gt;
  1252. &lt;span class=&quot;sdendnotesym&quot;&gt;52&lt;/span&gt;:
  1253. Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B,
  1254. Dawson&lt;br /&gt;
  1255. TM, Dawson VL, Snyder SH, Sawa A. Nitric oxide-induced
  1256. nuclear GAPDH activates&lt;br /&gt;
  1257. p300/CBP and mediates apoptosis. Nat
  1258. Cell Biol. 2008 Jul;10(7):866-73. doi:&lt;br /&gt;
  1259. 10.1038/ncb1747. Epub
  1260. 2008 Jun 15. PubMed PMID: 18552833; PubMed Central
  1261. PMCID:&lt;br /&gt;
  1262. PMC2689382.
  1263. &lt;/div&gt;
  1264. &lt;/div&gt;
  1265. &lt;div id=&quot;sdendnote53&quot;&gt;
  1266. &lt;div class=&quot;sdendnote&quot;&gt;
  1267. &lt;span class=&quot;sdendnotesym&quot;&gt;53&lt;/span&gt;:
  1268. Tristan CA, Ramos A, Shahani N, Emiliani FE, Nakajima H, Noeh CC,
  1269. Kato Y,&lt;br /&gt;
  1270. Takeuchi T, Noguchi T, Kadowaki H, Sedlak TW, Ishizuka
  1271. K, Ichijo H, Sawa A. Role &lt;br /&gt;
  1272. of apoptosis signal-regulating
  1273. kinase 1 (ASK1) as an activator of the GAPDH-Siah1&lt;br /&gt;
  1274. stress-signaling
  1275. cascade. J Biol Chem. 2015 Jan 2;290(1):56-64.
  1276. doi:&lt;br /&gt;
  1277. 10.1074/jbc.M114.596205. Epub 2014 Nov 12. PubMed PMID:
  1278. 25391652; PubMed Central &lt;br /&gt;
  1279. PMCID: PMC4281757.
  1280. &lt;/div&gt;
  1281. &lt;/div&gt;
  1282. &lt;div id=&quot;sdendnote54&quot;&gt;
  1283. &lt;div class=&quot;sdendnote&quot;&gt;
  1284. &lt;span class=&quot;sdendnotesym&quot;&gt;54&lt;/span&gt;:
  1285. Yego EC, Mohr S. siah-1 Protein is necessary for high
  1286. glucose-induced&lt;br /&gt;
  1287. glyceraldehyde-3-phosphate dehydrogenase
  1288. nuclear accumulation and cell death in&lt;br /&gt;
  1289. Muller cells. J Biol
  1290. Chem. 2010 Jan 29;285(5):3181-90. doi:&lt;br /&gt;
  1291. 10.1074/jbc.M109.083907.
  1292. Epub 2009 Nov 23. PubMed PMID: 19940145; PubMed Central &lt;br /&gt;
  1293. PMCID:
  1294. PMC2823464.
  1295. &lt;/div&gt;
  1296. &lt;/div&gt;
  1297. &lt;div id=&quot;sdendnote55&quot;&gt;
  1298. &lt;div class=&quot;sdendnote&quot;&gt;
  1299. &lt;span class=&quot;sdendnotesym&quot;&gt;55&lt;/span&gt;:
  1300. Phadke MS, Krynetskaia NF, Mishra AK, Krynetskiy E. Glyceraldehyde
  1301. 3-phosphate&lt;br /&gt;
  1302. dehydrogenase depletion induces cell cycle arrest
  1303. and resistance to&lt;br /&gt;
  1304. antimetabolites in human carcinoma cell
  1305. lines. J Pharmacol Exp Ther. 2009&lt;br /&gt;
  1306. Oct;331(1):77-86. doi:
  1307. 10.1124/jpet.109.155671. Epub 2009 Jul 23. PubMed PMID:&lt;br /&gt;
  1308. 19628630;
  1309. PubMed Central PMCID: PMC2766228.
  1310. &lt;/div&gt;
  1311. &lt;/div&gt;
  1312. &lt;div id=&quot;sdendnote56&quot;&gt;
  1313. &lt;div class=&quot;sdendnote&quot;&gt;
  1314. &lt;span class=&quot;sdendnotesym&quot;&gt;56&lt;/span&gt;:
  1315. Seidler NW. Functional diversity. Adv Exp Med Biol. 2013;985:103-47.
  1316. doi:&lt;br /&gt;
  1317. 10.1007/978-94-007-4716-6_4. Review. PubMed PMID:
  1318. 22851448.
  1319. &lt;/div&gt;
  1320. &lt;/div&gt;
  1321. &lt;div id=&quot;sdendnote57&quot;&gt;
  1322. &lt;div class=&quot;sdendnote&quot;&gt;
  1323. &lt;span class=&quot;sdendnotesym&quot;&gt;57&lt;/span&gt;:
  1324. Li T, Liu M, Feng X, Wang Z, Das I, Xu Y, Zhou X, Sun Y, Guan KL,
  1325. Xiong Y, Lei&lt;br /&gt;
  1326. QY. Glyceraldehyde-3-phosphate dehydrogenase is
  1327. activated by lysine 254&lt;br /&gt;
  1328. acetylation in response to glucose
  1329. signal. J Biol Chem. 2014 Feb&lt;br /&gt;
  1330. 7;289(6):3775-85. doi:
  1331. 10.1074/jbc.M113.531640. Epub 2013 Dec 21. PubMed PMID:&lt;br /&gt;
  1332. 24362262;
  1333. PubMed Central PMCID: PMC3916574.
  1334. &lt;/div&gt;
  1335. &lt;/div&gt;
  1336. &lt;div id=&quot;sdendnote58&quot;&gt;
  1337. &lt;div class=&quot;sdendnote&quot;&gt;
  1338. &lt;span class=&quot;sdendnotesym&quot;&gt;58&lt;/span&gt;:
  1339. Nakajima H, Amano W, Fujita A, Fukuhara A, Azuma YT, Hata F, Inui T,
  1340. Takeuchi &lt;br /&gt;
  1341. T. The active site cysteine of the proapoptotic
  1342. protein&lt;br /&gt;
  1343. glyceraldehyde-3-phosphate dehydrogenase is essential
  1344. in oxidative stress-induced&lt;br /&gt;
  1345. aggregation and cell death. J Biol
  1346. Chem. 2007 Sep 7;282(36):26562-74. Epub 2007&lt;br /&gt;
  1347. Jul 5. PubMed
  1348. PMID: 17613523.
  1349. &lt;/div&gt;
  1350. &lt;/div&gt;
  1351. &lt;div id=&quot;sdendnote59&quot;&gt;
  1352. &lt;div class=&quot;sdendnote&quot;&gt;
  1353. &lt;span class=&quot;sdendnotesym&quot;&gt;59&lt;/span&gt;:
  1354. Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y,
  1355. Takahashi M, Cheah&lt;br /&gt;
  1356. JH, Tankou SK, Hester LD, Ferris CD, Hayward
  1357. SD, Snyder SH, Sawa A.&lt;br /&gt;
  1358. S-nitrosylated GAPDH initiates apoptotic
  1359. cell death by nuclear translocation&lt;br /&gt;
  1360. following Siah1 binding.
  1361. Nat Cell Biol. 2005 Jul;7(7):665-74. Epub 2005 Jun 12.&lt;br /&gt;
  1362. PubMed
  1363. PMID: 15951807.
  1364. &lt;/div&gt;
  1365. &lt;/div&gt;
  1366. &lt;div id=&quot;sdendnote60&quot;&gt;
  1367. &lt;div class=&quot;sdendnote&quot;&gt;
  1368. &lt;span class=&quot;sdendnotesym&quot;&gt;60&lt;/span&gt;:
  1369. Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B,
  1370. Dawson&lt;br /&gt;
  1371. TM, Dawson VL, Snyder SH, Sawa A. Nitric oxide-induced
  1372. nuclear GAPDH activates&lt;br /&gt;
  1373. p300/CBP and mediates apoptosis. Nat
  1374. Cell Biol. 2008 Jul;10(7):866-73. doi:&lt;br /&gt;
  1375. 10.1038/ncb1747. Epub
  1376. 2008 Jun 15. PubMed PMID: 18552833; PubMed Central
  1377. PMCID:&lt;br /&gt;
  1378. PMC2689382.
  1379. &lt;/div&gt;
  1380. &lt;/div&gt;
  1381. &lt;div id=&quot;sdendnote61&quot;&gt;
  1382. &lt;div class=&quot;sdendnote&quot;&gt;
  1383. &lt;span class=&quot;sdendnotesym&quot;&gt;61&lt;/span&gt;:
  1384. Ercolani L, Florence B, Denaro M, Alexander M. Isolation and
  1385. complete sequence&lt;br /&gt;
  1386. of a functional human
  1387. glyceraldehyde-3-phosphate dehydrogenase gene. J Biol Chem.&lt;br /&gt;
  1388. 1988
  1389. Oct 25;263(30):15335-41. PubMed PMID: 3170585.
  1390. &lt;/div&gt;
  1391. &lt;/div&gt;
  1392. &lt;div id=&quot;sdendnote62&quot;&gt;
  1393. &lt;div class=&quot;sdendnote&quot;&gt;
  1394. &lt;span class=&quot;sdendnotesym&quot;&gt;63&lt;/span&gt;:
  1395. Rodacka A, Gerszon J, Puchała M. [The biological significance
  1396. of oxidative&lt;br /&gt;
  1397. modifications of cysteine residues in proteins
  1398. illustrated with the example of&lt;br /&gt;
  1399. glyceraldehyde-3-phosphate
  1400. dehydrogenase]. Postepy Hig Med Dosw (Online). 2014&lt;br /&gt;
  1401. Mar
  1402. 12;68:280-90. Review. Polish. PubMed PMID: 24662796.
  1403. &lt;/div&gt;
  1404. &lt;/div&gt;
  1405. &lt;div id=&quot;sdendnote63&quot;&gt;
  1406. &lt;div class=&quot;sdendnote&quot;&gt;
  1407. &lt;span class=&quot;sdendnotesym&quot;&gt;64&lt;/span&gt;:
  1408. Hildebrandt T, Knuesting J, Berndt C, Morgan B, Scheibe R. Cytosolic
  1409. thiol&lt;br /&gt;
  1410. switches regulating basic cellular functions: GAPDH as an
  1411. information hub? Biol&lt;br /&gt;
  1412. Chem. 2015 May;396(5):523-37. doi:
  1413. 10.1515/hsz-2014-0295. PubMed PMID: 25581756.
  1414. &lt;/div&gt;
  1415. &lt;/div&gt;
  1416. &lt;div id=&quot;sdendnote64&quot;&gt;
  1417. &lt;div class=&quot;sdendnote&quot;&gt;
  1418. &lt;span class=&quot;sdendnotesym&quot;&gt;65&lt;/span&gt;:
  1419. Nakajima H, Amano W, Kubo T, Fukuhara A, Ihara H, Azuma YT, Tajima
  1420. H, Inui T, &lt;br /&gt;
  1421. Sawa A, Takeuchi T. Glyceraldehyde-3-phosphate
  1422. dehydrogenase aggregate formation &lt;br /&gt;
  1423. participates in oxidative
  1424. stress-induced cell death. J Biol Chem. 2009 Dec&lt;br /&gt;
  1425. 4;284(49):34331-41.
  1426. doi: 10.1074/jbc.M109.027698. Epub 2009 Oct 16. PubMed PMID:
  1427. &lt;br /&gt;
  1428. 19837666; PubMed Central PMCID: PMC2797201.
  1429. &lt;/div&gt;
  1430. &lt;/div&gt;
  1431. &lt;div id=&quot;sdendnote65&quot;&gt;
  1432. &lt;div class=&quot;sdendnote&quot;&gt;
  1433. &lt;span class=&quot;sdendnotesym&quot;&gt;66&lt;/span&gt;:
  1434. Rinalducci S, Marrocco C, Zolla L. Thiol-based regulation
  1435. of&lt;br /&gt;
  1436. glyceraldehyde-3-phosphate dehydrogenase in blood
  1437. bank-stored red blood cells: a &lt;br /&gt;
  1438. strategy to counteract
  1439. oxidative stress. Transfusion. 2015 Mar;55(3):499-506.&lt;br /&gt;
  1440. doi:
  1441. 10.1111/trf.12855. Epub 2014 Sep 4. PubMed PMID: 25196942
  1442. &lt;/div&gt;
  1443. &lt;/div&gt;
  1444. &lt;div id=&quot;sdendnote66&quot;&gt;
  1445. &lt;div class=&quot;sdendnote&quot;&gt;
  1446. &lt;span class=&quot;sdendnotesym&quot;&gt;67&lt;/span&gt;:
  1447. Rodacka A, Gerszon J, Puchała M. [The biological significance
  1448. of oxidative&lt;br /&gt;
  1449. modifications of cysteine residues in proteins
  1450. illustrated with the example of&lt;br /&gt;
  1451. glyceraldehyde-3-phosphate
  1452. dehydrogenase]. Postepy Hig Med Dosw (Online). 2014&lt;br /&gt;
  1453. Mar
  1454. 12;68:280-90. Review. Polish. PubMed PMID: 24662796.
  1455. &lt;/div&gt;
  1456. &lt;/div&gt;
  1457. &lt;div id=&quot;sdendnote67&quot;&gt;
  1458. &lt;div class=&quot;sdendnote&quot;&gt;
  1459. &lt;span class=&quot;sdendnotesym&quot;&gt;68&lt;/span&gt;:
  1460. Samson AL, Knaupp AS, Kass I, Kleifeld O, Marijanovic EM, Hughes VA,
  1461. Lupton&lt;br /&gt;
  1462. CJ, Buckle AM, Bottomley SP, Medcalf RL. Oxidation of an
  1463. exposed methionine&lt;br /&gt;
  1464. instigates the aggregation of
  1465. glyceraldehyde-3-phosphate dehydrogenase. J Biol&lt;br /&gt;
  1466. Chem. 2014 Sep
  1467. 26;289(39):26922-36. doi: 10.1074/jbc.M114.570275. Epub 2014 Aug&lt;br /&gt;
  1468. 1.
  1469. PubMed PMID: 25086035; PubMed Central PMCID: PMC4175333.
  1470. &lt;/div&gt;
  1471. &lt;/div&gt;
  1472. &lt;div id=&quot;sdendnote68&quot;&gt;
  1473. &lt;div class=&quot;sdendnote&quot;&gt;
  1474. &lt;span class=&quot;sdendnotesym&quot;&gt;69&lt;/span&gt;:
  1475. Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law
  1476. L, Hester&lt;br /&gt;
  1477. LD, Snyder SH. GAPDH mediates nitrosylation of
  1478. nuclear proteins. Nat Cell Biol.&lt;br /&gt;
  1479. 2010 Nov;12(11):1094-100. doi:
  1480. 10.1038/ncb2114. Epub 2010 Oct 24. PubMed PMID:&lt;br /&gt;
  1481. 20972425;
  1482. PubMed Central PMCID: PMC2972384.
  1483. &lt;/div&gt;
  1484. &lt;/div&gt;
  1485. &lt;div id=&quot;sdendnote69&quot;&gt;
  1486. &lt;div class=&quot;sdendnote&quot;&gt;
  1487. &lt;span class=&quot;sdendnotesym&quot;&gt;70&lt;/span&gt;:
  1488. Kohr MJ, Murphy E, Steenbergen C. Glyceraldehyde-3-phosphate
  1489. dehydrogenase&lt;br /&gt;
  1490. acts as a mitochondrial trans-S-nitrosylase in
  1491. the heart. PLoS One. 2014 Oct&lt;br /&gt;
  1492. 27;9(10):e111448. doi:
  1493. 10.1371/journal.pone.0111448. eCollection 2014. PubMed&lt;br /&gt;
  1494. PMID:
  1495. 25347796; PubMed Central PMCID: PMC4210263.
  1496. &lt;/div&gt;
  1497. &lt;/div&gt;
  1498. &lt;div id=&quot;sdendnote70&quot;&gt;
  1499. &lt;div class=&quot;sdendnote&quot;&gt;
  1500. &lt;span class=&quot;sdendnotesym&quot;&gt;71&lt;/span&gt;:
  1501. Padgett CM, Whorton AR. S-nitrosoglutathione reversibly inhibits
  1502. GAPDH by&lt;br /&gt;
  1503. S-nitrosylation. Am J Physiol. 1995 Sep;269(3 Pt
  1504. 1):C739-49. PubMed PMID:&lt;br /&gt;
  1505. 7573405.
  1506. &lt;/div&gt;
  1507. &lt;/div&gt;
  1508. &lt;div id=&quot;sdendnote71&quot;&gt;
  1509. &lt;div class=&quot;sdendnote&quot;&gt;
  1510. &lt;span class=&quot;sdendnotesym&quot;&gt;72&lt;/span&gt;:
  1511. Hara MR, Cascio MB, Sawa A. GAPDH as a sensor of NO stress. Biochim
  1512. Biophys&lt;br /&gt;
  1513. Acta. 2006 May;1762(5):502-9. Epub 2006 Mar 9. Review.
  1514. PubMed PMID: 16574384.
  1515. &lt;/div&gt;
  1516. &lt;/div&gt;
  1517. &lt;div id=&quot;sdendnote72&quot;&gt;
  1518. &lt;div class=&quot;sdendnote&quot;&gt;
  1519. &lt;span class=&quot;sdendnotesym&quot;&gt;73 &lt;/span&gt;:
  1520. Nicholls C, Pinto AR, Li H, Li L, Wang L, Simpson R, Liu
  1521. JP.&lt;br /&gt;
  1522. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induces
  1523. cancer cell senescence&lt;br /&gt;
  1524. by interacting with telomerase RNA
  1525. component. Proc Natl Acad Sci U S A. 2012 Aug &lt;br /&gt;
  1526. 14;109(33):13308-13.
  1527. doi: 10.1073/pnas.1206672109. Epub 2012 Jul 30. PubMed
  1528. PMID:&lt;br /&gt;
  1529. 22847419; PubMed Central PMCID: PMC3421169.
  1530. &lt;/div&gt;
  1531. &lt;/div&gt;
  1532. &lt;div id=&quot;sdendnote73&quot;&gt;
  1533. &lt;div class=&quot;sdendnote&quot;&gt;
  1534. &lt;span class=&quot;sdendnotesym&quot;&gt;74&lt;/span&gt;:
  1535. Bae BI, Hara MR, Cascio MB, Wellington CL, Hayden MR, Ross CA, Ha
  1536. HC, Li XJ,&lt;br /&gt;
  1537. Snyder SH, Sawa A. Mutant huntingtin: nuclear
  1538. translocation and cytotoxicity&lt;br /&gt;
  1539. mediated by GAPDH. Proc Natl
  1540. Acad Sci U S A. 2006 Feb 28;103(9):3405-9. Epub 2006&lt;br /&gt;
  1541. Feb 21.
  1542. PubMed PMID: 16492755; PubMed Central PMCID: PMC1413934.
  1543. &lt;/div&gt;
  1544. &lt;/div&gt;
  1545. &lt;div id=&quot;sdendnote74&quot;&gt;
  1546. &lt;div class=&quot;sdendnote&quot;&gt;
  1547. &lt;span class=&quot;sdendnotesym&quot;&gt;75&lt;/span&gt;:
  1548. Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y,
  1549. Takahashi M, Cheah&lt;br /&gt;
  1550. JH, Tankou SK, Hester LD, Ferris CD, Hayward
  1551. SD, Snyder SH, Sawa A.&lt;br /&gt;
  1552. S-nitrosylated GAPDH initiates apoptotic
  1553. cell death by nuclear translocation&lt;br /&gt;
  1554. following Siah1 binding.
  1555. Nat Cell Biol. 2005 Jul;7(7):665-74. Epub 2005 Jun 12.&lt;br /&gt;
  1556. PubMed
  1557. PMID: 15951807.
  1558. &lt;/div&gt;
  1559. &lt;/div&gt;
  1560. &lt;div id=&quot;sdendnote75&quot;&gt;
  1561. &lt;div class=&quot;sdendnote&quot;&gt;
  1562. &lt;span class=&quot;sdendnotesym&quot;&gt;76&lt;/span&gt;:
  1563. Bommareddy RR, Chen Z, Rappert S, Zeng AP. A de novo NADPH
  1564. generation pathway &lt;br /&gt;
  1565. for improving lysine production of
  1566. Corynebacterium glutamicum by rational design &lt;br /&gt;
  1567. of the coenzyme
  1568. specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab&lt;br /&gt;
  1569. Eng.
  1570. 2014 Sep;25:30-7. doi: 10.1016/j.ymben.2014.06.005. Epub 2014 Jun
  1571. 19. PubMed&lt;br /&gt;
  1572. PMID: 24953302.
  1573. &lt;/div&gt;
  1574. &lt;/div&gt;
  1575. &lt;div id=&quot;sdendnote76&quot;&gt;
  1576. &lt;div class=&quot;sdendnote&quot;&gt;
  1577. &lt;span class=&quot;sdendnotesym&quot;&gt;77&lt;/span&gt;:
  1578. Ventura M, Mateo F, Serratosa J, Salaet I, Carujo S, Bachs O, Pujol
  1579. MJ.&lt;br /&gt;
  1580. Nuclear translocation of glyceraldehyde-3-phosphate
  1581. dehydrogenase is regulated by&lt;br /&gt;
  1582. acetylation. Int J Biochem Cell
  1583. Biol. 2010 Oct;42(10):1672-80. doi:&lt;br /&gt;
  1584. 10.1016/j.biocel.2010.06.014.
  1585. Epub 2010 Jun 25. PubMed PMID: 20601085.
  1586. &lt;/div&gt;
  1587. &lt;/div&gt;
  1588. &lt;div id=&quot;sdendnote77&quot;&gt;
  1589. &lt;div class=&quot;sdendnote&quot;&gt;
  1590. &lt;span class=&quot;sdendnotesym&quot;&gt;78&lt;/span&gt;:
  1591. Lee SY, Kim JH, Jung H, Chi SW, Chung SJ, Lee CK, Park BC, Bae KH,
  1592. Park SG.&lt;br /&gt;
  1593. Glyceraldehyde-3-phosphate, a glycolytic intermediate,
  1594. prevents cells from&lt;br /&gt;
  1595. apoptosis by lowering S-nitrosylation of
  1596. glyceraldehyde-3-phosphate&lt;br /&gt;
  1597. dehydrogenase. J Microbiol
  1598. Biotechnol. 2012 Apr;22(4):571-3. PubMed PMID:&lt;br /&gt;
  1599. 22534308.
  1600. &lt;/div&gt;
  1601. &lt;/div&gt;
  1602. &lt;div id=&quot;sdendnote78&quot;&gt;
  1603. &lt;div class=&quot;sdendnote&quot;&gt;
  1604. &lt;span class=&quot;sdendnotesym&quot;&gt;79&lt;/span&gt;:
  1605. Hara MR, Snyder SH. Nitric oxide-GAPDH-Siah: a novel cell death
  1606. cascade. Cell &lt;br /&gt;
  1607. Mol Neurobiol. 2006 Jul-Aug;26(4-6):527-38. Epub
  1608. 2006 Apr 22. Review. PubMed&lt;br /&gt;
  1609. PMID: 16633896.
  1610. &lt;/div&gt;
  1611. &lt;/div&gt;
  1612. &lt;div id=&quot;sdendnote79&quot;&gt;
  1613. &lt;div class=&quot;sdendnote&quot;&gt;
  1614. &lt;span class=&quot;sdendnotesym&quot;&gt;80&lt;/span&gt;:
  1615. Huang Q, Lan F, Zheng Z, Xie F, Han J, Dong L, Xie Y, Zheng F. Akt2
  1616. kinase&lt;br /&gt;
  1617. suppresses glyceraldehyde-3-phosphate dehydrogenase
  1618. (GAPDH)-mediated apoptosis in&lt;br /&gt;
  1619. ovarian cancer cells via
  1620. phosphorylating GAPDH at threonine 237 and decreasing&lt;br /&gt;
  1621. its
  1622. nuclear translocation. J Biol Chem. 2011 Dec 9;286(49):42211-20.
  1623. doi:&lt;br /&gt;
  1624. 10.1074/jbc.M111.296905. Epub 2011 Oct 6. PubMed PMID:
  1625. 21979951; PubMed Central&lt;br /&gt;
  1626. PMCID: PMC3234938.
  1627. &lt;/div&gt;
  1628. &lt;/div&gt;
  1629. &lt;div id=&quot;sdendnote80&quot;&gt;
  1630. &lt;div class=&quot;sdendnote&quot;&gt;
  1631. &lt;span class=&quot;sdendnotesym&quot;&gt;81&lt;/span&gt;:
  1632. Ventura M, Mateo F, Serratosa J, Salaet I, Carujo S, Bachs O, Pujol
  1633. MJ.&lt;br /&gt;
  1634. Nuclear translocation of glyceraldehyde-3-phosphate
  1635. dehydrogenase is regulated by&lt;br /&gt;
  1636. acetylation. Int J Biochem Cell
  1637. Biol. 2010 Oct;42(10):1672-80. doi:&lt;br /&gt;
  1638. 10.1016/j.biocel.2010.06.014.
  1639. Epub 2010 Jun 25. PubMed PMID: 20601085.
  1640. &lt;/div&gt;
  1641. &lt;/div&gt;
  1642. &lt;div id=&quot;sdendnote81&quot;&gt;
  1643. &lt;div class=&quot;sdendnote&quot;&gt;
  1644. &lt;span class=&quot;sdendnotesym&quot;&gt;82&lt;/span&gt;:
  1645. Tristan CA, Ramos A, Shahani N, Emiliani FE, Nakajima H, Noeh CC,
  1646. Kato Y,&lt;br /&gt;
  1647. Takeuchi T, Noguchi T, Kadowaki H, Sedlak TW, Ishizuka
  1648. K, Ichijo H, Sawa A. Role &lt;br /&gt;
  1649. of apoptosis signal-regulating
  1650. kinase 1 (ASK1) as an activator of the GAPDH-Siah1&lt;br /&gt;
  1651. stress-signaling
  1652. cascade. J Biol Chem. 2015 Jan 2;290(1):56-64.
  1653. doi:&lt;br /&gt;
  1654. 10.1074/jbc.M114.596205. Epub 2014 Nov 12. PubMed PMID:
  1655. 25391652; PubMed Central &lt;br /&gt;
  1656. PMCID: PMC4281757.
  1657. &lt;/div&gt;
  1658. &lt;/div&gt;
  1659. &lt;div id=&quot;sdendnote82&quot;&gt;
  1660. &lt;div class=&quot;sdendnote&quot;&gt;
  1661. &lt;span class=&quot;sdendnotesym&quot;&gt;83&lt;/span&gt;:
  1662. Sen N, Hara MR, Ahmad AS, Cascio MB, Kamiya A, Ehmsen JT, Agrawal N,
  1663. Hester L,&lt;br /&gt;
  1664. Doré S, Snyder SH, Sawa A. GOSPEL: a
  1665. neuroprotective protein that binds to GAPDH &lt;br /&gt;
  1666. upon
  1667. S-nitrosylation. Neuron. 2009 Jul 16;63(1):81-91.
  1668. doi:&lt;br /&gt;
  1669. 10.1016/j.neuron.2009.05.024. Erratum in: Neuron. 2009 Sep
  1670. 10;63(5):709.&lt;br /&gt;
  1671. Aggrawal, Nishant [corrected to Agrawal,
  1672. Nishant]. PubMed PMID: 19607794; PubMed &lt;br /&gt;
  1673. Central PMCID:
  1674. PMC2758064.
  1675. &lt;/div&gt;
  1676. &lt;/div&gt;
  1677. &lt;div id=&quot;sdendnote83&quot;&gt;
  1678. &lt;div class=&quot;sdendnote&quot;&gt;
  1679. &lt;span class=&quot;sdendnotesym&quot;&gt;84&lt;/span&gt;:
  1680. Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B,
  1681. Dawson&lt;br /&gt;
  1682. TM, Dawson VL, Snyder SH, Sawa A. Nitric oxide-induced
  1683. nuclear GAPDH activates&lt;br /&gt;
  1684. p300/CBP and mediates apoptosis. Nat
  1685. Cell Biol. 2008 Jul;10(7):866-73. doi:&lt;br /&gt;
  1686. 10.1038/ncb1747. Epub
  1687. 2008 Jun 15. PubMed PMID: 18552833; PubMed Central
  1688. PMCID:&lt;br /&gt;
  1689. PMC2689382.
  1690. &lt;/div&gt;
  1691. &lt;/div&gt;
  1692. &lt;div id=&quot;sdendnote84&quot;&gt;
  1693. &lt;div class=&quot;sdendnote&quot;&gt;
  1694. &lt;span class=&quot;sdendnotesym&quot;&gt;85&lt;/span&gt;:
  1695. Harraz MM, Snyder SH. Nitric Oxide-GAPDH Transcriptional Signaling
  1696. Mediates&lt;br /&gt;
  1697. Behavioral Actions of Cocaine. CNS Neurol Disord Drug
  1698. Targets. 2015;14(6):757-63.&lt;br /&gt;
  1699. PubMed PMID: 26022259.
  1700. &lt;/div&gt;
  1701. &lt;/div&gt;
  1702. &lt;div id=&quot;sdendnote85&quot;&gt;
  1703. &lt;div class=&quot;sdendnote&quot;&gt;
  1704. &lt;span class=&quot;sdendnotesym&quot;&gt;86&lt;/span&gt;:
  1705. Sedlak TW, Snyder SH. Messenger molecules and cell death:
  1706. therapeutic&lt;br /&gt;
  1707. implications. JAMA. 2006 Jan 4;295(1):81-9. PubMed
  1708. PMID: 16391220.
  1709. &lt;/div&gt;
  1710. &lt;/div&gt;
  1711. &lt;div id=&quot;sdendnote86&quot;&gt;
  1712. &lt;div class=&quot;sdendnote&quot;&gt;
  1713. &lt;span class=&quot;sdendnotesym&quot;&gt;87&lt;/span&gt;:
  1714. Jenkins JL, Tanner JJ. High-resolution structure of
  1715. human&lt;br /&gt;
  1716. D-glyceraldehyde-3-phosphate dehydrogenase. Acta
  1717. Crystallogr D Biol Crystallogr. &lt;br /&gt;
  1718. 2006 Mar;62(Pt 3):290-301.
  1719. Epub 2006 Feb 22. PubMed PMID: 16510976.
  1720. &lt;/div&gt;
  1721. &lt;/div&gt;
  1722. &lt;div id=&quot;sdendnote87&quot;&gt;
  1723. &lt;div class=&quot;sdendnote&quot;&gt;
  1724. &lt;span class=&quot;sdendnotesym&quot;&gt;88&lt;/span&gt;:
  1725. Arutyunova EI, Danshina PV, Domnina LV, Pleten AP, Muronetz VI.
  1726. Oxidation of&lt;br /&gt;
  1727. glyceraldehyde-3-phosphate dehydrogenase enhances
  1728. its binding to nucleic acids.&lt;br /&gt;
  1729. Biochem Biophys Res Commun. 2003
  1730. Aug 1;307(3):547-52. PubMed PMID: 12893257.
  1731. &lt;/div&gt;
  1732. &lt;/div&gt;
  1733. &lt;div id=&quot;sdendnote88&quot;&gt;
  1734. &lt;div class=&quot;sdendnote&quot;&gt;
  1735. &lt;span class=&quot;sdendnotesym&quot;&gt;89&lt;/span&gt;:
  1736. Broniowska KA, Hogg N. Differential mechanisms of inhibition
  1737. of&lt;br /&gt;
  1738. glyceraldehyde-3-phosphate dehydrogenase by S-nitrosothiols
  1739. and NO in cellular&lt;br /&gt;
  1740. and cell-free conditions. Am J Physiol Heart
  1741. Circ Physiol. 2010&lt;br /&gt;
  1742. Oct;299(4):H1212-9. doi:
  1743. 10.1152/ajpheart.00472.2010. Epub 2010 Jul 30. PubMed&lt;br /&gt;
  1744. PMID:
  1745. 20675567; PubMed Central PMCID: PMC2957357.
  1746. &lt;/div&gt;
  1747. &lt;/div&gt;
  1748. &lt;div id=&quot;sdendnote89&quot;&gt;
  1749. &lt;div class=&quot;sdendnote&quot;&gt;
  1750. &lt;span class=&quot;sdendnotesym&quot;&gt;90&lt;/span&gt;:
  1751. Tarze A, Deniaud A, Le Bras M, Maillier E, Molle D, Larochette N,
  1752. Zamzami N,&lt;br /&gt;
  1753. Jan G, Kroemer G, Brenner C. GAPDH, a novel
  1754. regulator of the pro-apoptotic&lt;br /&gt;
  1755. mitochondrial membrane
  1756. permeabilization. Oncogene. 2007 Apr 19;26(18):2606-20.&lt;br /&gt;
  1757. Epub
  1758. 2006 Oct 30. PubMed PMID: 17072346.
  1759. &lt;/div&gt;
  1760. &lt;/div&gt;
  1761. &lt;div id=&quot;sdendnote90&quot;&gt;
  1762. &lt;div class=&quot;sdendnote&quot;&gt;
  1763. &lt;span class=&quot;sdendnotesym&quot;&gt;91&lt;/span&gt;:
  1764. Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA,
  1765. Weisswange I,&lt;br /&gt;
  1766. Mansfeld J, Buchholz F, Hyman AA, Mann M. A Human
  1767. Interactome in Three&lt;br /&gt;
  1768. Quantitative Dimensions Organized by
  1769. Stoichiometries and Abundances. Cell. 2015&lt;br /&gt;
  1770. Oct
  1771. 22;163(3):712-23. doi: 10.1016/j.cell.2015.09.053. Epub 2015 Oct 22.
  1772. PubMed&lt;br /&gt;
  1773. PMID: 26496610.
  1774. &lt;/div&gt;
  1775. &lt;/div&gt;
  1776. &lt;div id=&quot;sdendnote91&quot;&gt;
  1777. &lt;div class=&quot;sdendnote&quot;&gt;
  1778. &lt;span class=&quot;sdendnotesym&quot;&gt;92&lt;/span&gt;:
  1779. Jia J, Arif A, Willard B, Smith JD, Stuehr DJ, Hazen SL, Fox PL.
  1780. Protection of&lt;br /&gt;
  1781. extraribosomal RPL13a by GAPDH and dysregulation
  1782. by S-nitrosylation. Mol Cell.&lt;br /&gt;
  1783. 2012 Aug 24;47(4):656-63. doi:
  1784. 10.1016/j.molcel.2012.06.006. Epub 2012 Jul 5.&lt;br /&gt;
  1785. PubMed PMID:
  1786. 22771119; PubMed Central PMCID: PMC3635105.
  1787. &lt;/div&gt;
  1788. &lt;/div&gt;
  1789. &lt;div id=&quot;sdendnote92&quot;&gt;
  1790. &lt;div class=&quot;sdendnote&quot;&gt;
  1791. &lt;span class=&quot;sdendnotesym&quot;&gt;93&lt;/span&gt;:
  1792. Arif A, Chatterjee P, Moodt RA, Fox PL. Heterotrimeric GAIT complex
  1793. drives&lt;br /&gt;
  1794. transcript-selective translation inhibition in murine
  1795. macrophages. Mol Cell Biol.&lt;br /&gt;
  1796. 2012 Dec;32(24):5046-55. doi:
  1797. 10.1128/MCB.01168-12. Epub 2012 Oct 15. PubMed&lt;br /&gt;
  1798. PMID: 23071094;
  1799. PubMed Central PMCID: PMC3510535.
  1800. &lt;/div&gt;
  1801. &lt;/div&gt;
  1802. &lt;div id=&quot;sdendnote93&quot;&gt;
  1803. &lt;div class=&quot;sdendnote&quot;&gt;
  1804. &lt;span class=&quot;sdendnotesym&quot;&gt;94&lt;/span&gt;:
  1805. Carmona P, Rodríguez-Casado A, Molina M. Conformational
  1806. structure and binding &lt;br /&gt;
  1807. mode of glyceraldehyde-3-phosphate
  1808. dehydrogenase to tRNA studied by Raman and CD &lt;br /&gt;
  1809. spectroscopy.
  1810. Biochim Biophys Acta. 1999 Jul 13;1432(2):222-33. PubMed
  1811. PMID:&lt;br /&gt;
  1812. 10407144.
  1813. &lt;/div&gt;
  1814. &lt;/div&gt;
  1815. &lt;div id=&quot;sdendnote94&quot;&gt;
  1816. &lt;div class=&quot;sdendnote&quot;&gt;
  1817. &lt;span class=&quot;sdendnotesym&quot;&gt;95&lt;/span&gt;:
  1818. Arif A, Chatterjee P, Moodt RA, Fox PL. Heterotrimeric GAIT complex
  1819. drives&lt;br /&gt;
  1820. transcript-selective translation inhibition in murine
  1821. macrophages. Mol Cell Biol.&lt;br /&gt;
  1822. 2012 Dec;32(24):5046-55. doi:
  1823. 10.1128/MCB.01168-12. Epub 2012 Oct 15. PubMed&lt;br /&gt;
  1824. PMID: 23071094;
  1825. PubMed Central PMCID: PMC3510535.
  1826. &lt;/div&gt;
  1827. &lt;/div&gt;
  1828. &lt;div id=&quot;sdendnote95&quot;&gt;
  1829. &lt;div class=&quot;sdendnote&quot;&gt;
  1830. &lt;span class=&quot;sdendnotesym&quot;&gt;96&lt;/span&gt;:
  1831. Berry MD, Boulton AA. Glyceraldehyde-3-phosphate dehydrogenase and
  1832. apoptosis. &lt;br /&gt;
  1833. J Neurosci Res. 2000 Apr 15;60(2):150-4. Review.
  1834. PubMed PMID: 10740219.
  1835. &lt;/div&gt;
  1836. &lt;/div&gt;
  1837. &lt;div id=&quot;sdendnote96&quot;&gt;
  1838. &lt;div class=&quot;sdendnote&quot;&gt;
  1839. &lt;span class=&quot;sdendnotesym&quot;&gt;97&lt;/span&gt;:
  1840. Mansur NR, Meyer-Siegler K, Wurzer JC, Sirover MA. Cell cycle
  1841. regulation of&lt;br /&gt;
  1842. the glyceraldehyde-3-phosphate
  1843. dehydrogenase/uracil DNA glycosylase gene in&lt;br /&gt;
  1844. normal human
  1845. cells. Nucleic Acids Res. 1993 Feb 25;21(4):993-8. PubMed
  1846. PMID:&lt;br /&gt;
  1847. 8451199; PubMed Central PMCID: PMC309234.
  1848. &lt;/div&gt;
  1849. &lt;/div&gt;
  1850. &lt;div id=&quot;sdendnote97&quot;&gt;
  1851. &lt;div class=&quot;sdendnote&quot;&gt;
  1852. &lt;span class=&quot;sdendnotesym&quot;&gt;98&lt;/span&gt;:
  1853. Brüne B, Lapetina EG. Protein thiol modification of
  1854. glyceraldehyde-3-phosphate&lt;br /&gt;
  1855. dehydrogenase as a target for nitric
  1856. oxide signaling. Genet Eng (N Y).&lt;br /&gt;
  1857. 1995;17:149-64. Review.
  1858. PubMed PMID: 7540026.
  1859. &lt;/div&gt;
  1860. &lt;/div&gt;
  1861. &lt;div id=&quot;sdendnote98&quot;&gt;
  1862. &lt;div class=&quot;sdendnote&quot;&gt;
  1863. &lt;span class=&quot;sdendnotesym&quot;&gt;99&lt;/span&gt;:
  1864. Saunders PA, Chen RW, Chuang DM. Nuclear translocation
  1865. of&lt;br /&gt;
  1866. glyceraldehyde-3-phosphate dehydrogenase isoforms during
  1867. neuronal apoptosis. J&lt;br /&gt;
  1868. Neurochem. 1999 Mar;72(3):925-32. PubMed
  1869. PMID: 10037463.
  1870. &lt;/div&gt;
  1871. &lt;/div&gt;
  1872. &lt;div id=&quot;sdendnote99&quot;&gt;
  1873. &lt;div class=&quot;sdendnote&quot;&gt;
  1874. &lt;span class=&quot;sdendnotesym&quot;&gt;01&lt;/span&gt;:
  1875. Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK, Sirover MA.
  1876. A human&lt;br /&gt;
  1877. nuclear uracil DNA glycosylase is the 37-kDa subunit
  1878. of&lt;br /&gt;
  1879. glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci
  1880. U S A. 1991 Oct&lt;br /&gt;
  1881. 1;88(19):8460-4. PubMed PMID: 1924305; PubMed
  1882. Central PMCID: PMC52528.
  1883. &lt;/div&gt;
  1884. &lt;/div&gt;
  1885. &lt;div id=&quot;sdendnote100&quot;&gt;
  1886. &lt;div class=&quot;sdendnote&quot;&gt;
  1887. &lt;span class=&quot;sdendnotesym&quot;&gt;02&lt;/span&gt;:
  1888. Caradonna S, Muller-Weeks S. The nature of enzymes involved in
  1889. uracil-DNA&lt;br /&gt;
  1890. repair: isoform characteristics of proteins
  1891. responsible for nuclear and&lt;br /&gt;
  1892. mitochondrial genomic integrity.
  1893. Curr Protein Pept Sci. 2001 Dec;2(4):335-47.&lt;br /&gt;
  1894. Review. PubMed
  1895. PMID: 12369930.
  1896. &lt;/div&gt;
  1897. &lt;/div&gt;
  1898. &lt;div id=&quot;sdendnote101&quot;&gt;
  1899. &lt;div class=&quot;sdendnote&quot;&gt;
  1900. &lt;span class=&quot;sdendnotesym&quot;&gt;03&lt;/span&gt;:
  1901. Köhler T, Rost AK, Remke H. Calibration and storage of DNA
  1902. competitors used&lt;br /&gt;
  1903. for contamination-protected competitive PCR.
  1904. Biotechniques. 1997 Oct;23(4):722-6.&lt;br /&gt;
  1905. PubMed PMID: 9343699.
  1906. &lt;/div&gt;
  1907. &lt;/div&gt;
  1908. &lt;div id=&quot;sdendnote102&quot;&gt;
  1909. &lt;div class=&quot;sdendnote&quot;&gt;
  1910. &lt;span class=&quot;sdendnotesym&quot;&gt;04&lt;/span&gt;:
  1911. Muller-Weeks S, Mastran B, Caradonna S. The nuclear isoform of the
  1912. highly&lt;br /&gt;
  1913. conserved human uracil-DNA glycosylase is an Mr 36,000
  1914. phosphoprotein. J Biol&lt;br /&gt;
  1915. Chem. 1998 Aug 21;273(34):21909-17.
  1916. PubMed PMID: 9705330.
  1917. &lt;/div&gt;
  1918. &lt;/div&gt;
  1919. &lt;div id=&quot;sdendnote103&quot;&gt;
  1920. &lt;div class=&quot;sdendnote&quot;&gt;
  1921. &lt;span class=&quot;sdendnotesym&quot;&gt;05&lt;/span&gt;:
  1922. Backlund M, Paukku K, Daviet L, De Boer RA, Valo E, Hautaniemi S,
  1923. Kalkkinen N,&lt;br /&gt;
  1924. Ehsan A, Kontula KK, Lehtonen JY.
  1925. Posttranscriptional regulation of angiotensin&lt;br /&gt;
  1926. II type 1
  1927. receptor expression by glyceraldehyde 3-phosphate
  1928. dehydrogenase.&lt;br /&gt;
  1929. Nucleic Acids Res. 2009 Apr;37(7):2346-58. doi:
  1930. 10.1093/nar/gkp098. Epub 2009 Feb&lt;br /&gt;
  1931. 26. PubMed PMID: 19246543;
  1932. PubMed Central PMCID: PMC2673440.
  1933. &lt;/div&gt;
  1934. &lt;/div&gt;
  1935. &lt;div id=&quot;sdendnote104&quot;&gt;
  1936. &lt;div class=&quot;sdendnote&quot;&gt;
  1937. &lt;span class=&quot;sdendnotesym&quot;&gt;06&lt;/span&gt;:
  1938. Allen RW, Trach KA, Hoch JA. Identification of the 37-kDa protein
  1939. displaying a&lt;br /&gt;
  1940. variable interaction with the erythroid cell
  1941. membrane as&lt;br /&gt;
  1942. glyceraldehyde-3-phosphate dehydrogenase. J Biol
  1943. Chem. 1987 Jan 15;262(2):649-53.&lt;br /&gt;
  1944. PubMed PMID: 3027061.
  1945. &lt;/div&gt;
  1946. &lt;/div&gt;
  1947. &lt;div id=&quot;sdendnote105&quot;&gt;
  1948. &lt;div class=&quot;sdendnote&quot;&gt;
  1949. &lt;span class=&quot;sdendnotesym&quot;&gt;07&lt;/span&gt;:
  1950. Cummings M, Sarveswaran J, Homer-Vanniasinkam S, Burke D, Orsi
  1951. NM.&lt;br /&gt;
  1952. Glyceraldehyde-3-phosphate dehydrogenase is an
  1953. inappropriate housekeeping gene&lt;br /&gt;
  1954. for normalising gene expression
  1955. in sepsis. Inflammation. 2014 Oct;37(5):1889-94. &lt;br /&gt;
  1956. doi:
  1957. 10.1007/s10753-014-9920-3. PubMed PMID: 24858725.
  1958. &lt;/div&gt;
  1959. &lt;/div&gt;
  1960. &lt;div id=&quot;sdendnote106&quot;&gt;
  1961. &lt;div class=&quot;sdendnote&quot;&gt;
  1962. &lt;span class=&quot;sdendnotesym&quot;&gt;08&lt;/span&gt;:
  1963. Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant
  1964. cytoplasmic&lt;br /&gt;
  1965. GAPDH: redox post-translational modifications and
  1966. moonlighting properties. Front &lt;br /&gt;
  1967. Plant Sci. 2013 Nov 12;4:450.
  1968. doi: 10.3389/fpls.2013.00450. eCollection 2013.&lt;br /&gt;
  1969. Review. PubMed
  1970. PMID: 24282406; PubMed Central PMCID: PMC3824636.
  1971. &lt;/div&gt;
  1972. &lt;/div&gt;
  1973. &lt;div id=&quot;sdendnote107&quot;&gt;
  1974. &lt;div class=&quot;sdendnote&quot;&gt;
  1975. &lt;span class=&quot;sdendnotesym&quot;&gt;09&lt;/span&gt;:
  1976. Hildebrandt T, Knuesting J, Berndt C, Morgan B, Scheibe R. Cytosolic
  1977. thiol&lt;br /&gt;
  1978. switches regulating basic cellular functions: GAPDH as an
  1979. information hub? Biol&lt;br /&gt;
  1980. Chem. 2015 May;396(5):523-37. doi:
  1981. 10.1515/hsz-2014-0295. PubMed PMID: 25581756.
  1982. &lt;/div&gt;
  1983. &lt;/div&gt;
  1984. &lt;div id=&quot;sdendnote108&quot;&gt;
  1985. &lt;div class=&quot;sdendnote&quot;&gt;
  1986. &lt;span class=&quot;sdendnotesym&quot;&gt;00&lt;/span&gt;:
  1987. Tatton WG, Chalmers-Redman RM, Elstner M, Leesch W, Jagodzinski FB,
  1988. Stupak DP,&lt;br /&gt;
  1989. Sugrue MM, Tatton NA. Glyceraldehyde-3-phosphate
  1990. dehydrogenase in&lt;br /&gt;
  1991. neurodegeneration and apoptosis signaling. J
  1992. Neural Transm Suppl.&lt;br /&gt;
  1993. 2000;(60):77-100. Review. PubMed PMID:
  1994. 11205159.
  1995. &lt;/div&gt;
  1996. &lt;/div&gt;
  1997. &lt;div id=&quot;sdendnote109&quot;&gt;
  1998. &lt;div class=&quot;sdendnote&quot;&gt;
  1999. &lt;span class=&quot;sdendnotesym&quot;&gt;001&lt;/span&gt;:
  2000. Ishitani R, Tajima H, Takata H, Tsuchiya K, Kuwae T, Yamada M,
  2001. Takahashi H,&lt;br /&gt;
  2002. Tatton NA, Katsube N. Proapoptotic protein
  2003. glyceraldehyde-3-phosphate&lt;br /&gt;
  2004. dehydrogenase: a possible site of
  2005. action of antiapoptotic drugs. Prog&lt;br /&gt;
  2006. Neuropsychopharmacol Biol
  2007. Psychiatry. 2003 Apr;27(2):291-301. Review. PubMed&lt;br /&gt;
  2008. PMID:
  2009. 12657368.
  2010. &lt;/div&gt;
  2011. &lt;/div&gt;
  2012. &lt;div id=&quot;sdendnote110&quot;&gt;
  2013. &lt;div class=&quot;sdendnote&quot;&gt;
  2014. &lt;span class=&quot;sdendnotesym&quot;&gt;002&lt;/span&gt;:
  2015. Barber RD, Harmer DW, Coleman RA, Clark BJ. GAPDH as a housekeeping
  2016. gene:&lt;br /&gt;
  2017. analysis of GAPDH mRNA expression in a panel of 72 human
  2018. tissues. Physiol&lt;br /&gt;
  2019. Genomics. 2005 May 11;21(3):389-95. Epub 2005
  2020. Mar 15. PubMed PMID: 15769908.
  2021. &lt;/div&gt;
  2022. &lt;/div&gt;
  2023. &lt;div id=&quot;sdendnote111&quot;&gt;
  2024. &lt;div class=&quot;sdendnote&quot;&gt;
  2025. &lt;span class=&quot;sdendnotesym&quot;&gt;003&lt;/span&gt;:
  2026. Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM.
  2027. Evidence&lt;br /&gt;
  2028. that glyceraldehyde-3-phosphate dehydrogenase is
  2029. involved in age-induced&lt;br /&gt;
  2030. apoptosis in mature cerebellar neurons
  2031. in culture. J Neurochem. 1996&lt;br /&gt;
  2032. Mar;66(3):928-35. PubMed PMID:
  2033. 8769851.
  2034. &lt;/div&gt;
  2035. &lt;/div&gt;
  2036. &lt;div id=&quot;sdendnote112&quot;&gt;
  2037. &lt;div class=&quot;sdendnote&quot;&gt;
  2038. &lt;span class=&quot;sdendnotesym&quot;&gt;004&lt;/span&gt;:
  2039. Kvassman J, Pettersson G, Ryde-Pettersson U. Mechanism
  2040. of&lt;br /&gt;
  2041. glyceraldehyde-3-phosphate transfer from aldolase to
  2042. glyceraldehyde-3-phosphate&lt;br /&gt;
  2043. dehydrogenase. Eur J Biochem. 1988
  2044. Mar 1;172(2):427-31. PubMed PMID: 3350006.
  2045. &lt;/div&gt;
  2046. &lt;/div&gt;
  2047. &lt;div id=&quot;sdendnote113&quot;&gt;
  2048. &lt;div class=&quot;sdendnote&quot;&gt;
  2049. &lt;span class=&quot;sdendnotesym&quot;&gt;005&lt;/span&gt;:
  2050. Tomokuni Y, Goryo K, Katsura A, Torii S, Yasumoto K, Kemnitz K,
  2051. Takada M,&lt;br /&gt;
  2052. Fukumura H, Sogawa K. Loose interaction between
  2053. glyceraldehyde-3-phosphate&lt;br /&gt;
  2054. dehydrogenase and phosphoglycerate
  2055. kinase revealed by fluorescence resonance&lt;br /&gt;
  2056. energy
  2057. transfer-fluorescence lifetime imaging microscopy in living cells.
  2058. FEBS J.&lt;br /&gt;
  2059. 2010 Mar;277(5):1310-8. doi:
  2060. 10.1111/j.1742-4658.2010.07561.x. PubMed PMID:&lt;br /&gt;
  2061. 20392205.
  2062. &lt;/div&gt;
  2063. &lt;/div&gt;
  2064. &lt;div id=&quot;sdendnote114&quot;&gt;
  2065. &lt;div class=&quot;sdendnote&quot;&gt;
  2066. &lt;span class=&quot;sdendnotesym&quot;&gt;006&lt;/span&gt;:
  2067. Li C, Feng JJ, Wu YP, Zhang GY. Cerebral ischemia-reperfusion
  2068. induces GAPDH&lt;br /&gt;
  2069. S-nitrosylation and nuclear translocation.
  2070. Biochemistry (Mosc). 2012&lt;br /&gt;
  2071. Jun;77(6):671-8. doi:
  2072. 10.1134/S0006297912060156. PubMed PMID: 22817468.
  2073. &lt;/div&gt;
  2074. &lt;/div&gt;
  2075. &lt;div id=&quot;sdendnote115&quot;&gt;
  2076. &lt;div class=&quot;sdendnote&quot;&gt;
  2077. &lt;span class=&quot;sdendnotesym&quot;&gt;007&lt;/span&gt;:
  2078. Hara MR, Thomas B, Cascio MB, Bae BI, Hester LD, Dawson VL, Dawson
  2079. TM, Sawa A,&lt;br /&gt;
  2080. Snyder SH. Neuroprotection by pharmacologic
  2081. blockade of the GAPDH death cascade. &lt;br /&gt;
  2082. Proc Natl Acad Sci U S A.
  2083. 2006 Mar 7;103(10):3887-9. Epub 2006 Feb 27. PubMed&lt;br /&gt;
  2084. PMID:
  2085. 16505364; PubMed Central PMCID: PMC1450161.
  2086. &lt;/div&gt;
  2087. &lt;/div&gt;
  2088. &lt;div id=&quot;sdendnote116&quot;&gt;
  2089. &lt;div class=&quot;sdendnote&quot;&gt;
  2090. &lt;span class=&quot;sdendnotesym&quot;&gt;008&lt;/span&gt;:
  2091. Lee SB, Kim CK, Lee KH, Ahn JY. S-nitrosylation of B23/nucleophosmin
  2092. by GAPDH &lt;br /&gt;
  2093. protects cells from the SIAH1-GAPDH death cascade. J
  2094. Cell Biol. 2012 Oct&lt;br /&gt;
  2095. 1;199(1):65-76. doi: 10.1083/jcb.201205015.
  2096. PubMed PMID: 23027902; PubMed Central&lt;br /&gt;
  2097. PMCID: PMC3461512.
  2098. &lt;/div&gt;
  2099. &lt;/div&gt;
  2100. &lt;div id=&quot;sdendnote117&quot;&gt;
  2101. &lt;div class=&quot;sdendnote&quot;&gt;
  2102. &lt;span class=&quot;sdendnotesym&quot;&gt;009&lt;/span&gt;:
  2103. Carmona P, Rodríguez-Casado A, Molina M. Conformational
  2104. structure and binding &lt;br /&gt;
  2105. mode of glyceraldehyde-3-phosphate
  2106. dehydrogenase to tRNA studied by Raman and CD &lt;br /&gt;
  2107. spectroscopy.
  2108. Biochim Biophys Acta. 1999 Jul 13;1432(2):222-33. PubMed
  2109. PMID:&lt;br /&gt;
  2110. 10407144.
  2111. &lt;/div&gt;
  2112. &lt;/div&gt;
  2113. &lt;div id=&quot;sdendnote118&quot;&gt;
  2114. &lt;div class=&quot;sdendnote&quot;&gt;
  2115. &lt;span class=&quot;sdendnotesym&quot;&gt;010&lt;/span&gt;:
  2116. Habenicht A. The non-phosphorylating glyceraldehyde-3-phosphate
  2117. dehydrogenase:&lt;br /&gt;
  2118. biochemistry, structure, occurrence and
  2119. evolution. Biol Chem. 1997&lt;br /&gt;
  2120. Dec;378(12):1413-9. Review. PubMed
  2121. PMID: 9461340.
  2122. &lt;/div&gt;
  2123. &lt;/div&gt;
  2124. &lt;br /&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  2125. google_ad_client=&quot;pub-9610428118332343&quot;;
  2126. google_ad_host=&quot;&quot;;
  2127. google_ad_width=200;
  2128. google_ad_height=90;
  2129. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  2130. google_color_border=&quot;EEEECC&quot;;
  2131. google_color_bg=&quot;EEEECC&quot;;
  2132. google_color_link=&quot;445566&quot;;
  2133. google_color_url=&quot;445566&quot;;
  2134. google_color_text=&quot;333333&quot;;
  2135. //--&gt;&lt;/script&gt;
  2136. &lt;script type=&quot;text/javascript&quot;
  2137.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  2138. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2015/11/non-phosphorylating-and-phosphorylating.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiuFzGs9HneTnSY8w96jVhaQKm7BsL-SSfwjC8UTEEbDCnCaT7ffN71I2ltbQnlEEl3gSiAG5NJVMoVZyEktxoqDl-ZMMQcNmIz6BC4JhbVJNRlWYW0B0v889-HS6jwEhoyokbYhg/s72-c-Ic42/Siah1-GAPDH4A.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-6084082500403236037</guid><pubDate>Sun, 14 Jun 2015 18:09:00 +0000</pubDate><atom:updated>2015-06-14T08:11:17.689-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">Catalase</category><category domain="http://www.blogger.com/atom/ns#">FAD</category><category domain="http://www.blogger.com/atom/ns#">G6PD</category><category domain="http://www.blogger.com/atom/ns#">glutathione-GSH</category><category domain="http://www.blogger.com/atom/ns#">GRX-glutaredoxin</category><category domain="http://www.blogger.com/atom/ns#">GSH glutathione</category><category domain="http://www.blogger.com/atom/ns#">GSR</category><category domain="http://www.blogger.com/atom/ns#">GST glutathione</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">peroxiredoxin</category><category domain="http://www.blogger.com/atom/ns#">riboflavin</category><category domain="http://www.blogger.com/atom/ns#">thiolltransferase-TTase</category><category domain="http://www.blogger.com/atom/ns#">TRX</category><title>CHANGES IN GLUTATHIONE AND GLUTATHIONE REDUCTASE POSITIONING GLUTATHIONE-S-TRANSFERASE AS A FUNCTION OF CELL CONCENTRATION WITH ENZYME ACTIVITIES FOUND TO INFLUENCE BEHAVIOR.</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  2139. Glutathione reductase (GSR, GR) locus in the chromosomal region
  2140.    8p21.1, (EC &lt;a href=&quot;http://www.uniprot.org/uniprot/P00390&quot;&gt;1.8.1.7&lt;/a&gt;)-(§,
  2141.  
  2142.  
  2143.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/88857.html?ID=92936&quot;&gt;‡&lt;/a&gt;)
  2144.    is a protein-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21235352&quot;&gt;S-glutathionylation&lt;/a&gt;,
  2145.    as a (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/UniGene/clust.cgi?ORG=Hs&amp;amp;CID=271510&quot;&gt;human&lt;/a&gt;)
  2146.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/protein/NP_000628.2&quot;&gt;Mitochondrial&lt;/a&gt;
  2147.    localization of hGSR and its associated enzymes cellular
  2148.    thiol/disulfides S-Glutathione reductase (GSR) which is the
  2149.    importance of significance in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15998254&quot;&gt;reversible&lt;/a&gt;
  2150.    thiol modifications which&amp;nbsp; regenerates reduced glutathione (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6697994&quot;&gt;GSH&lt;/a&gt;) and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9151953&quot;&gt;GSSG&lt;/a&gt; to the
  2151.    reduced form found in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8626496&quot;&gt;obvious&lt;/a&gt;
  2152.    structural properties of glutathione reductase. The redox &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9245898&quot;&gt;regulating&lt;/a&gt;
  2153.    enzymes relationship with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9593640&quot;&gt;TTase&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12958160&quot;&gt;thioltransferase&lt;/a&gt;)
  2154.    activity with the ratio of the activities of G3PD, as the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16212239&quot;&gt;mechanism&lt;/a&gt;
  2155.    (of cellular repair) &#39;differs&#39; (gssg-g6pg) according to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10843779&quot;&gt;type&lt;/a&gt; of
  2156.    reducing glutathionylated mixed disulfide, including
  2157.    protein-S-S-glutathione (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9360985&quot;&gt;PSSG&lt;/a&gt;), GSR &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9245898&quot;&gt;reduces&lt;/a&gt;
  2158.    (PSSG) modified by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11878824&quot;&gt;thiolation&lt;/a&gt;
  2159.    to a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2171674&quot;&gt;normal&lt;/a&gt;
  2160.    level in human lens epithelial (HLE) cells. This may have &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22010840&quot;&gt; implications&lt;/a&gt;
  2161.    in stress- and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21235352&quot;&gt;aging-related&lt;/a&gt;
  2162.    pathologies in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14670008&quot;&gt;astrocytes&lt;/a&gt;
  2163.    and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7663973&quot;&gt;granule&lt;/a&gt;
  2164.    cells, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23201762&quot;&gt;demonstrated&lt;/a&gt;
  2165.    by comparable &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3970966&quot;&gt;mitochondria&lt;/a&gt;/cytosolic
  2166.  
  2167.  
  2168.    concentrations of its thiol proteins, where a mitochondrial leader
  2169.    sequence (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10708558&quot;&gt;cDNA&lt;/a&gt;)
  2170.    is &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8651901&quot;&gt;present&lt;/a&gt;
  2171.    in the gene structure of human GSR and may be the Cytoplasmic
  2172.    Isoform (derivative or inhibitor formed) of&amp;nbsp; mitochondrial &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24876913&quot;&gt;dysfunction&lt;/a&gt;
  2173.    that contains the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6822532&quot;&gt;catalytic&lt;/a&gt;
  2174.    cysteine revealing a possible therapeutic strategy/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9151953&quot;&gt;target&lt;/a&gt;, also
  2175.    indicating transiently accumulated inhibitor proteins modified by
  2176.    thiolation (cysteine catalytic subunits) compounds that inhibit
  2177.    these (re)activation processes (hGSR) with its structure-based &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8626496&quot;&gt;prosthetic&lt;/a&gt;
  2178.    group (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3656429&quot;&gt;FAD&lt;/a&gt;)
  2179.    cofactor is common because of the levels of cysteine available; are
  2180.    mitochondria/cytosolic concentrations that the Glutathione
  2181.    reductases reversible thiol modifications which catalyzes the
  2182.    reduction of GSSG to GSH the natural GR &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19668867?dopt=AbstractPlus&quot;&gt;substrate&lt;/a&gt;
  2183.  
  2184.  
  2185.    is dependent on the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24120751&quot;&gt;NADPH&lt;/a&gt;:&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18638483&quot;&gt;GS-SG&lt;/a&gt;
  2186.    ratio.&lt;br /&gt;
  2187. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/GlutathioneReductase?authkey=Gv1sRgCJ2Siuz-pJDp9gE#&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;PDB Id: 3DK9&quot; border=&quot;0&quot; height=&quot;230&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj6P26a91JxT5UV_pt1DnatY-WR9AWNv9_2lfwbof_ZVfnp3u0scSHQgDPNUoTZv0a8A0GQp0X8ZCHVc5QMaEog2DsvM25alwgpNHFzJq15r4R2MOYMStVVq67xOidSNSatRihRlw/s640/3dk9.png&quot; width=&quot;300&quot; /&gt;&lt;/a&gt; Cys58 and Cys63 represent the enzyme&#39;s &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7032915&quot;&gt;results&lt;/a&gt; seen
  2188.    as the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12826156&quot;&gt;reductive&lt;/a&gt;
  2189.    (GSH) Cys-58 and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9393673&quot;&gt;oxidative&lt;/a&gt;
  2190.    (GSSG) Cys-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9546215&quot;&gt;63&lt;/a&gt;
  2191.    is the relationship of these two enzymes, His&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2585516&quot;&gt;467&lt;/a&gt;&#39; is seen
  2192.    to interact with Cys63 more optimally and Cys-58 produces the second
  2193.    GSH &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6822532&quot;&gt;intermediate&lt;/a&gt;
  2194.    molecule of the reaction is the reduced glutathione-to-oxidized
  2195.    glutathione ratio (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6697994&quot;&gt;GSH/GS-SG&lt;/a&gt;)
  2196.    when compared to the substrate free form correlated with (FAD) the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18638483&quot;&gt;flavin
  2197.      compounds&lt;/a&gt;, flow from NADPH to the substrate GSSG &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2404494&quot;&gt;via flavin&lt;/a&gt;.
  2198.    The &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9508091&quot;&gt;reducing
  2199.      equivalents&lt;/a&gt; needed for regeneration of GSH are provided by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16887253&quot;&gt;NADPH&lt;/a&gt;. The
  2200.    enzyme has &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21308351&quot;&gt;affinity&lt;/a&gt;
  2201.    for flavin adenine dinucleotide (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11514662&quot;&gt;FAD&lt;/a&gt;) the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9393673&quot;&gt;prosthetic&lt;/a&gt;
  2202.    group of GR, and maintains high levels of reduced glutathione&amp;nbsp;
  2203.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/protein/AAF37573.1&quot;&gt;Cytoplasmic&lt;/a&gt;
  2204.    Isoform: Produced by &lt;a href=&quot;http://www.uniprot.org/uniprot/P00390#P00390-2&quot;&gt;alternative
  2205.      initiation&lt;/a&gt; of isoform &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/?term=15998254&quot;&gt;Mitochondrial&lt;/a&gt;
  2206.    homodimer, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16910673&quot;&gt;derivative&lt;/a&gt;
  2207.    or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9151953&quot;&gt;inhibitor&lt;/a&gt;
  2208.    formed from the GSR Pyridine, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?linkname=cdd_pubmed&amp;amp;from_uid=251571&quot;&gt;dimerisation&lt;/a&gt;
  2209.    domain.) in the cytosol. Glutathione reductase (GR) plays a key role
  2210.    in maintaining either a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9593640&quot;&gt;thiol&lt;/a&gt; group
  2211.    or a nonprotein &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7062348&quot;&gt;sulfhydryl&lt;/a&gt;
  2212.    group (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7062348&quot;&gt;NPS&lt;/a&gt;)
  2213.    form of GSH, and potential for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8944550&quot;&gt;thioredoxin&lt;/a&gt;
  2214.    and &lt;a href=&quot;https://www.blogger.com/null&quot;&gt;glutathione&lt;/a&gt; systems, as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14960309&quot;&gt;thioredoxin&lt;/a&gt;
  2215.    dose not require &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8944550&quot;&gt;GSH&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18408002&quot;&gt;GR&lt;/a&gt; for
  2216.    catalytic activity. Glutathione reductase (GR) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19806191&quot;&gt;utilizes&lt;/a&gt;
  2217.    NADPH &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17952457&quot;&gt;produced&lt;/a&gt;
  2218.    by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3426963&quot;&gt;G6PDH&lt;/a&gt;
  2219.    (glucose-6-phosphate dehydrogenase) enzyme activities, and enzyme
  2220.    glutathione reductase (GR) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9367667&quot;&gt;represents&lt;/a&gt;
  2221.    the erythrocyte glutathione-reducing system (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8786703&quot;&gt;GRS&lt;/a&gt;), of the
  2222.    GSH pathway to oxidation and inactivation in the activity of GSH &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3757268&quot;&gt;peroxidase&lt;/a&gt;
  2223.    and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12370859&quot;&gt;GSH
  2224.      reductase&lt;/a&gt;. Expression of the regulatory &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18607771&quot;&gt;subunit&lt;/a&gt; of
  2225.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6146350&quot;&gt;gamma&lt;/a&gt;-glutamylcysteine
  2226.  
  2227.  
  2228.  
  2229.  
  2230.  
  2231.  
  2232.  
  2233.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18312938&quot;&gt;synthetase&lt;/a&gt;/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16946404&quot;&gt;ligase&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12111865&quot;&gt;GCL&lt;/a&gt;)
  2234.    catalyzes the first and rate-limiting step in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6146350&quot;&gt;production&lt;/a&gt;
  2235.    of the cellular (GSH) glutathione. Dietary &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/5794396&quot;&gt;riboflavin&lt;/a&gt;
  2236.    (Vitamin &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23116402&quot;&gt;B2&lt;/a&gt;)
  2237.    intake produces its active essential coenzyme flavin forms,
  2238.    riboflavin &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19169240&quot;&gt;mononucleotide&lt;/a&gt;
  2239.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12595258&quot;&gt;FMN&lt;/a&gt;) and
  2240.    flavin adenine dinucleotide (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3582603&quot;&gt;FAD&lt;/a&gt;) of
  2241.    glutathione reductase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7417521&quot;&gt;GR&lt;/a&gt;&lt;a href=&quot;https://www.blogger.com/null&quot;&gt;), or
  2242.      the GR&lt;/a&gt; activity &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/5822598&quot;&gt;correlated&lt;/a&gt;
  2243.    with red-cell &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21338251&quot;&gt;flavin&lt;/a&gt;
  2244.    compounds.When both &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24120751&quot;&gt;GSSG&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11924113&quot;&gt;NADP(+)&lt;/a&gt;
  2245.    substrates and products are present, glutathione reductase (GR) is a enzyme required for
  2246.    the conversion in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2412075110459841&quot;&gt;presence&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9508091&quot;&gt;absence&lt;/a&gt; of flavin adenine
  2247.    dinucleotide (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17554778&quot;&gt;FAD&lt;/a&gt;), glutathione reductase (GR) is an obligatory &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11514662&quot;&gt;FAD&lt;/a&gt;-containing homodimer. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11087537&quot;&gt;GSSG&lt;/a&gt; via
  2248.    glutathione reductase (GR) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24120751&quot;&gt;regenerates&lt;/a&gt; reduced glutathione which is
  2249.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19049979&quot;&gt;essential&lt;/a&gt; for antioxidant defense. The flavoenzyme glutathione
  2250.    reductase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19806191&quot;&gt;GR&lt;/a&gt;)
  2251.    reduces &#39;oxidized glutathione&#39; (GSSG) back to GSH, also involving
  2252.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23770363&quot;&gt;glutamate&lt;/a&gt;-cysteine ligase and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17206382&quot;&gt;modulatory&lt;/a&gt;
  2253.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15513322&quot;&gt;GCL&lt;/a&gt;)-can
  2254.    be &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24557597&quot;&gt;upregulated&lt;/a&gt; ∉ as the cellular &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19408115&quot;&gt;GSH&lt;/a&gt; system,
  2255.    indicating &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17888202&quot;&gt;short&lt;/a&gt;&lt;a href=&quot;https://www.blogger.com/null&quot;&gt;-term&lt;/a&gt;
  2256.    and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14568353&quot;&gt;heritable&lt;/a&gt;
  2257.    tolerance of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17206382&quot;&gt;exposure&lt;/a&gt;
  2258.    to oxidative stress from/via numerous &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18062829&quot;&gt;reporting&lt;/a&gt; ∈ mechanisms. NADPH is used by glutathione reductase for the reduction
  2259.    of oxidized glutathione (glutathione disulphide) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12516882&quot;&gt;GSSG&lt;/a&gt; to
  2260.    GSH-dependent peroxide metabolism. 4-Hydroxynonenal (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15293559&quot;&gt;HNE&lt;/a&gt;) is one
  2261.    of the major &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18754092&quot;&gt;end
  2262.  
  2263.  
  2264.      product&lt;/a&gt;&lt;a href=&quot;https://www.blogger.com/null&quot;&gt;s&lt;/a&gt; of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10064127&quot;&gt;lipid&lt;/a&gt;
  2265.    peroxidation which may lead to enhanced action of&amp;nbsp; the (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14637279&quot;&gt;GSR&lt;/a&gt;) oxygen
  2266.    radical, glutathione S-transferases (GSTs) are &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3509337&quot;&gt;specifically&lt;/a&gt; suited
  2267.    to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19408115&quot;&gt;detoxification&lt;/a&gt;
  2268.    and removal of 4-HNE (∋ or ∝) from cells which may provide a basis
  2269. for selective cellular and/or subcellular distribution of mitochondrial
  2270. and cytosolic to individual &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12628444&quot;&gt;detoxifying&lt;/a&gt; gene inducer activities of glutathione reductase (GR), the cellular (GSH) glutathione. It was evident the enzyme
  2271.    glutathione reductase (GR) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9367667&quot;&gt;represents&lt;/a&gt;
  2272.    the erythrocyte glutathione-reducing system (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8786703&quot;&gt;GRS&lt;/a&gt;), of the
  2273.    GSH pathway to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12135692&quot;&gt;oxidation&lt;/a&gt; and the (∉ or ∝) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16910673&quot;&gt;inhibition&lt;/a&gt; constant for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22010840&quot;&gt;reversible&lt;/a&gt; inactivation in the activity of glutathione related antioxidant enzymes. And GSH
  2274.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15513322&quot;&gt;reductase&lt;/a&gt;
  2275. may be one of the factors that remained in focus that suggests its
  2276. effects on the antioxidant system related to glutathione synthesis (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10343979&quot;&gt;GCL&lt;/a&gt;), degradation, and functions.&lt;/div&gt;
  2277. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2278. &lt;br /&gt;&lt;/div&gt;
  2279. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2280. &lt;span style=&quot;font-size: xx-small;&quot;&gt;Biological Xenobiotics, Extracts, Applications of note In the presence of Glutathione reductase.:&lt;/span&gt;&lt;/div&gt;
  2281. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2282. &lt;br /&gt;&lt;/div&gt;
  2283. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2284. Schisandrin (Schisandra chinensis), used in traditional Chinese
  2285.    medicine. PMID:21328628&lt;/div&gt;
  2286. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2287. Transketolase (TK) and transaldolase (TA)&lt;/div&gt;
  2288. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2289. Melatonin PMID:15571523, 19475625&lt;/div&gt;
  2290. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2291. Blackberry (Rubus sp.) cultivars, The &#39;Hull Thornless&#39;,&amp;nbsp;
  2292.    PMID:11087537&lt;/div&gt;
  2293. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2294. Glutathione dehydrogenase (ascorbate)-[dehydroascorbate reductase
  2295.    (DHAR), and glutathione reductase (GR). This enzyme participates in
  2296.    the glutathione metabolism the active metabolite of vitamin D3
  2297.    increases glutathione levels.] PMID:11087537, 23770363&lt;/div&gt;
  2298. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2299. 3H-1,2-dithiole-3-thione nutraceutical D3T potently induces the
  2300.    cellular GSH system, Anethole trithione is a drug used in the
  2301.    treatment of dry mouth, the Anethole trithione isomer is related to
  2302.    anethole (anise camphor) used as a flavoring substance.
  2303.    PMID:17206382*, 19408115, &amp;nbsp;&amp;nbsp;&amp;nbsp; 19176875*, 15896789,
  2304.    18408143*, &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/GlutathioneReductase?authkey=Gv1sRgCJ2Siuz-pJDp9gE#&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;Glutathione reductase&quot; border=&quot;0&quot; height=&quot;199&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiobO-JWlg_2VXn8bNzXUdN1XozDNowCDqy_7PY_2EDjuYBXireNPnzDyVxeE9DjRg3hiEr1l7DSa-NJIckvaVQAdFZd4zDqxdAN_4rE4vS9Akw60gLuSgdfF1uqCZdy1sa4DmDJg/s433/network.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/div&gt;
  2305. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2306. 16946404*&lt;/div&gt;
  2307. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2308. Cassia fistula used in herbal medicine. PMID:19088944&lt;/div&gt;
  2309. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2310. Sanguinarine is extracted from some plants, including bloodroot and
  2311.    Mexican prickly poppy (Argemone mexicana) where argimone oil causes
  2312.    Epidemic dropsy. PMID:11260782&lt;/div&gt;
  2313. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2314. Vitamin E, PMID: 15672860&lt;/div&gt;
  2315. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2316. Tocotrienols are natural compounds members of the vitamin E family
  2317.    found in select vegetable oils are an essential nutrient for the
  2318.    body. PMID:21845802&lt;/div&gt;
  2319. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2320. Pyrrolizidine alkaloids are produced by plants as a defense
  2321.    mechanism against insect herbivores consumption of PAs is known as
  2322.    pyrrolizidine alkaloidosis. PMID:20144959&lt;/div&gt;
  2323. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2324. Apple extract (AE) PMID:20401791&lt;/div&gt;
  2325. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2326. Lipoic Acid an organic compound, forming a disulfide bond, available
  2327.    as a dietary supplement PMID:15246746, 21073761&lt;/div&gt;
  2328. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2329. Carnitine PMID:15246746, 10581232&lt;/div&gt;
  2330. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2331. Vitamin D upregulated expression of GCLC and GR. PMID:23770363&lt;/div&gt;
  2332. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2333. Vitamin D3_ PMID:12416023&lt;/div&gt;
  2334. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2335. Vitamin E_ PMID:10459841, 8360018, 18296478, 21845802, 15490422,
  2336.    16885600, 7062348, 20729758, 21086752&lt;/div&gt;
  2337. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2338. Shidagonglao roots Mahonia fortunei (十大功劳 shi da gong lao) species
  2339.    contains the alkaloid berberine PMID:199382 18&lt;/div&gt;
  2340. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2341. Coenzyme Q10 (CoQ10) PMID:16621054&lt;/div&gt;
  2342. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2343. Trigonella foenum graecum seed powder (TSP) PMID:15026271&lt;/div&gt;
  2344. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2345. Boschniakia rossica, a ̱̱̱Traditional Chinese medicine.
  2346.    PMID:19352025&lt;/div&gt;
  2347. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2348. Aegle marmelos commonly known as bael is a species of tree.
  2349.    PMID:18830880&lt;/div&gt;
  2350. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2351. Scoparia dulcis A medicinal plant, dulcis. PMID:21905284&lt;/div&gt;
  2352. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2353. Fenugreek (Trigonella foenum-graecum)&amp;nbsp; is used as a herb.
  2354.    PMID:15026271&lt;/div&gt;
  2355. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2356. L-arginine (L-Arg) semiessential supplementation common natural
  2357.    amino acid. PMID:16038634&lt;/div&gt;
  2358. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2359. Hypericum perforatum (St. John&#39;s Wort) PMID:18754092&lt;/div&gt;
  2360. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2361. Urtica dioica often called common nettle PMID:12834006&lt;/div&gt;
  2362. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2363. Usnea longissima, a medicinal lichen. PMID:16169175&lt;/div&gt;
  2364. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2365. Capparis decidua, a fruting tree also used in folk medicine and
  2366.    herbalism. PMID:22272107&lt;/div&gt;
  2367. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2368. Indole-3-carbinol found at relatively high levels in cruciferous
  2369.    vegetables such as broccoli&lt;/div&gt;
  2370. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2371. PMID:9512722, 14512388&lt;/div&gt;
  2372. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2373. Ascorbate Vitamin C. PMID:14512388&lt;/div&gt;
  2374. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2375. Sulforaphane It is obtained from cruciferous vegetables such as
  2376.    broccoli. PMID:12628444, 18607771*, 22303412&lt;/div&gt;
  2377. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2378. Andrographis paniculata, may shorten the duration and lessen the
  2379.    symptoms of common cold. PMID:11507728&lt;/div&gt;
  2380. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2381. Vitamin B-1 (thiamine) PMID:1132146, 10450194, 21308351*, 11514662*,
  2382.    1270885&lt;/div&gt;
  2383. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2384. Vitamin B2 (riboflavin) PMID: 5822598, 5550591, 1201246, 5794396,
  2385.    237845, 3677785, 3582603, 12194936, 2721660, 1261528, 5721130,
  2386.    14608016, 4400882, 7883462, 844948, 7337797, 5881,12641409, 4393763,
  2387.    3497609, 16883966...(№&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?cmd=link&amp;amp;linkname=pubmed_pubmed&amp;amp;uid=5796112,13931269,2319583,13731008,5822598,5550591,947404,435643,5704435,5365571&quot;&gt;
  2388.      1244&lt;/a&gt;, OMIM.138300)&lt;/div&gt;
  2389. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2390. Vitamin B-6 (Pyridoxine) PMID:2721660, 3582603, 10450194, 15490422,
  2391.    1270885, 7417521, 7337797, 7814235&lt;/div&gt;
  2392. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2393. Vitamin B9 (Folic acid)&amp;nbsp; PMID: 844947, 1270885&lt;/div&gt;
  2394. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2395. Aspartate transaminase (AST) or glutamic oxaloacetic transaminase
  2396.    (GOT) catalyzes the interconversion of aspartate an important enzyme
  2397.    in amino acid metabolism. PMID:1132146, 10450194, 1253408&lt;/div&gt;
  2398. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2399. β-Carotene is a strongly colored red-orange pigment abundant in
  2400.    plants and fruits. PMID:19957244&lt;/div&gt;
  2401. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2402. 3-Hydroxykynurenine (3OHKyn) a metabolite of tryptophan.
  2403.    PMID:11273669&lt;/div&gt;
  2404. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2405. Ajoene ((E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide), a
  2406.    garlic-derived natural compound. PMID:9986706 PDB: 1BWC&lt;/div&gt;
  2407. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2408. Propolis a product made by bees. PMID:19394397&lt;/div&gt;
  2409. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2410. Resveratrol produced naturally by several plants PMID:12797471&lt;br /&gt;
  2411. &amp;nbsp;No CiTO relationships defined:&lt;br /&gt;
  2412. &amp;nbsp;http://vixra.org/abs/1506.0104&lt;br /&gt;
  2413. &amp;nbsp;http://www.citeulike.org/user/emissrto/article/13645622&lt;/div&gt;
  2414. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  2415. google_ad_client=&quot;pub-9610428118332343&quot;;
  2416. google_ad_host=&quot;&quot;;
  2417. google_ad_width=200;
  2418. google_ad_height=90;
  2419. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  2420. google_color_border=&quot;EEEECC&quot;;
  2421. google_color_bg=&quot;EEEECC&quot;;
  2422. google_color_link=&quot;445566&quot;;
  2423. google_color_url=&quot;445566&quot;;
  2424. google_color_text=&quot;333333&quot;;
  2425. //--&gt;&lt;/script&gt;
  2426. &lt;script type=&quot;text/javascript&quot;
  2427.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  2428. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2015/06/changes-in-glutathione-and-glutathione.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj6P26a91JxT5UV_pt1DnatY-WR9AWNv9_2lfwbof_ZVfnp3u0scSHQgDPNUoTZv0a8A0GQp0X8ZCHVc5QMaEog2DsvM25alwgpNHFzJq15r4R2MOYMStVVq67xOidSNSatRihRlw/s72-c/3dk9.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-4036479430916432975</guid><pubDate>Tue, 03 Mar 2015 17:23:00 +0000</pubDate><atom:updated>2015-03-03T07:34:37.669-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">FAD</category><category domain="http://www.blogger.com/atom/ns#">glutathione-GSH</category><category domain="http://www.blogger.com/atom/ns#">GRX-glutaredoxin</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">oxidized glutathione reductase-GSSG</category><category domain="http://www.blogger.com/atom/ns#">RNR-Ribonucleotide reductase</category><category domain="http://www.blogger.com/atom/ns#">Secys- selenocysteine</category><category domain="http://www.blogger.com/atom/ns#">TGR-selenodiglutathione reductase</category><category domain="http://www.blogger.com/atom/ns#">TXN</category><category domain="http://www.blogger.com/atom/ns#">TXNRD1</category><title>Thioredoxin reductase: Selenotetrapeptide sequences with specificity for thioredoxin and glutathione systems</title><description>&lt;div align=&quot;justify&quot;&gt;
  2429. &lt;big&gt;&amp;nbsp; Thioredoxin reductase (EC &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11328605&quot;&gt;1.6.4.5&lt;/a&gt;) TXNRD1 (Alternate
  2430.      Symbols: GRIM-12, TR, TRXR) chromosomal position &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene?term=7296#genomic-context&quot;&gt;12q23&lt;/a&gt;.3-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8921404&quot;&gt;q24.1&lt;/a&gt; (&lt;a href=&quot;https://www.blogger.com/null&quot;&gt;§&lt;/a&gt;, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/92936.html?ID=86939&quot;&gt;‡&lt;/a&gt;) is a
  2431.      homodimeric selenocysteine-containing enzyme. Secys a
  2432.      selenocysteine residue is an essential TR isozyme component,
  2433.      located near the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9177183&quot;&gt;C-terminus&lt;/a&gt;
  2434.      region [cysteine (Cys)-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9671710&quot; title=&quot;pdb 3ean&quot;&gt;497&lt;/a&gt;,Secys-498]
  2435.  
  2436.      of the intracellular, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16857846&quot;&gt;redox
  2437.        cellular&lt;/a&gt; environments center in the catalytically active
  2438.      enzyme site, Gly-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8650234&quot;&gt;499&lt;/a&gt; is the
  2439.      actual C-terminal amino acid. In their N-terminal sequences Cys-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9671710&quot;&gt;59&lt;/a&gt;, Cys-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20457604&quot;&gt;64&lt;/a&gt;
  2440.      links the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7827267&quot;&gt;thiol/disulfide&lt;/a&gt;
  2441.      oxidoreductase dependent pathway &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16481328&quot;&gt;reductases&lt;/a&gt;
  2442.      from there to the flexible &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16750198&quot;&gt;C-terminal&lt;/a&gt;
  2443.      part (Secys) of the other sub cellular subunit by which &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9315320&quot;&gt;Selenocystine&lt;/a&gt;
  2444.      is efficiently reduced and induce &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20920480&quot;&gt;RNR&lt;/a&gt;
  2445.      (Ribonucleotide reductase) for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3152490&quot;&gt;replication&lt;/a&gt;
  2446.      and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15123685&quot;&gt;repair&lt;/a&gt;,
  2447.      where Trx reductase (TR) or oxidized &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11213485&quot;&gt;GSH&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9315320&quot;&gt;GSSG&lt;/a&gt;) reductase
  2448.      further supply electrons for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22198266&quot;&gt;RNR&lt;/a&gt;. The protein reversibly &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12214272&quot;&gt;modulates&lt;/a&gt;
  2449.      specific signal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11259642&quot;&gt;transduction&lt;/a&gt; cascades, to regulate multiple
  2450.      downstream intracellular redox-sensitive proteins that links NADPH
  2451.      and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15379556&quot;&gt;thiol-dependent&lt;/a&gt;
  2452.      processes which catalyzes &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8702596&quot;&gt;NADPH&lt;/a&gt;-dependent
  2453.  
  2454.  
  2455.  
  2456.  
  2457.      reduction in the presence of the redox protein-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12230868&quot;&gt;Trx&lt;/a&gt; and
  2458.      thioredoxin reductase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14980055&quot;&gt;TR&lt;/a&gt;) maintain cysteine residues in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16774913&quot;&gt;numerous&lt;/a&gt;
  2459.      proteins in the reduced state. There are &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20536427&quot;&gt;three&lt;/a&gt;
  2460.      TXNRD selenoproteins&amp;nbsp; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18042542&quot;&gt;5-prime&lt;/a&gt; end variants &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19433132&quot;&gt;essential&lt;/a&gt;
  2461.      for mammals, one &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18042542&quot;&gt;V3&lt;/a&gt;
  2462.      (TXNRD1) encodes an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18042542&quot;&gt;N-terminal&lt;/a&gt;
  2463.      glutaredoxin (GRX) these variants code for thioredoxin glutathione
  2464.      reductases (TGR). V3 associates with and triggers formation of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23413027&quot;&gt;Filopodia&lt;/a&gt;
  2465.      (cytoplasmic filaments) can guide &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18042542&quot;&gt;actin&lt;/a&gt; in
  2466.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17581112&quot;&gt;migrating&lt;/a&gt; cells, the emerging &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19654027&quot;&gt;protrusions&lt;/a&gt;
  2467.      of cell membrane &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18042542&quot;&gt;restructuring&lt;/a&gt; involved is in &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18408002&quot;&gt;deglutathionylation&lt;/a&gt;
  2468.      values&quot; for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19216714&quot;&gt;mitochondrial&lt;/a&gt; and cytosolic thioredoxin reductase (TR)
  2469.      domains. Characterization of the TR native Thioredoxin and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16750198&quot;&gt;glutathione&lt;/a&gt;
  2470.      systems (TGR) suggests that the lifecycle of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12538593&quot;&gt;E. granulosus&lt;/a&gt;
  2471.      and&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19070522&quot;&gt;Schistosoma
  2472.  
  2473.        mansoni&lt;/a&gt; a phylum of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18408002&quot;&gt;Platyhelmintha&lt;/a&gt;,
  2474.      involves the TXNRD1_v3 isoform containing a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19070522&quot;&gt;fused&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14676218&quot;&gt;Grx&lt;/a&gt;)
  2475.      glutaredoxin domain which is abolished by deglutathionylation&#39;
  2476. targeted to either mitochondria or the nucleus in the reduction of
  2477. glutathionylated substrates, in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19317451&quot;&gt;leishmaniasis&lt;/a&gt;
  2478.      (disease) glutathione reductase system (TGR) is replaced by the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8760878&quot;&gt;trypanothione&lt;/a&gt;
  2479.      reductase (TcTR) system in mammalian cells, essential as these TR3
  2480.      are significant as a recognized &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18448175&quot;&gt;drug target&lt;/a&gt;
  2481.      of these (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11170645&quot;&gt;TcTR&lt;/a&gt;)
  2482.      human protozoan parasites. Cytosolic TR1, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16774913&quot;&gt;mitochondrial&lt;/a&gt;
  2483.      - &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24393022&quot;&gt;TR3&lt;/a&gt;
  2484.      and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24407164/&quot;&gt;TrxR2&lt;/a&gt;
  2485.      (locus &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10215850&quot;&gt;22q11.21&lt;/a&gt;)
  2486.      where &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10657232&quot;&gt;TrxR1
  2487.        and TrxR2&lt;/a&gt; are consdered as the respective &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21172426&quot;&gt;cytosolic&lt;/a&gt;
  2488.    &lt;a href=&quot;https://plus.google.com/u/0/photos/100787464692550241934/albums/6117623971482461473&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;1w1e MITOCHONDRIAL&quot; border=&quot;0&quot; height=&quot;181&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEibYjO6PJUfkg4N1cFzLjvo1rGVyhur-wCIldN4EEYaVQ_nay5omtIWcTsYAXyHwe_TJQKo_uglk6yifFFOq13IFFpyypjfuWeEgi7TVnZMWzQiRf8WfpeMDlOeabelb8uo50v-rQ/w483-h436-no/1w1e+MITOCHONDRIAL.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;      &lt;a href=&quot;https://plus.google.com/u/0/photos/100787464692550241934/albums/6117623971482461473&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;cytoplasmic&quot; border=&quot;0&quot; height=&quot;186&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEivPHZy_tviRR7n2OWK92IIQPjMENBuhY0FyDDvZd3_mZ6Xv0bZ71NTwuRcPuSth-ey1-NWmZZDsuvHwLlNaFgwSBbpOuu9o_FEHXOAEkYIv_k-yMNbLd7xP3HnqIWjc9zTBFy0gA/w470-h436-no/1w1c+CYTOPLASMIC.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10215850&quot;&gt;mitochondrial&lt;/a&gt;
  2489.      thioredoxin reductases, plus the thioredoxin glutathione
  2490.      reductases-TGR &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11737861&quot;&gt;systems&lt;/a&gt;
  2491.      most likely can reduce (Trx) by fusion of the TR and an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16262253&quot;&gt;N-terminal&lt;/a&gt;
  2492.      glutaredoxin domains. As a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8921404&quot;&gt;pyridine&lt;/a&gt;
  2493.      nucleotide disulfide oxidoreductase of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11259642&quot;&gt;oxidized&lt;/a&gt; GSH and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9315320&quot;&gt;GSSG&lt;/a&gt;
  2494.      (selenodiglutathione) reductase TGR
  2495.      structures enzyme stability, are linked to the previously
  2496.      characterized two thioredoxin reductases cytosolic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11060283&quot;&gt;TR1&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16217027&quot;&gt;TR3&lt;/a&gt;, and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14622292&quot;&gt;one
  2497.  
  2498.        mitochondrial&lt;/a&gt; variant. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11782468&quot;&gt;Selenols&lt;/a&gt;
  2499.      are key metabolites at mammalian TXNRD1&#39;s active (&lt;a href=&quot;http://www.rcsb.org/pdb/explore/explore.do?structureId=2ZZ0&quot;&gt;SeCys&lt;/a&gt;
  2500.      498) site. Thioredoxin undergoes &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12435734&quot;&gt;NADPH&lt;/a&gt;-dependent
  2501.  
  2502.      reduction (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19690371&quot;&gt;NTR&lt;/a&gt;s)
  2503.  
  2504.      and reduce &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21782934&quot;&gt;oxidized&lt;/a&gt; cysteine groups on mitochondrial &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8577704&quot;&gt;TXNRD1&lt;/a&gt; proteins &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10447675&quot;&gt;similar to&lt;/a&gt; the cytosolic enzyme, from the &lt;a href=&quot;http://pfam.xfam.org/family/PF00667&quot;&gt;FAD binding&lt;/a&gt;
  2505.      domain where the active &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7589432&quot;&gt;cystines&lt;/a&gt;
  2506.      and the NADPH binding domain are contained, plus an interface
  2507.      domain (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11953436&quot;&gt;ID&lt;/a&gt;)
  2508.      of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10688911&quot;&gt;C-terminal&lt;/a&gt; interface &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10849437&quot;&gt;homologous&lt;/a&gt; to glutathione reductase identifies a mechanism of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11464290&quot;&gt;p53&lt;/a&gt;
  2509.      mediated cell death regulation involving (TrxR) enzymes of redox &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17611157&quot;&gt;homeostasis&lt;/a&gt;
  2510.      reactions to overcome the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;oxidative&lt;/a&gt;
  2511.      stress &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16481328&quot;&gt;generating&lt;/a&gt;
  2512.      reactive oxygen species (ROS) on a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18045191&quot;&gt;complex
  2513.        combination&lt;/a&gt; of decreased apoptosis to prevent permanent cell
  2514.      damage and cell death that tumor cells use to evade the
  2515.      redox-sensitive signaling factors, or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16096367&quot;&gt;resistance&lt;/a&gt;
  2516.      to therapy. End products of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18229449&quot;&gt;lipid&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11744405&quot;&gt;peroxid&lt;/a&gt;ation,
  2517.  
  2518.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16464088&quot;&gt;4-HNE&lt;/a&gt;-(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16219762&quot;&gt;4-&lt;/a&gt;Hydroxynonenal) can induce oxidative stress,
  2519.      other isoforms are more water-soluble adducts detoxifying such a
  2520.      buildup,&amp;nbsp; peroxidation might be &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19942156&quot;&gt;limiting&lt;/a&gt;
  2521.      their (selenoproteins) proper expression. Thioredoxin reductase
  2522.      (TrxR) is the homodimeric &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17512005&quot;&gt;flavoenzyme&lt;/a&gt;
  2523.      that catalyzes reduction of thioredoxin disulfide (Trx) one of the
  2524.      major redox control &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12894524&quot;&gt;systems&lt;/a&gt;,
  2525.      involving a second interaction between NAD(P)H &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12742546&quot;&gt;and/or&lt;/a&gt;
  2526.      (quinone reductase) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16377050&quot;&gt;NQO1&lt;/a&gt; via
  2527.      the FAD-containing enzyme (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9315320&quot;&gt;TR&lt;/a&gt;),
  2528.      thioredoxin reductase forms an oxidoreductase system. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10657232&quot;&gt;TrxRs&lt;/a&gt; are
  2529.      able to reduce a number of substrate proteins other than Trx.&lt;/big&gt;&lt;br /&gt;
  2530. &lt;br /&gt;
  2531. &lt;br /&gt;
  2532. &lt;big&gt;
  2533.      &lt;/big&gt;&lt;br /&gt;
  2534. &lt;big&gt;
  2535.      &lt;/big&gt;&lt;br /&gt;
  2536. &lt;big&gt;
  2537.      &lt;a href=&quot;https://plus.google.com/u/0/photos/100787464692550241934/albums/6117623971482461473&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;3qfb&quot; border=&quot;0&quot; height=&quot;118&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjuUrhyphenhyphenfntGziU_DEHgdb69b0JAdpKtiL-hRkrMW3LwZV31KnBGaP0us6qjXQbpPHTIHkuimbUj41ytFISCzItUdIrbST4yHRPaIQEOFFsG1P0ThZVYpVD2EcVXifzVENnQmrs65w/w736-h436-no/cys59-64.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;The 3&#39; UTR of selenocysteine-containing genes have a common
  2538.      stem-loop structure, the sec insertion sequence
  2539.      (selenocystine-SECIS, PDB: &lt;a href=&quot;http://www.rcsb.org/pdb/explore/explore.do?structureId=2ZZ0&quot;&gt;2ZZ0&lt;/a&gt;),
  2540.  
  2541.      that is necessary for the recognition of a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15471857&quot;&gt;catalytically&lt;/a&gt;
  2542.      active Sec codon rather in the values for mitochondrial and
  2543.      cytosolic thioredoxins reductase (TR) domains. The Sec residue is
  2544.      protonated at a different pka than in comparison to that of Cysteine. Cys59-Cys64 two cysteines pair also was &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10688911&quot;&gt;oxidized&lt;/a&gt; in the N-terminal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11328605&quot;&gt;FAD&lt;/a&gt; domain essential for thioredoxin-reducing activity, and the need for Sec-498 (PDB: &lt;a href=&quot;http://www.pdb.org/pdb/explore/explore.do?structureId=2J3N&quot;&gt;2J3N&lt;/a&gt;)
  2545.      to be in complex with the FAD and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11213469&quot;&gt;NADP&lt;/a&gt;(+)
  2546. during catalysis to the N-terminal active site cysteine residues
  2547. Cys59-Cys64 and from there to the C-terminal part of the other subunit &lt;small&gt;which
  2548.  
  2549.        have &lt;/small&gt;&lt;/big&gt;&lt;big&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11259642&quot;&gt; selenotetrapeptide&lt;/a&gt;
  2550.      sequences from the other module (PDB: &lt;a href=&quot;http://www.pdb.org/pdb/explore/explore.do?structureId=2J3N&quot;&gt;2J3N)&lt;/a&gt;.
  2551.      Secys498 forms, (Human PDB 3QFB,) can both be identified at
  2552.      active site of the enzyme Gly-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8650234&quot;&gt;499&lt;/a&gt; of the
  2553.      subunits active Cys-497-TRXR1 (the TR1
  2554.      structure PDB: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21750537&quot;&gt;3QFB&lt;/a&gt;) are the mechanism(s) for the incorporation of
  2555.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25436585&quot;&gt;Se&lt;/a&gt; into
  2556.      TrxRs as the amino acid selenocysteine (Sec), as well as for
  2557.      delivery to a variety of secondary substrates or TRX (PDB: 3QFB) in nuclei provide means to quantify glutathione (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18951192&quot;&gt;GSH&lt;/a&gt;) (PDB: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11259642&quot;&gt;3H8Q&lt;/a&gt;)
  2558. conditions of the active GRX functonally and structurally analogus to
  2559. TGR (selenodiglutathione) reductase. These two were modeled parts of TGR
  2560. were linked to V3 (_TXNRD1) encodes an N-terminal inter-specific
  2561. glutaredoxin
  2562.      (PDB: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11259642&quot;&gt;1JHB&lt;/a&gt;).&lt;a href=&quot;https://plus.google.com/u/0/photos/100787464692550241934/albums/6117623971482461473&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;3qfb-3h8q&quot; border=&quot;0&quot; height=&quot;111&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi4-VnYVc9nDjaNDYpawwCPzE9fYxL-JA-Lv07B982_4-bZNHeCuX6DHNFsIfAnsOE-lqg8wK6GgFcHFVfpZ5K8-BDhji1FU8uz-h3PyUGhBGiGb14yi7Ks1L3qevB_icv28wYMfg/w767-h427-no/ligand-ligand+3h8q.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;
  2563.  
  2564.      From the &lt;a href=&quot;http://pfam.xfam.org/family/PF00667&quot;&gt;FAD
  2565.        binding&lt;/a&gt; domain-(PDB: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16217027&quot;&gt;1ZKQ&lt;/a&gt; ) active cystines and the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20457604&quot;&gt;NADPH&lt;/a&gt; binding
  2566.      domain where they are contained, plus an interface domain (ID) of the
  2567.      C-terminal ID in complex with its substrate thioredoxin
  2568.  &lt;/big&gt;&lt;big&gt;      (Trx-PDB: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20536427&quot;&gt;1TRX&lt;/a&gt;,
  2569. TXNRD1-&lt;a href=&quot;http://www.pdb.org/pdb/explore/explore.do?structureId=3QFB&quot;&gt;3QFB&lt;/a&gt;) &lt;/big&gt;&lt;big&gt;bringing Cys&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471089/figure/F2/&quot;&gt;32&lt;/a&gt;
  2570. in Trx1 close to Cys497 in 3H8Q to quantify glutathione (GSH) that
  2571. helped in characterizing&amp;nbsp; what was separately modeled as the Thioredoxin
  2572. reductase (TXNRD1) domain which are consdered as the respective
  2573. cytosolic and mitochondrial thioredoxin reductases units with a model
  2574. obeying standard geometry that is conceivable of human thioredoxin
  2575. reductase 3&#39;s structure&amp;nbsp; glutaredoxin domain 3H8Q&amp;nbsp; in complex with the
  2576. FAD and NADP(H), &lt;/big&gt;&lt;big&gt;when replaced by the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/?term=19317451&quot;&gt;TcTR&lt;/a&gt;&lt;/big&gt;&lt;big&gt; (PDB: 2W0H) trypanothione/trypanothione reductase system involves a
  2577. phylum of Platyhelmintha, where a glutathione (GSH) isoform containing a
  2578. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19070522&quot;&gt;fused&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14676218&quot;&gt;Grx&lt;/a&gt;)
  2579. glutaredoxin domain&amp;nbsp; (PDB: 1JHB) is essential for the parasite
  2580. survival.&amp;nbsp; The intricate substrate specificities for the thioredoxin
  2581. (Trx) system which consists of native Trx and the respective cytosolic&amp;nbsp;
  2582. mitochondrial thioredoxin reductase (TrxR) enzymes are likely to be of
  2583. central importance to these observations as a determinant of TrxR
  2584. function in general, each (the thioredoxin reductase/thioredoxin
  2585. pathway) can reduce a number of different types of substrates or
  2586. cross-reactive-bound enzyme fractions as active with thioredoxin.&lt;/big&gt;&lt;big&gt; &lt;/big&gt;&lt;/div&gt;
  2587. &lt;big&gt;
  2588.      &lt;br /&gt;
  2589.      &lt;/big&gt;
  2590. &lt;br /&gt;
  2591. &lt;div align=&quot;justify&quot;&gt;
  2592. &lt;big&gt;
  2593.      [1.] Selenium yeast: seleno yeast PMID: 16857846&lt;/big&gt;&lt;br /&gt;
  2594. &lt;big&gt;
  2595.      [2.] Sulforaphane From Broccoli PMID: 16377050, 12742546,
  2596.      20204301, 12949356, 19595745, 17150329, 15740016, 12663510,
  2597.      15998110, 17300148&lt;/big&gt;&lt;br /&gt;
  2598. &lt;big&gt;
  2599.      [3.] Chlorella vulgaris: corresponding to a chloroplast
  2600.      NADPH-dependent thioredoxin reductase gene (NTR-C), in Chlorella
  2601.      PMID: 18029787&lt;/big&gt;&lt;br /&gt;
  2602. &lt;big&gt;
  2603.      [4.] Scutellarin:&amp;nbsp; It can be found in Scutellaria barbata and
  2604.      S. lateriflora. PMID: 15131321&lt;/big&gt;&lt;br /&gt;
  2605. &lt;big&gt;
  2606.      [5.] Curcumin (TURMERIC plant of the ginger family): PMID:
  2607.      21782934, 20160040, ~15879598&lt;/big&gt;&lt;br /&gt;
  2608. &lt;big&gt;
  2609.      [6.] Experiments in &lt;a href=&quot;http://lnwme.blogspot.com/search/label/Emiliania%20Huxleyi&quot;&gt;E.
  2610.  
  2611.        huxleyi&lt;/a&gt; genus phytoplankton PMID: 20032866&lt;/big&gt;&lt;br /&gt;
  2612. &lt;big&gt;
  2613.      [7.] Gambogic Acid pigment of gambooge resin from tree species
  2614.      Garcinia gummi-gutta. PMID: 24407164&lt;/big&gt;&lt;br /&gt;
  2615. &lt;big&gt;
  2616.      [8.] Shikonin an antioxidant (no longer approved for use,: targets
  2617.      the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18382651&quot;&gt;Sec
  2618.        residue&lt;/a&gt; [13.] in TrxR1 to inhibit its physiological
  2619.      function. see: (Methane-) methylseleninic acid (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20920480&quot;&gt;MSA&lt;/a&gt;))
  2620.      obtained from the extracts of&amp;nbsp; plant [9.] Lithospermum
  2621.      erythrorhizon. PMID: 24583460&lt;/big&gt;&lt;br /&gt;
  2622. &lt;big&gt;
  2623.      [10.] Black tea extract (BTE) theaflavin (TF) PMID: 19059456&lt;/big&gt;&lt;br /&gt;
  2624. &lt;big&gt;
  2625.      [11.] Green tea extract-epigallocatechin-3-gallate (EGCG) PMID:
  2626.      19020731&lt;/big&gt;&lt;br /&gt;
  2627. &lt;big&gt;
  2628.      [12.] Eicosatetraenoic acid, (&lt;a href=&quot;http://www.upcfoodsearch.com/ingredients/mortierella-alpina-oil/?fb_action_ids=10152940213699670&amp;amp;fb_action_types=og.comments&quot;&gt;Mortierella
  2629.  
  2630.        Alpina Oil&lt;/a&gt;) Arachidonic acid (AA)
  2631.      all-cis-5,8,11,14-eicosatetraenoic acid,
  2632.      5-Hydroxyicosatetraenoic_acid_and_5-oxo-eicosatetraenoic_acid
  2633.      PMID: 15123685&lt;/big&gt;&lt;br /&gt;
  2634. &lt;big&gt;
  2635.      [13.] Juglone: In the food industry known as C.I. Natural Brown 7
  2636.      and C.I. 75500. (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19366212&quot;&gt;DTNB&lt;/a&gt;
  2637.      assay, a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18035847&quot;&gt;synthetic&lt;/a&gt;
  2638.      approach for Cys and Sec residues.) PMID: 21172426, 11170645,
  2639.      18382651 ... a 5,5&#39;-[dithiobis Pyritinol: analogue, Sulbutiamine]&lt;/big&gt;&lt;br /&gt;
  2640. &lt;big&gt;
  2641.      [14.] The antioxidant ubiquinol-10 (Q10) PMID: 12435734&lt;/big&gt;&lt;br /&gt;
  2642. &lt;big&gt;
  2643.      [15.] Rottlerin, conductance potassium channel (BKCa++) opener,
  2644.      source the Kamala tree. PMID: 17581112&lt;/big&gt;&lt;br /&gt;
  2645. &lt;big&gt;
  2646.      [16.] Ajoene a chemical compound available from garlic. PMID:
  2647.      9986706&lt;/big&gt;&lt;br /&gt;
  2648. &lt;big&gt;&amp;nbsp;&lt;/big&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; &lt;big&gt;No CiTO relationships defined&lt;br /&gt;
  2649. http://vixra.org/abs/1502.0252&lt;br /&gt;
  2650. http://www.citeulike.org/user/emissrto/article/13530556&lt;/big&gt;&lt;/div&gt;
  2651. &lt;big&gt;
  2652.      &lt;br /&gt;
  2653.    &lt;/big&gt;
  2654.  
  2655.  
  2656. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  2657. google_ad_client=&quot;pub-9610428118332343&quot;;
  2658. google_ad_host=&quot;&quot;;
  2659. google_ad_width=200;
  2660. google_ad_height=90;
  2661. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  2662. google_color_border=&quot;EEEECC&quot;;
  2663. google_color_bg=&quot;EEEECC&quot;;
  2664. google_color_link=&quot;445566&quot;;
  2665. google_color_url=&quot;445566&quot;;
  2666. google_color_text=&quot;333333&quot;;
  2667. //--&gt;&lt;/script&gt;
  2668. &lt;script type=&quot;text/javascript&quot;
  2669.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  2670. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2015/03/thioredoxin-reductase.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEibYjO6PJUfkg4N1cFzLjvo1rGVyhur-wCIldN4EEYaVQ_nay5omtIWcTsYAXyHwe_TJQKo_uglk6yifFFOq13IFFpyypjfuWeEgi7TVnZMWzQiRf8WfpeMDlOeabelb8uo50v-rQ/s72-w483-h436-c-no/1w1e+MITOCHONDRIAL.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-8602622812753101163</guid><pubDate>Mon, 24 Nov 2014 22:32:00 +0000</pubDate><atom:updated>2015-03-26T08:29:00.243-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">Catalase</category><category domain="http://www.blogger.com/atom/ns#">H2O2</category><category domain="http://www.blogger.com/atom/ns#">NADP</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">peroxiredoxin</category><category domain="http://www.blogger.com/atom/ns#">SOD1</category><category domain="http://www.blogger.com/atom/ns#">TBARS</category><category domain="http://www.blogger.com/atom/ns#">TXN</category><category domain="http://www.blogger.com/atom/ns#">TXNRD1</category><title> Catalase, the antioxidant heme enzyme one of three subgroups related to catalase deficiency in humans modulating the normal catalase reaction dependent on NADPH-binding catalases for function.</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  2671. Catalase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10446501&quot;&gt;CAT&lt;/a&gt;)
  2672.    is converted by decomposition and intracellular localization
  2673.    relationships of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22167619&quot;&gt;main&lt;/a&gt;
  2674.    cellular &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18603400&quot;&gt;antioxidant&lt;/a&gt; enzyme system like &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19092850&quot;&gt;superoxide&lt;/a&gt;
  2675.    dismutase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2313035&quot;&gt;SOD&lt;/a&gt;),
  2676. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20070187&quot;&gt;
  2677.    peroxiredoxins&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12732627&quot;&gt;Prdx&lt;/a&gt;), and
  2678.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2066646&quot;&gt;glutathione&lt;/a&gt; peroxidase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8608252&quot;&gt;GPX&lt;/a&gt;) are
  2679.    peroxisomal matrix enzymes in the cytoplasm, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1651504&quot;&gt;translocated&lt;/a&gt;
  2680.    to the peroxisomes to catalyze hydrogen peroxide &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3944256&quot;&gt;H2O2&lt;/a&gt; which is &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10656833&quot;&gt;decomposed&lt;/a&gt;
  2681.    to oxygen and water, locus: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2991908?&quot;&gt;11p13&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene?term=CCDS7891+AND+%28alive[property]%29&amp;amp;cmd=DetailsSearch&quot;&gt;§&lt;/a&gt;,
  2682. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/86939.html?ID=100299&quot;&gt;    ‡&lt;/a&gt;). Unlike catalase, the objective of this communication, SOD which
  2683.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3273212&quot;&gt;prevents&lt;/a&gt;
  2684.    the formation of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18482604&quot;&gt;Hydroxyl&lt;/a&gt;
  2685.    radicals - (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23097744&quot;&gt;&lt;i&gt;HRGT&lt;/i&gt;&lt;/a&gt;)
  2686.    determined from constant of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1657455&quot;&gt;O2&lt;/a&gt;.-
  2687.    dismutation, and generation of reversibly inactive (CAT)-compound
  2688.    II, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10594930&quot;&gt;Panax
  2689.      ginseng&lt;/a&gt; could induce both transcription factors. Catalase
  2690.    is&amp;nbsp; composed of four identical subunits each of the subunits
  2691.    binds one heme-containing active site, and produces two catalase &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7663946&quot;&gt;compounds&lt;/a&gt;
  2692.    HPI and HPII (PDB: &lt;a href=&quot;http://www.pdb.org/pdb/explore/explore.do?pdbId=1p80&quot;&gt;1p80&lt;/a&gt;)
  2693.    is flipped &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10022351&quot;&gt;180
  2694.      degrees&lt;/a&gt; » with respect to the orientation of the heme related
  2695.    to the « root mean square to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7663946&quot;&gt;structure&lt;/a&gt; of
  2696.    catalase, (Mutation &lt;a href=&quot;http://karchinlab.org/Mutants/CAN-genes//pancreatic/CCDS7891.1_Q387H/CCDS7891.1_Q387H.html&quot;&gt;Location&lt;/a&gt;)
  2697.    from peroxisomal catalases inactive state in compound II NADP+(H)
  2698.    binding pockets inverted remains similar to the structure of the
  2699.    wild type (Val111, PDB:&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9931255&quot;&gt;1A4E&lt;/a&gt;, KatG)
  2700.    orientation on the heme &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11455600&quot;&gt;proximal&lt;/a&gt;
  2701.    (PDB: 1GGK) side, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8086159&quot;&gt;inactivate&lt;/a&gt;
  2702.    catalase can be prevented by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12797476&quot;&gt;melatonin&lt;/a&gt;.
  2703.    Catalase (CAT; EC &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1934468&quot;&gt;1.11.1.6&lt;/a&gt;)
  2704.    a&amp;nbsp; free radical scavenging enzyme (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12588287&quot;&gt;FRSE&lt;/a&gt;) is a
  2705.    scavenger of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18634817&quot;&gt;H2O2&lt;/a&gt;.
  2706.    Protoporphyrin - (ZnPPIX) (PDB: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12486720&quot;&gt;1H6N&lt;/a&gt;), from
  2707.    a heme group of the &#39;heme-pathway, which forms catalase,&#39; is a
  2708.    scavenger of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12565200&quot;&gt;antioxidant&lt;/a&gt;
  2709.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18228149&quot;&gt;HO-1&lt;/a&gt;-HMOX1)
  2710.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16830363&quot;&gt;heme oxygenase&lt;/a&gt;,
  2711.    involving &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16703357&quot;&gt;ROS&lt;/a&gt;.
  2712.    Catalase is part of the enzymatic defense &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14680687&quot;&gt;system&lt;/a&gt;
  2713.    constituting the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17264407&quot;&gt;primary&lt;/a&gt;
  2714.    defense against &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18949620&quot;&gt;ROS&lt;/a&gt;, zinc
  2715.    protoporphyrin IX (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21731454&quot;&gt;ZnPPIX&lt;/a&gt;) is
  2716.    an inhibitor of (HO-1) heme oxygenase. Catalase &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21062512&quot;&gt;protects&lt;/a&gt;
  2717.    the cell from oxidative &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20878976&quot;&gt;damage&lt;/a&gt; by
  2718.    the accumulation of cellular reactive oxygen species (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10960765&quot;&gt;ROS&lt;/a&gt;)
  2719.    generation systems, those &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12475949&quot;&gt;peroxisomal&lt;/a&gt;
  2720.    enzymes that &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10656833&quot;&gt;breaks
  2721.  
  2722.      down&lt;/a&gt; hydrogen peroxide after H(2)O(2) exposure, and thereby &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16611809&quot;&gt;mitigates&lt;/a&gt;*
  2723.    (some &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12509339&quot;&gt;contradictory&lt;/a&gt;*
  2724.    results) the toxic effects of hydrogen peroxide. In the process (The
  2725.    typical hydroperoxidases (CAT) known as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22516655&quot;&gt;Compound I&lt;/a&gt;)
  2726.    of the substrate of catalase, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10318800&quot;&gt;NADP+&lt;/a&gt; (an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10446501&quot;&gt;inactive&lt;/a&gt;
  2727.    state, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3805001&quot;&gt;compound
  2728.  
  2729.      II&lt;/a&gt;) is replaced by another molecule of NADP(H) to provide
  2730.    protection of catalase against &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15456401&quot;&gt;inactivation&lt;/a&gt;
  2731.    by (H2O2) hydrogen peroxide. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11163027&quot;&gt;Erythrocyte&lt;/a&gt;&amp;nbsp;
  2732.  
  2733.  
  2734.  
  2735.    [Human erythrocyte catalase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16204228&quot;&gt;HEC&lt;/a&gt;), The &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11134921&quot;&gt;NADPH&lt;/a&gt;-binding
  2736.    sites were empty - PDB: 1F4J, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10666617&quot;&gt;1QQW&lt;/a&gt;] and plasma &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17171548&quot;&gt;indices&lt;/a&gt;
  2737.    (enzymatic-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15205966&quot;&gt;antioxidant&lt;/a&gt;&lt;a href=&quot;https://www.blogger.com/null&quot;&gt;s&lt;/a&gt;)
  2738.    initially implies the thiobarbituric acid-reacting substances (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15158621&quot;&gt;TBARS&lt;/a&gt;)
  2739.    based on reaction with hydroxyl radicals (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2573174&quot;&gt;OH&lt;/a&gt;) can
  2740.    release thiobarbituric acid, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10064127&quot;&gt;TBAR&lt;/a&gt;
  2741.    inhibition &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1683270&quot;&gt;measures&lt;/a&gt;
  2742.    malondialdehyde (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12707286&quot;&gt;MDA&lt;/a&gt; -
  2743.    impact of coenzyme &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22645453&quot;&gt;Q10&lt;/a&gt;)
  2744.    correlated (with MPO-myeloperoxidase &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23746122&quot;&gt;activity&lt;/a&gt;
  2745.    -generating ROS) as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19228758&quot;&gt;co-variable&lt;/a&gt;,
  2746.    by which &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/25316427&quot;&gt;mulberry
  2747.  
  2748.      leaf&lt;/a&gt; polysaccharide (MLPII) via the decomposition of (certain)
  2749.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15295623&quot;&gt;MDA&lt;/a&gt;,
  2750.    products of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16781659&quot;&gt;lipid&lt;/a&gt;
  2751.    peroxidation (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9609318&quot;&gt;LPO&lt;/a&gt;)
  2752.    were reduced. Comparisons were to specific activities of catalase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23098659&quot;&gt;SNP&lt;/a&gt;) single
  2753.    nucleotide &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16298864&quot;&gt;polymorphisms&lt;/a&gt;
  2754.    (CAT-C-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19255063&quot;&gt;262&lt;/a&gt;
  2755.    (rs&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19863340&quot;&gt;1001179&lt;/a&gt;)
  2756.    the low-risk &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17264407&quot;&gt;allele&lt;/a&gt;)
  2757.    of genetic variants in both, promoter a common &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11182520&quot;&gt;C/T&lt;/a&gt;
  2758.    polymorphism (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16775184&quot;&gt;262&lt;/a&gt;-C/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15472150&quot;&gt;T&lt;/a&gt;), and in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22058000&quot;&gt;nine&lt;/a&gt; - &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22736749&quot;&gt;exonic&lt;/a&gt; - regions
  2759.    and its boundaries, occur frequently associated distally in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12633942&quot;&gt;genomic&lt;/a&gt;
  2760.    mutations, similar to those of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1999334&quot;&gt;normal catalase&lt;/a&gt;
  2761.    demonstrating &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8931469&quot;&gt;changes&lt;/a&gt;
  2762.    in catalase protein level targeted to the peroxisomal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20178365&quot;&gt;matrix&lt;/a&gt;. The 262-C/T CAT low-risk allele is hypothetically related to the lower risk variant allele CAT &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19242068&quot;&gt;Tyr308&lt;/a&gt; G to A point mutation ineducable in the Japanese acatalasemia allele. The
  2763.    common C/T polymorphism can be &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16192345&quot;&gt;targeted&lt;/a&gt; by
  2764.    dietary &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22736749&quot;&gt;and/or&lt;/a&gt;
  2765.    pharmacological antioxidants, and the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23827365&quot;&gt;endogenous&lt;/a&gt;
  2766.    antioxidant defense &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18838841&quot;&gt;enzymes&lt;/a&gt;
  2767.    concentration can prevent cellular &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12135688&quot;&gt;lipid&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11412828&quot;&gt;LPO&lt;/a&gt;) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10370358&quot;&gt;peroxidative&lt;/a&gt;
  2768.    reactions occurring. Catalase is a homo&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3755525&quot;&gt;tetramer&lt;/a&gt;
  2769.    complex of 4 identical &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14745498&quot;&gt;monofunctional&lt;/a&gt;
  2770.    subunits. Catalase is located at the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15733034&quot;&gt;peroxisome&lt;/a&gt;
  2771.    of human cells associated with several (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10567403&quot;&gt;PBDs&lt;/a&gt;)-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15771551&quot;&gt;peroxisomal&lt;/a&gt;
  2772.    biogenesis disorders commonly caused by mutations in the PEX &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21976670&quot;&gt;genes&lt;/a&gt;,
  2773.    peroxisomal targeting signal 1 (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12475949&quot;&gt;PTS1&lt;/a&gt;)
  2774.    protein affecting in peroxisomal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19479899&quot;&gt;biogenesis&lt;/a&gt;,
  2775.    the monomeric to homotetrameric transition in the forms of
  2776.    peroxisome &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10960480&quot;&gt;biogenesis&lt;/a&gt;
  2777.    disorder. PBDs also include &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22286031&quot;&gt;Acatalasemia&lt;/a&gt;   the only disease &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21985133&quot;&gt;known&lt;/a&gt; to be
  2778.    caused by the (CAT) gene. In human catalase, the antioxidant &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18498226&quot;&gt;heme&lt;/a&gt;
  2779.    enzyme, is localized in the cytoplasm to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8463903&quot;&gt;peroxisome&lt;/a&gt;, nucleus, or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18197787&quot;&gt;linked&lt;/a&gt; with
  2780.    mitochondria which in most cells &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11351128&quot;&gt;lack catalase&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9408912&quot;&gt;Peroxisomes&lt;/a&gt; do not contain &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21338322&quot;&gt;DNA&lt;/a&gt;), its &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18379038&quot;&gt;mitochondrial&lt;/a&gt; fraction (microperoxisome), a secondary &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22685621&quot;&gt;phenomena&lt;/a&gt; shows physiological decline, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18948086&quot;&gt;aging&lt;/a&gt; and age-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8090715&quot;&gt;related&lt;/a&gt; reactions in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21109199&quot;&gt;mitochondrial&lt;/a&gt; function and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16178023&quot;&gt;disfunction&lt;/a&gt;.
  2781.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17158050&quot;&gt;NADPH&lt;/a&gt; is
  2782.    required for the prevention of forming an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3805001&quot;&gt;inactive&lt;/a&gt;
  2783.    state of the enzyme. Antioxidative defence mechanisms, capacity and
  2784.    redox &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&amp;amp;cmd=search&amp;amp;Dopt=b&amp;amp;term=21180245&quot; target=&quot;aaa&quot;&gt; &lt;/a&gt;cycle enzyme
  2785.    activities increasing with Tc treatment &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24250513&quot;&gt;Tinospora
  2786.      cordifolia&lt;/a&gt; (Tc), T and B cells and antibody. Both &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14707431&quot;&gt;RBC&lt;/a&gt;s and
  2787.    plasma were measured on parameters of oxidative stress.&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21063110&quot;&gt;Syzygium cumini&lt;/a&gt;
  2788.    aqueous leaves extract (ASc) was able to remove oxidant
  2789.    species in a hyperglycemic state generated in red blood cells
  2790.    RBC-CAT levels. Catalase alone is unable to prevent in a
  2791.    hyperglycemic state. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12619169&quot;&gt;Macrophages&lt;/a&gt;
  2792.    recruit other types of immune cells such as lymphocytes white blood
  2793.    cells (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12542561&quot;&gt;WBC&lt;/a&gt;s).&amp;nbsp; Catalase is dependent on the family of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18498226&quot;&gt;NADPH&lt;/a&gt;-binding
  2794.  
  2795.    catalases for function, the prevention and reversal of
  2796.    inactivation by its toxic substrate (H2O2) hydrogen peroxide. Amyloid-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10567208&quot;&gt;beta&lt;/a&gt; binds
  2797.    catalase and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10567208&quot;&gt;inhibits&lt;/a&gt;
  2798.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18498226&quot;&gt;H2O2&lt;/a&gt;)
  2799.    hydrogen peroxide, a reactive oxygen species, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19092850&quot;&gt;breakdown&lt;/a&gt;
  2800.    through efficient &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10446501&quot;&gt;dismutation&lt;/a&gt;,
  2801.    and malonaldelhyde (MDA) determined in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15223607&quot;&gt;plasma&lt;/a&gt;, as
  2802.    well as another member of the oxidoreductase family, myeloperoxidase
  2803.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15705913&quot;&gt;MPO&lt;/a&gt; (EC &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20732340&quot;&gt;1.11.1.7&lt;/a&gt;))
  2804.    converting H(2)O(2), the reducing equivalents produces (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11513598&quot;&gt;HOCl&lt;/a&gt;)
  2805.    hypochlorous acid a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6270214&quot;&gt;mechanism&lt;/a&gt; of
  2806.    cell-mediated antimicrobial immune defense for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1954228&quot;&gt;monofunctional&lt;/a&gt;
  2807.    catalases one of three subgroups related to catalase deficiency in
  2808.    humans, in micro-organisms &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8315349&quot;&gt;manganese&lt;/a&gt;-containing catalases (&#39;large
  2809.    catalases&#39;) determining in part the bifunctional activity of (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20054829&quot;&gt;KatG&lt;/a&gt;, PDB:&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15567407&quot;&gt;1X7U&lt;/a&gt;)
  2810.    represented by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19129167&quot;&gt;bifunctional&lt;/a&gt;
  2811.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22209752&quot;&gt;heme&lt;/a&gt;) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16211084&quot;&gt;catalase-peroxidase&lt;/a&gt;
  2812.    based Bacterial-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16566587&quot;&gt;resistance&lt;/a&gt;
  2813.    mechanisms. Peroxiredoxins (Prxs, EC &lt;a href=&quot;http://smart.embl.de/smart/do_annotation.pl?DOMAIN=SM01060&quot;&gt;1.11.1.21&lt;/a&gt;),
  2814.  
  2815.  
  2816.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12731870&quot;&gt;bifunctional&lt;/a&gt;
  2817.    catalase-peroxidases (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19139099&quot;&gt;KatGs&lt;/a&gt;) two
  2818.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18634817&quot;&gt;organelle&lt;/a&gt;
  2819.    systems are antioxidant enzymes of the peroxiredoxin family that oxidize and reduce H(2)O(2)
  2820.    hydrogen peroxide thereby modulating the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17063492&quot;&gt;catalase&lt;/a&gt;
  2821.    reaction, KatGs are &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18498226&quot;&gt;not found&lt;/a&gt;
  2822.    in plants and animals. Trx (&lt;a href=&quot;http://lnwme.blogspot.com/2014/07/characterization-of-human-thioredoxin.html#identifier_4_1125&quot;&gt;thioredoxin&lt;/a&gt;) a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16712839&quot;&gt;redox&lt;/a&gt;-regulating protein also &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9409558&quot;&gt;controls&lt;/a&gt; the antioxidant enzyme activity of the main
  2823.    cellular antioxidant enzymes (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10374946&quot;&gt;AOE&lt;/a&gt;)
  2824.    superoxide dismutase (SOD) and catalase.&lt;/div&gt;
  2825. &lt;br /&gt;
  2826. &lt;br /&gt;
  2827. &lt;div align=&quot;justify&quot;&gt;
  2828. The function of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8086159&quot;&gt;NADPH&lt;/a&gt; bound
  2829.    to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10318800&quot;&gt;Catalase&lt;/a&gt;.&lt;br /&gt;
  2830. &lt;a href=&quot;https://plus.google.com/photos/100787464692550241934/albums/6084961365149457457?referrer=GPU&amp;amp;ruid=100787464692550241934&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;catalase&quot; border=&quot;0&quot; height=&quot;205&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg7jWMvyxsIk_hLRrdzwIT6oTDVxVmcRJXHG4SmJ_yxJvlkc3B_aD5yuARDDVRxCraD4xL2cxIgKskBp3nfIYz8IbhwVhGXNbZVaDe8xaIB1YulmM0S-ORddhVvVfYACRaXD1GC5g/w482-h494-no/element1.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;The cytosine to thymidine transition of nucleotide-262 (-262C&amp;gt;T)
  2831.    Computer analysis indicated that the two variants bound promoter the
  2832.    Ile&amp;nbsp; (-262 C/T) and (B) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23773345&quot;&gt;Ile-262&lt;/a&gt; in
  2833.    the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11182520&quot;&gt;5&#39;-flanking&lt;/a&gt;
  2834.    region carrying the T allele best captured and characterized the
  2835.    generation of the hydroxyl radical site in (PDB: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18498226&quot;&gt;1DGB&lt;/a&gt;), (CAT) -[GLU] &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18368408&quot;&gt;330C&amp;gt;T&lt;/a&gt; transition, is known also as -262C&amp;gt;T. The
  2836.    &#39;T allele in comparison to the C allele&#39; is a common C/T
  2837.    polymorphism frequency in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23098659&quot;&gt;promoter&lt;/a&gt;
  2838.    region association was observed between genotypes for locus11p13 risk alleles acatalasemia mutation Asp
  2839.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21947853&quot;&gt;37C&amp;gt;T&lt;/a&gt; in exon 9) was hypothetically related to the lower risk Japanese acatalasemia allele &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19242068&quot;&gt;Tyr308&lt;/a&gt; a single &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1551654&quot;&gt;G&lt;/a&gt; to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24057136&quot;&gt;A&lt;/a&gt; (see: rs&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7947841&quot;&gt;7947841&lt;/a&gt;&amp;nbsp; to evaluate the link to rs&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21827848&quot;&gt;769214&lt;/a&gt;) point mutation ineducable or near exon 9 (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22167619&quot;&gt;TC&lt;/a&gt;,
  2840. CC, TT) of the CAT gene to which variant changes in the promoter region
  2841. C/T-262 polymorphism are more closely related to CAT T/C at codon &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22058000&quot;&gt;389&lt;/a&gt; in exon 9 (rs&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23868633&quot;&gt;769217&lt;/a&gt;)
  2842.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21054578&quot;&gt;polymorphism&lt;/a&gt; did not &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22736749&quot;&gt;differ&lt;/a&gt; significantly from
  2843.    those of healthy &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22058000&quot;&gt;controls&lt;/a&gt; in both promoter (-262 C/T) and
  2844.    in exonic (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22058000&quot;&gt;ASP&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22736749&quot;&gt;389&lt;/a&gt; C/T)
  2845.    regions of the catalase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22736749&quot;&gt;CAT&lt;/a&gt;).&amp;nbsp;&lt;a href=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjk-YCuceVO8Jc-iOST1edYytJpAvEY7wPsYIGQrlUFRCLm9MurKya0INpxK8O9MhdZB4mXD9o2RDAuof8vdVXYwZ95ErEg8vxCn86s4tq-VaYQUTvpHB0-QP0ytD34D8foOvopUw/w467-h494-no/111c.png&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;catalase&quot; border=&quot;0&quot; height=&quot;218&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjk-YCuceVO8Jc-iOST1edYytJpAvEY7wPsYIGQrlUFRCLm9MurKya0INpxK8O9MhdZB4mXD9o2RDAuof8vdVXYwZ95ErEg8vxCn86s4tq-VaYQUTvpHB0-QP0ytD34D8foOvopUw/w467-h494-no/111c.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;
  2846.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10656833&quot;&gt;Tyr 370&lt;/a&gt;
  2847.    resolves the 25 A-long (hydrogen peroxide) channel a constriction or
  2848.    narrowing of the channel leading to the heme cavity (&#39;Parameters)
  2849.    situated in the entrance channel to a heme protoporphyrin (ZnPPIX)
  2850.    (PDB: 1H6N) from a heme group, capable of heme &lt;a href=&quot;http://eds.bmc.uu.se/cgi-bin/eds/uusfs?pdbCode=2IUF&quot;&gt;biosynthesis&lt;/a&gt;&#39;
  2851.    in a wide range of organisms convert it into into &lt;a href=&quot;https://www.blogger.com/null&quot;&gt;heme b&lt;/a&gt;,
  2852.    protoporphyrin &lt;a href=&quot;http://www.rcsb.org/pdb/101/motm.do?momID=57&quot;&gt;IX-heme&lt;/a&gt;.
  2853.    Two channels lead close to the distal side.&amp;nbsp; A third channel
  2854.    reaching the heme &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10022351&quot;&gt;proximal side&lt;/a&gt;
  2855.    Tyr 370, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12777389&quot;&gt;Ile-262&lt;/a&gt;
  2856.    is proposed as a the &#39;PDB: 1DGB - variant with a substituted residue in the ASP 178 to the (Met)
  2857.  &lt;a href=&quot;http://www.pdb.org/pdb/explore/explore.do?pdbId=1p80&quot;&gt;    D181E&lt;/a&gt; variant PDB &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12777389&quot;&gt;1p80&lt;/a&gt;&#39;.&amp;nbsp;
  2858.    These differences include the structure of the variant protein &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9931255&quot;&gt;Val111&lt;/a&gt;Ala
  2859. (Saccharomyces cerevisiae)    related supports the existence of the &#39;Heme and NADP(H) binding
  2860.    pockets&#39;. The omission of a 20-residue&amp;nbsp; PDB: 1F4J, (1QQW) segment
  2861.    corresponds to the N-terminal (blue) of catalase from human
  2862.    erythrocytes (HEC), or in a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10446501&quot;&gt;C-terminal&lt;/a&gt;
  2863.    (red) domain organized with an extra &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10022351&quot;&gt;flavodoxin&lt;/a&gt;-like
  2864.    &lt;a href=&quot;http://en.wikipedia.org/wiki/Flavodoxin_fold&quot;&gt;fold&lt;/a&gt;
  2865.    topology may provide with weak coordination the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21968615&quot;&gt;N- or
  2866.      C-terminal&lt;/a&gt;, that allows scrutiny of the origins (topology) in
  2867.    this report of what would otherwise remain speculative or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11134921&quot;&gt;determined&lt;/a&gt; with further verification.&lt;/div&gt;
  2868. &lt;br /&gt;
  2869. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2870. &amp;nbsp;Biological Xenobiotic Extracts Applications of note In the presence
  2871.    of Catalase:&lt;/div&gt;
  2872. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2873. &lt;br /&gt;&lt;/div&gt;
  2874. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2875. green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) &lt;/div&gt;
  2876. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2877. Yamamoto T, Lewis J, Wataha J, Dickinson D, Singh B, Bollag WB, Ueta
  2878. E, OsakiT, Athar M, Schuster G, Hsu S. Roles of catalase and hydrogen
  2879. peroxide in greentea polyphenol-induced chemopreventive effects. J
  2880. Pharmacol Exp Ther. 2004Jan;308(1):317-23. Epub 2003 Oct 20. PubMed
  2881. PMID: 14569057.Furukawa A, Oikawa S, Murata M, Hiraku Y, Kawanishi S.
  2882. (-)-Epigallocatechingallate causes oxidative damage to isolated and
  2883. cellular DNA. Biochem Pharmacol.2003 Nov 1;66(9):1769-78. PubMed PMID:
  2884. 14563487.*&lt;/div&gt;
  2885. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2886. Trigonella (Fenugreek) &lt;/div&gt;
  2887. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2888. Mohammad S, Taha A, Bamezai RN, Basir SF, Baquer NZ. Lower doses of
  2889. vanadatein combination with trigonella restore altered carbohydrate
  2890. metabolism andantioxidant status in alloxan-diabetic rats. Clin Chim
  2891. Acta. 2004Apr;342(1-2):105-14. Erratum in: Clin Chim Acta. 2010 Aug
  2892. 5;411(15-16):1158.Mohamad, Sameer [corrected to Mohammad, Sameer].
  2893. PubMed PMID: 15026271.&lt;/div&gt;
  2894. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2895. Aegle marmelos &lt;/div&gt;
  2896. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2897. Khan TH, Sultana S. Antioxidant and hepatoprotective potential of
  2898. Aeglemarmelos Correa. against CCl4-induced oxidative stress and early
  2899. tumor events. JEnzyme Inhib Med Chem. 2009 Apr;24(2):320-7. doi:
  2900. 10.1080/14756360802167754 .PubMed PMID: 18830880.&lt;/div&gt;
  2901. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2902. Centella asiatica&lt;br /&gt;
  2903. Flora SJ, Gupta R. Beneficial effects of Centella asiatica aqueous
  2904. extractagainst arsenic-induced oxidative stress and essential metal
  2905. status in rats.Phytother Res. 2007 Oct;21(10):980-8. PubMed PMID:
  2906. 17600859.&lt;/div&gt;
  2907. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2908. Daidzein&lt;br /&gt;
  2909. Mishra P, Kar A, Kale RK. Prevention of chemically induced
  2910. mammarytumorigenesis by daidzein in pre-pubertal rats: the role of
  2911. peroxidative damageand antioxidative enzymes. Mol Cell Biochem. 2009
  2912. May;325(1-2):149-57. doi:10.1007/s11010-009-0029-1. Epub 2009 Feb 13.
  2913. PubMed PMID: 19214712.&lt;/div&gt;
  2914. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2915. Capparis&lt;br /&gt;
  2916. Yadav P, Sarkar S, Bhatnagar D. Action of capparis decidua
  2917. againstalloxan-induced oxidative stress and diabetes in rat tissues.
  2918. Pharmacol Res. 1997Sep;36(3):221-8. PubMed PMID: 9367667.&lt;/div&gt;
  2919. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2920. Retinal&lt;br /&gt;
  2921. &amp;nbsp;Kannan R, Jin M, Gamulescu MA, Hinton DR. Ceramide-induced apoptosis:
  2922. role ofcatalase and hepatocyte growth factor. Free Radic Biol Med. 2004
  2923. Jul15;37(2):166-75. PubMed PMID: 15203188.&lt;/div&gt;
  2924. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2925. Retinol&lt;br /&gt;
  2926. Cemek M, Caksen H, Bayiroğlu F, Cemek F, Dede S. Oxidative stress
  2927. andenzymic-non-enzymic antioxidant responses in children with acute
  2928. pneumonia. CellBiochem Funct. 2006 May-Jun;24(3):269-73. PubMed PMID:
  2929. 16634091.&lt;/div&gt;
  2930. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2931. Diallyl disulfide (Allicin)&lt;br /&gt;
  2932. Kalayarasan S, Prabhu PN, Sriram N, Manikandan R, Arumugam M,
  2933. Sudhandiran G.Diallyl sulfide enhances antioxidants and inhibits
  2934. inflammation through theactivation of Nrf2 against gentamicin-induced
  2935. nephrotoxicity in Wistar rats. EurJ Pharmacol. 2009 Mar
  2936. 15;606(1-3):162-71. doi: 10.1016/j.ejphar.2008.12.055. Epub2009 Jan 19.
  2937. PubMed PMID: 19374873.&lt;/div&gt;
  2938. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2939. Leucas aspera (Catechin, EGCG)&lt;br /&gt;
  2940. Kripa KG, Chamundeeswari D, Thanka J, Uma Maheswara Reddy C. Modulation
  2941. ofinflammatory markers by the ethanolic extract of Leucas aspera in
  2942. adjuvantarthritis. J Ethnopharmacol. 2011 Apr 12;134(3):1024-7.
  2943. doi:10.1016/j.jep.2011.01.010. Epub 2011 Jan 18. PubMed PMID: 21251972.&lt;/div&gt;
  2944. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2945. Urtica dioica (nettle suppliment)Ozen T, Korkmaz H. Modulatory effect of Urtica dioica L. (Urticaceae) leaf&lt;br /&gt;
  2946. extract on biotransformation enzyme systems, antioxidant enzymes,
  2947. lactatedehydrogenase and lipid peroxidation in mice. Phytomedicine.
  2948. 2003;10(5):405-15.PubMed PMID: 12834006.&lt;/div&gt;
  2949. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2950. Justicia adhatoda&lt;br /&gt;
  2951. Singh RP, Padmavathi B, Rao AR. Modulatory influence of Adhatoda
  2952. vesica(Justicia adhatoda) leaf extract on the enzymes of xenobiotic
  2953. metabolism,antioxidant status and lipid peroxidation in mice. Mol Cell
  2954. Biochem. 2000Oct;213(1-2):99-109. PubMed PMID: 11129964.&lt;/div&gt;
  2955. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2956. Phyllanthus niruri L. (Euphorbiaceae) (P. niruri)&lt;br /&gt;
  2957. Bhattacharjee R, Sil PC. Protein isolate from the herb, Phyllanthus
  2958. niruri L.(Euphorbiaceae), plays hepatoprotective role against carbon
  2959. tetrachloride inducedliver damage via its antioxidant properties. Food
  2960. Chem Toxicol. 2007May;45(5):817-26. Epub 2006 Nov 11. PubMed PMID:
  2961. 17175085.&lt;/div&gt;
  2962. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2963. Tinospora cordifolia&lt;br /&gt;
  2964. Sharma V, Pandey D. Protective Role of Tinospora cordifolia
  2965. againstLead-induced Hepatotoxicity. Toxicol Int. 2010 Jan;17(1):12-7.
  2966. doi:10.4103/0971-6580.68343. PubMed PMID: 21042467; PubMed Central
  2967. PMCID: PMC2964743.&lt;/div&gt;
  2968. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2969. Aher V, Kumar Wahi A. Biotechnological Approach to Evaluate
  2970. theImmunomodulatory Activity of Ethanolic Extract of Tinospora
  2971. cordifolia Stem(Mango Plant Climber). Iran J Pharm Res. 2012
  2972. Summer;11(3):863-72. PubMed PMID:24250513; PubMed Central PMCID:
  2973. PMC3813135.&lt;/div&gt;
  2974. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2975. coenzyme Q10&lt;br /&gt;
  2976. Lee BJ, Lin YC, Huang YC, Ko YW, Hsia S, Lin PT. The relationship
  2977. betweencoenzyme Q10, oxidative stress, and antioxidant enzymes
  2978. activities and coronaryartery disease. ScientificWorldJournal.
  2979. 2012;2012:792756. doi:10.1100/2012/792756. Epub 2012 May 3. PubMed PMID:
  2980. 22645453; PubMed CentralPMCID: PMC3356738.&lt;/div&gt;
  2981. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2982. Dietary carotenoid-rich pequi oil&lt;br /&gt;
  2983. Miranda-Vilela AL, Akimoto AK, Alves PC, Pereira LC, Gonçalves
  2984. CA,Klautau-Guimarães MN, Grisolia CK. Dietary carotenoid-rich pequi oil
  2985. reducesplasma lipid peroxidation and DNA damage in runners and evidence
  2986. for anassociation with MnSOD genetic variant -Val9Ala. Genet Mol Res.
  2987. 2009 Dec15;8(4):1481-95. doi: 10.4238/vol8-4gmr684. PubMed PMID:
  2988. 20082261.&lt;/div&gt;
  2989. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2990. Tinospora
  2991.      cordifolia&amp;nbsp; (Mango Plant Climber) extract from Tinospora
  2992.    known as Tinofend Aher V, Kumar Wahi A. Biotechnological Approach to
  2993. Evaluate theImmunomodulatory Activity of Ethanolic Extract of Tinospora
  2994. cordifolia Stem(Mango Plant Climber). Iran J Pharm Res. 2012
  2995. Summer;11(3):863-72. PubMed PMID:24250513; PubMed Central PMCID:
  2996. PMC3813135.&lt;/div&gt;
  2997. &lt;div style=&quot;text-align: justify;&quot;&gt;
  2998. &amp;nbsp;mulberry leaf polysaccharide (MLPII)&lt;br /&gt;
  2999. Ren C, Zhang Y, Cui W, Lu G, Wang Y, Gao H, Huang L, Mu Z. A
  3000. polysaccharideextract of mulberry leaf ameliorates hepatic glucose
  3001. metabolism and insulinsignaling in rats with type 2 diabetes induced by
  3002. high fat-diet andstreptozotocin. Int J Biol Macromol. 2014 Oct 11. pii:
  3003. S0141-8130(14)00674-6.doi: 10.1016/j.ijbiomac.2014.09.060. [Epub ahead
  3004. of print] PubMed PMID: 25316427.&lt;/div&gt;
  3005. &lt;div style=&quot;text-align: justify;&quot;&gt;
  3006. five widely studied medicinal plants (Protandim)&lt;br /&gt;
  3007. Nelson SK, Bose SK, Grunwald GK, Myhill P, McCord JM. The induction of
  3008. humansuperoxide dismutase and catalase in vivo: a fundamentally new
  3009. approach toantioxidant therapy. Free Radic Biol Med. 2006 Jan
  3010. 15;40(2):341-7. PubMed PMID:16413416.&lt;/div&gt;
  3011. &lt;div style=&quot;text-align: justify;&quot;&gt;
  3012. melatonin&lt;br /&gt;
  3013. Mayo JC, Tan DX, Sainz RM, Lopez-Burillo S, Reiter RJ. Oxidative damage
  3014. tocatalase induced by peroxyl radicals: functional protection by
  3015. melatonin andother antioxidants. Free Radic Res. 2003 May;37(5):543-53.
  3016. PubMed PMID: 12797476.&lt;/div&gt;
  3017. &lt;div style=&quot;text-align: justify;&quot;&gt;
  3018. Protective effect of harmaline&lt;br /&gt;
  3019. Kim DH, Jang YY, Han ES, Lee CS. Protective effect of harmaline and
  3020. harmalolagainst dopamine- and 6-hydroxydopamine-induced oxidative damage
  3021. of brainmitochondria and synaptosomes, and viability loss of PC12
  3022. cells. Eur J Neurosci.2001 May;13(10):1861-72. PubMed PMID: 11403679.&lt;/div&gt;
  3023. &lt;div style=&quot;text-align: justify;&quot;&gt;
  3024. horseradish peroxidase (HRP)&lt;br /&gt;
  3025. Shen L, Hu N. Heme protein films with polyamidoamine dendrimer:
  3026. directelectrochemistry and electrocatalysis. Biochim Biophys Acta. 2004
  3027. Jan30;1608(1):23-33. PubMed PMID: 14741582.&lt;/div&gt;
  3028. &lt;div style=&quot;text-align: justify;&quot;&gt;
  3029. Selegiline (--)Deprenyl&lt;br /&gt;
  3030. Kitani K, Minami C, Isobe K, Maehara K, Kanai S, Ivy GO, Carrillo MC.
  3031. Why(--)deprenyl prolongs survivals of experimental animals: increase of
  3032. anti-oxidantenzymes in brain and other body tissues as well as
  3033. mobilization of varioushumoral factors may lead to systemic anti-aging
  3034. effects. Mech Ageing Dev. 2002Apr 30;123(8):1087-100. Review. PubMed
  3035. PMID: 12044958.&lt;/div&gt;
  3036. &lt;div style=&quot;text-align: justify;&quot;&gt;
  3037. Rhodiola rosea&lt;br /&gt;
  3038. Bayliak MM, Lushchak VI. The golden root, Rhodiola rosea, prolongs
  3039. lifespanbut decreases oxidative stress resistance in yeast Saccharomyces
  3040. cerevisiae.Phytomedicine. 2011 Nov 15;18(14):1262-8. doi:
  3041. 10.1016/j.phymed.2011.06.010. Epub2011 Jul 30. PubMed PMID: 21802922.&lt;/div&gt;
  3042. &lt;div style=&quot;text-align: justify;&quot;&gt;
  3043. Carnitine&lt;br /&gt;
  3044. Kiziltunc A, Coğalgil S, Cerrahoğlu L. Carnitine and antioxidants levels
  3045. inpatients with rheumatoid arthritis. Scand J Rheumatol.
  3046. 1998;27(6):441-5. PubMedPMID: 9855215.&lt;/div&gt;
  3047. &lt;div style=&quot;text-align: justify;&quot;&gt;
  3048. &amp;nbsp;Syzygium cumini&lt;/div&gt;
  3049. &lt;div style=&quot;text-align: justify;&quot;&gt;
  3050. &amp;nbsp;De Bona KS, Bellé LP, Sari MH, Thomé G, Schetinger MR, Morsch VM, Boligon A,&lt;br /&gt;
  3051. Athayde ML, Pigatto AS, Moretto MB. Syzygium cumini extract decrease adenosine&lt;br /&gt;
  3052. deaminase, 5&#39;nucleotidase activities and oxidative damage in platelets of&lt;br /&gt;
  3053. diabetic patients. Cell Physiol Biochem. 2010;26(4-5):729-38. doi:&lt;br /&gt;
  3054. 10.1159/000322340. Epub 2010 Oct 29. PubMed PMID: 21063110.&lt;/div&gt;
  3055. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  3056. google_ad_client=&quot;pub-9610428118332343&quot;;
  3057. google_ad_host=&quot;&quot;;
  3058. google_ad_width=200;
  3059. google_ad_height=90;
  3060. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  3061. google_color_border=&quot;EEEECC&quot;;
  3062. google_color_bg=&quot;EEEECC&quot;;
  3063. google_color_link=&quot;445566&quot;;
  3064. google_color_url=&quot;445566&quot;;
  3065. google_color_text=&quot;333333&quot;;
  3066. //--&gt;&lt;/script&gt;
  3067. &lt;script type=&quot;text/javascript&quot;
  3068.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  3069. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2014/11/catalase-antioxidant-heme-enzyme-one-of.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg7jWMvyxsIk_hLRrdzwIT6oTDVxVmcRJXHG4SmJ_yxJvlkc3B_aD5yuARDDVRxCraD4xL2cxIgKskBp3nfIYz8IbhwVhGXNbZVaDe8xaIB1YulmM0S-ORddhVvVfYACRaXD1GC5g/s72-w482-h494-c-no/element1.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-1420426069265773815</guid><pubDate>Wed, 16 Jul 2014 18:35:00 +0000</pubDate><atom:updated>2014-11-24T08:45:32.676-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">1</category><category domain="http://www.blogger.com/atom/ns#">25D(3)</category><category domain="http://www.blogger.com/atom/ns#">AP-1</category><category domain="http://www.blogger.com/atom/ns#">ASK1</category><category domain="http://www.blogger.com/atom/ns#">capsase</category><category domain="http://www.blogger.com/atom/ns#">Catalase</category><category domain="http://www.blogger.com/atom/ns#">epigallocatechin</category><category domain="http://www.blogger.com/atom/ns#">NADP</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">SOD1</category><category domain="http://www.blogger.com/atom/ns#">TBP</category><category domain="http://www.blogger.com/atom/ns#">TRX</category><title>Characterization of human thioredoxin system and the potential cellular responses encoded to observe the Thioredoxin-Trx1 reversibly regulated redox sites.</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  3070. &lt;big&gt;Thioredoxin: human TXN, is a oxidoreductase enzyme in the
  3071.          status of a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7788295&quot;&gt;12 kDa&lt;/a&gt;
  3072.          cellular &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8958209&quot;&gt;redox&lt;/a&gt;-reductase
  3073.  
  3074.  
  3075.  
  3076.  
  3077.  
  3078.  
  3079.  
  3080.  
  3081.  
  3082.  
  3083.  
  3084.  
  3085.  
  3086.  
  3087.          reaction (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11012661&quot;&gt;70-kDa&lt;/a&gt;
  3088.          in bacteria, fungi and plants), a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10232049&quot;&gt;cellular&lt;/a&gt;
  3089.          defense mechanisms against oxidative stress of the cell, and
  3090.          numerous cytosolic processes in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9369469&quot;&gt;all cells&lt;/a&gt;.
  3091.          Txn1 is a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9108029&quot;&gt;pleiotropic&lt;/a&gt;
  3092.          cellular causative gene factor which has &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24062305&quot;&gt;numerous&lt;/a&gt;
  3093.          functions. Chromosome 3&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7601465&quot;&gt;p12-p11&lt;/a&gt;
  3094.          shares homology with human thioredoxin gene Trx1, Trx&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10982790&quot;&gt;80&lt;/a&gt;:
  3095.          9q31.3; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene?term=7295&quot;&gt;§&lt;/a&gt;,
  3096.          &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/92935.html?ID=88800&quot;&gt;‡&lt;/a&gt;). Here &lt;/big&gt;&lt;big&gt;the following reaction is the possible mechanisms of the thioredoxin-catalyzed reduction and re-oxidation of its characteristic cystine residues.&lt;/big&gt;&lt;br /&gt;
  3097. &lt;big&gt; &amp;nbsp;The TXN gene, &lt;/big&gt;&lt;big&gt;consists of the first of 5 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1874447&quot;&gt;exons&lt;/a&gt; separated by 4 introns and is located &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8144037&quot;&gt;22 bp&lt;/a&gt;
  3098.          downstream from the only known basal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16712525&quot;&gt;TATA&lt;/a&gt;
  3099.          box factor &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19018770&quot;&gt;TBP-2&lt;/a&gt;/TXNIP
  3100.  
  3101.  
  3102.  
  3103.  
  3104.          vitamin &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15234975&quot;&gt;D(3)&lt;/a&gt;
  3105.          up-regulated &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15818395&quot;&gt;protein&lt;/a&gt;
  3106.          1-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11778846&quot;&gt;VDUP1&lt;/a&gt;,
  3107.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17012763&quot;&gt;negatively&lt;/a&gt;
  3108.          regulating &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17603038&quot;&gt;TRX&lt;/a&gt;
  3109.          function, and exhibiting &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10419473&quot;&gt;cellular&lt;/a&gt;
  3110.          growth and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12189205&quot;&gt;suppressive&lt;/a&gt;
  3111.          (cancer) activity.&lt;/big&gt;&lt;br /&gt;
  3112. &lt;big&gt; &amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10843682&quot;&gt;TRX&lt;/a&gt;
  3113.          inhibited &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12723971&quot;&gt;Apoptosis&lt;/a&gt;
  3114.          signal-regulating kinase-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18501712&quot;&gt;ASK1&lt;/a&gt;
  3115.          kinase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17561491&quot;&gt;MAP3K&lt;/a&gt;5),
  3116.  
  3117.  
  3118.  
  3119.  
  3120.  
  3121.  
  3122.  
  3123.          activity, dependent on two &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9564042&quot;&gt;cysteine&lt;/a&gt;
  3124.          residues in the N-terminal domain of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16311508&quot;&gt;ASK1&lt;/a&gt;
  3125.          on the redox (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15818395&quot;&gt;regulation&lt;/a&gt;)
  3126.          forming intramolecular disulfide between the status of TXN.
  3127.          Two cysteine residues (N-terminal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12089063&quot;&gt;C32S&lt;/a&gt;
  3128.          or Trx C-terminal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17652454&quot;&gt;C35S&lt;/a&gt;
  3129.          and/or a Trx-CS double &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10419473&quot;&gt;mutation&lt;/a&gt;)
  3130.          remaining trapped with the Ask1 as a inactive high-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17724081&quot;&gt;molecular-mass&lt;/a&gt;
  3131.          complex, blocking its reduction to release Trx from ASK1
  3132.          depends on intramolecular disulfide to catalyze the reduction
  3133.          of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24062305&quot;&gt;redox&lt;/a&gt;
  3134.          regulation of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17258890&quot;&gt;TRX&lt;/a&gt;.
  3135.          Trx and a thiol-specific antioxidant &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15792362&quot;&gt;thioredoxin
  3136.  
  3137.  
  3138.  
  3139.  
  3140.            peroxidase&lt;/a&gt;-2 orthologue (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8926222.html?nr=8&amp;amp;pmid=11744405&quot;&gt;Tpx&lt;/a&gt;)
  3141.          in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19018770&quot;&gt;various&lt;/a&gt;*
  3142.          biological &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21266044&quot;&gt;phenomena&lt;/a&gt;
  3143.          is involved in redox regulation &lt;/big&gt;&lt;big&gt;(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18544525&quot;&gt;NADPH&lt;/a&gt;-the
  3144.  
  3145.  
  3146.  
  3147.  
  3148.  
  3149.  
  3150.  
  3151.          thioredoxin &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20536427&quot;&gt;system&lt;/a&gt;)
  3152.        &lt;/big&gt;&lt;big&gt;of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3170595&quot;&gt;dithiol&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19385090&quot;&gt;disulfide&lt;/a&gt;
  3153.          active site.&lt;/big&gt;&lt;br /&gt;
  3154. &lt;big&gt; &amp;nbsp;An &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11012661&quot;&gt;apoptosis&lt;/a&gt;
  3155.          signal transduction pathway through stimulus-coupled &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23212077&quot;&gt;S-nitrosation&lt;/a&gt;
  3156.          of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;cysteine&lt;/a&gt;,
  3157.          has &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20536427&quot;&gt;two&lt;/a&gt;
  3158.          critical (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9315320&quot;&gt;almost
  3159.  
  3160.  
  3161.  
  3162.  
  3163.  
  3164.  
  3165.  
  3166.            identical&lt;/a&gt;) cysteine residues in the Trx redox-active
  3167.          center. Where a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16766796&quot;&gt;disulfide&lt;/a&gt;
  3168.          exchange reaction between &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19244202&quot;&gt;oxidized&lt;/a&gt;
  3169.          Txnip [thioredoxin-interacting protein; mouse &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10814541&quot;&gt;Vdup1&lt;/a&gt;]
  3170.          and reduced TXN occurs. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16766796&quot;&gt;Txnip&lt;/a&gt;
  3171.        &lt;/big&gt;&lt;big&gt;(-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17021908&quot;&gt;when used&lt;/a&gt;
  3172.          to investigate &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15792362&quot;&gt;cardiac&lt;/a&gt;
  3173.          hypertrophy) &lt;/big&gt;&lt;big&gt;is a regulator of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17916779&quot;&gt;biomechanical&lt;/a&gt;
  3174.          signaling. Hydrogen peroxide downregulated expression is the
  3175.          only &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16766796&quot;&gt;known&lt;/a&gt;
  3176.          function associated with an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19074570&quot;&gt;incomplete&lt;/a&gt;
  3177.          TRX response through stimulus-coupled S-nitrosation of
  3178.          cysteine residues. Peroxiredoxin &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17707404&quot;&gt;PrxIII&lt;/a&gt;-&#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21266044&quot;&gt;Tpx&lt;/a&gt;1
  3179.          serves as&#39; a tandem (dimer) thioredoxin (Trx2) and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3170595&quot;&gt;NADP&lt;/a&gt;-linked
  3180.  
  3181.  
  3182.  
  3183.  
  3184.  
  3185.  
  3186.  
  3187.  
  3188.          thioredoxin reductase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17707404&quot;&gt;TRR2&lt;/a&gt;-TxnR1),
  3189.  
  3190.  
  3191.  
  3192.  
  3193.          are Trx mechanisms of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7640917&quot;&gt;two
  3194.            electron&lt;/a&gt; donor system.&lt;/big&gt;&lt;br /&gt;
  3195. &lt;big&gt; &amp;nbsp;Cytosolic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18497292&quot;&gt;caspase-3&lt;/a&gt;
  3196.          was maintained by S-nitrosation, consistent with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18544525&quot;&gt;cytosolic&lt;/a&gt;
  3197.          and mitochondria, &lt;/big&gt;&lt;big&gt;Trx-1 &lt;/big&gt;&lt;big&gt;contain &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18979503&quot;&gt;equivalent&lt;/a&gt;
  3198.          Trx &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16987025&quot;&gt;systems&lt;/a&gt;,
  3199.          which enabled identification of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18544525&quot;&gt;caspase-3&lt;/a&gt;
  3200.          substrates &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12089063&quot;&gt;where TXN&lt;/a&gt;
  3201.          may regulate S-nitrosation with the redox center of TXN
  3202.          specific (C73S) to Nitric oxide-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18497292&quot;&gt;NO&lt;/a&gt;
  3203.          cellular signal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19328186&quot;&gt;transduction&lt;/a&gt;
  3204.          associated with&amp;nbsp; inhibition of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17606900&quot;&gt;apoptosis
  3205.            or&lt;/a&gt; &lt;/big&gt;&lt;big&gt; mutant &lt;/big&gt;&lt;big&gt;Trx neurotoxicity. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21479441&quot;&gt;EGCG&lt;/a&gt;°&amp;nbsp;&lt;/big&gt;&lt;big&gt;(epigallocatechin-3-gallate)&lt;/big&gt;&lt;big&gt;
  3206.          may be useful in cell survival &lt;/big&gt;&lt;big&gt;on caspase-(&lt;/big&gt;&lt;big&gt;3_&lt;/big&gt;&lt;big&gt;dependent)-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19328186&quot;&gt;neuronal&lt;/a&gt;
  3207.          apoptosis where a membrane reaction, a reduced &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11751890&quot;&gt;hormesis&lt;/a&gt;
  3208.          consequently triggers the apoptosis effect&lt;/big&gt;&lt;big&gt; &lt;/big&gt;&lt;big&gt;and
  3209.  
  3210.  
  3211.  
  3212.  
  3213.  
  3214.          direct or indirectly numerous &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17606900&quot;&gt;protein-protein&lt;/a&gt;
  3215.          interactions and basal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20460580&quot;&gt;cofactor&lt;/a&gt;
  3216.          substrates&lt;/big&gt;&lt;big&gt; which occur&lt;/big&gt;&lt;big&gt; between &lt;/big&gt;&lt;big&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20660346&quot;&gt;caspase-3&lt;/a&gt;
  3217.          and &lt;/big&gt;&lt;big&gt;Trx. The effect of&amp;nbsp;&lt;/big&gt;&lt;big&gt; exercise &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19074570&quot;&gt;training&lt;/a&gt;
  3218.          via activation of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24549090&quot;&gt;caspase-3&lt;/a&gt;
  3219.          has a decrease in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12016152&quot;&gt;superoxide&lt;/a&gt;,
  3220.          and increase of Trx-1 levels in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19074570&quot;&gt;brain&lt;/a&gt;.
  3221.          Protection from &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17972886&quot;&gt;mechanical&lt;/a&gt;
  3222.          stress identified, NSF- &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21324905&quot;&gt;N-ethylmaleimide&lt;/a&gt;
  3223.          transduced into&lt;/big&gt;&lt;big&gt; a TRX &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17012768&quot;&gt;peroxidase&lt;/a&gt;
  3224.          response via&lt;/big&gt;&lt;big&gt; mechanical force of a typical&lt;/big&gt;&lt;big&gt;
  3225.          transnitrosylated&amp;nbsp;&lt;/big&gt; &lt;big&gt;Casp3, &lt;/big&gt;&lt;big&gt;attenuated&amp;nbsp;
  3226.  
  3227.  
  3228.  
  3229.          Trx1&lt;/big&gt;&lt;big&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20660346&quot;&gt;2-&lt;/a&gt;&lt;/big&gt;&lt;big&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20660346&quot;&gt;cysteines&lt;/a&gt;
  3230.          which &lt;/big&gt;&lt;big&gt;directly transnitrosylates Peroxiredoxins.
  3231.          C32S ( &lt;/big&gt;&lt;big&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8805557&quot;&gt;redox
  3232.            potential&lt;/a&gt;) was identified as thiol-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15818395&quot;&gt;reducing
  3233.            system&lt;/a&gt;, which &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;lacks&lt;/a&gt;
  3234.          reducing &lt;/big&gt;&lt;big&gt;activitiy &lt;/big&gt;&lt;big&gt;(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12244325&quot;&gt;non&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18544525&quot;&gt;active&lt;/a&gt;
  3235.          C&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12816947&quot;&gt;69&lt;/a&gt;S
  3236.          and Cys(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9369469&quot;&gt;73&lt;/a&gt;)
  3237.          both monomeric) or a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;reversible&lt;/a&gt;
  3238.          regulating function in the presence of caspase 3 activity is a
  3239.          process found in the presence of NADP and TrxR.&lt;/big&gt;&lt;br /&gt;
  3240. &lt;big&gt;&amp;nbsp;There are at least two &lt;/big&gt;&lt;big&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15485910&quot;&gt;thioredoxin&lt;/a&gt;
  3241.        &lt;/big&gt;&lt;big&gt;reductive or &lt;/big&gt;&lt;big&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21453190&quot;&gt;oxidative&lt;/a&gt;**
  3242.  
  3243.  
  3244.  
  3245.  
  3246.  
  3247.  
  3248.  
  3249.        &lt;/big&gt;&lt;big&gt;(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11012661&quot;&gt;reductases&lt;/a&gt;
  3250.          / &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20660346&quot;&gt;peroxiredoxin&lt;/a&gt;)
  3251.  
  3252.  
  3253.  
  3254.  
  3255.  
  3256.  
  3257.  
  3258.        &lt;/big&gt;&lt;big&gt;regulated&lt;/big&gt;&lt;big&gt; systems. The mutant 32&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11702225&quot;&gt;CXXC&lt;/a&gt;35&#39;
  3259.  
  3260.  
  3261.  
  3262.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17008712&quot;&gt;motif&lt;/a&gt;
  3263.          of thioredoxin &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;nitrosation&lt;/a&gt;
  3264.          sites, where &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11807942&quot;&gt;two
  3265.            cysteines&lt;/a&gt; are separated by two other amino acids, and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;codes&lt;/a&gt;
  3266.          for an additional &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20662007&quot;&gt;three&lt;/a&gt;
  3267.          cysteines where the Cys 62&lt;/big&gt;&lt;big&gt;/C&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16115022&quot;&gt;73&lt;/a&gt;S (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9369469&quot;&gt;not
  3268.            monomers&lt;/a&gt;) sidechain the active site of &lt;/big&gt;&lt;big&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20661909&quot;&gt;Cys 62&lt;/a&gt;&lt;/big&gt;&lt;big&gt;
  3269.          also can form several disulphides and be modified by the
  3270.          carbon-bonded s&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2684271&quot;&gt;ulfhydryl&lt;/a&gt;,
  3271. where the&amp;nbsp;          thiol &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8805557&quot;&gt;reducing&lt;/a&gt;
  3272.          system, was evident.&lt;/big&gt;&lt;br /&gt;
  3273. &lt;big&gt; &amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1332947&quot;&gt;Intracellular&lt;/a&gt;
  3274.          TRX/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8049254&quot;&gt;ADF&lt;/a&gt;
  3275.          (Adult T cell &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15818395&quot;&gt;leukemia&lt;/a&gt;-derived
  3276.  
  3277.  
  3278.  
  3279.  
  3280.  
  3281.  
  3282.  
  3283.  
  3284.  
  3285.  
  3286.  
  3287.  
  3288.  
  3289.  
  3290.  
  3291.  
  3292.  
  3293.  
  3294.          factor &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11841832&quot;&gt;HTLV-I&lt;/a&gt;)
  3295.          can regulate cell &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21526215&quot;&gt;nuclei&lt;/a&gt;,
  3296.          protein-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9143692&quot;&gt;nucleic&lt;/a&gt;
  3297.          acid interactions. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20660346&quot;&gt;Transnitrosylation&lt;/a&gt;
  3298.          and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;denitrosylation&lt;/a&gt;
  3299.          is a reversible Post-translational (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21453190&quot;&gt;PTM&lt;/a&gt;)
  3300.          altered by redox &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9108029&quot;&gt;modification&lt;/a&gt;
  3301.          of different cysteine residues (C&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17606900&quot;&gt;32&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23212077&quot;&gt;73&lt;/a&gt;S)
  3302.          in Trx1, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20662007&quot;&gt;S-nitrosation&lt;/a&gt;
  3303.          or its interactions with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21453190&quot;&gt;other&lt;/a&gt;
  3304.          proteins and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16916647&quot;&gt;DNA-dependent&lt;/a&gt;
  3305.          nuclear processes. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10585464&quot;&gt;NFKappaB
  3306.          &lt;/a&gt;- &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15824742&quot;&gt;
  3307.            REF-1&lt;/a&gt; &lt;/big&gt;&lt;big&gt; redox factor 1&lt;/big&gt;&lt;big&gt;&amp;nbsp;
  3308.          involving &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7788295&quot;&gt;Cys62&lt;/a&gt;&lt;/big&gt;&lt;big&gt;,
  3309.          in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8736558&quot;&gt;two
  3310.  
  3311.  
  3312.  
  3313.            complexes&lt;/a&gt;, are &lt;/big&gt;&lt;big&gt;correlated as &lt;/big&gt;&lt;big&gt;N ⇔ C-terminal&lt;/big&gt;&lt;big&gt;
  3314.          responses with&amp;nbsp; TRX-1 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9143692&quot;&gt;nuclear
  3315.            migration&lt;/a&gt; through the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17115890&quot;&gt;reduction&lt;/a&gt;
  3316.          of a pleiotropic cellular factor. TRX &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19628032&quot;&gt;redox&lt;/a&gt;
  3317.          activities of protein-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9143692&quot;&gt;protein&lt;/a&gt;
  3318.          cysteine residues is identical to a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9108029&quot;&gt;DNA repair&lt;/a&gt;
  3319.          enzyme through various &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10585464&quot;&gt;cytoplasmic&lt;/a&gt;
  3320.          aspects &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11118054&quot;&gt;mediating&lt;/a&gt;
  3321.          cellular responses in the &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9915858&quot;&gt;nucleus&lt;/a&gt;&#39;.
  3322.  
  3323.  
  3324.  
  3325.          The &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10823822&quot;&gt;DNA&lt;/a&gt;
  3326.          binding &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11012661&quot;&gt;activity&lt;/a&gt;
  3327.          and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19859790&quot;&gt;transactivation&lt;/a&gt;
  3328.          of &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12214272&quot;&gt;AP-1&lt;/a&gt;&#39;
  3329.          activator proteins (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10585464&quot;&gt;JUN&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17652454&quot;&gt;proto&lt;/a&gt;*
  3330.          oncogen) depends on the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8805557&quot;&gt;reduction&lt;/a&gt;
  3331.          between the&lt;/big&gt;&lt;big&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12214272&quot;&gt;sulfhydryl&lt;/a&gt;
  3332.        &lt;/big&gt;&lt;big&gt;of cysteines to keep Trx1 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;reduced&lt;/a&gt;,
  3333.          is demonstrated in cells&lt;/big&gt;&lt;big&gt;. &lt;/big&gt;&lt;big&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9315320&quot;&gt;Selenium&lt;/a&gt;-dependent
  3334.  
  3335.  
  3336.  
  3337.  
  3338.  
  3339.  
  3340.  
  3341.  
  3342.  
  3343.  
  3344.  
  3345.  
  3346.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20306235&quot;&gt;seleneocysteine&lt;/a&gt;
  3347.          based peroxidase reductants, reduce &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16214824&quot;&gt;Lipoic&lt;/a&gt;
  3348.          acid stereoselectively under the same TRX rather than &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7961915&quot;&gt;GSH-PX1&lt;/a&gt;-glutathione
  3349.  
  3350.  
  3351.  
  3352.  
  3353.  
  3354.  
  3355.  
  3356.  
  3357.  
  3358.  
  3359.  
  3360.  
  3361.  
  3362.  
  3363.  
  3364.  
  3365.  
  3366.  
  3367.          peroxidase oxidative stress &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8702596&quot;&gt;conditions&lt;/a&gt;.&lt;/big&gt;&lt;big&gt;
  3368.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15754001&quot;&gt;Sense&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10232049&quot;&gt;antisense&lt;/a&gt;
  3369.          (TRX) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23212077&quot;&gt;antiapoptoitic&lt;/a&gt;
  3370.          interactions &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;nitrosylated&lt;/a&gt;
  3371.          at Cys73 are &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20660346&quot;&gt;attenuated&lt;/a&gt;
  3372.          and integrated into the host cell under oxidative &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18544525&quot;&gt;conditions&lt;/a&gt;,
  3373.          in which thioredoxin (TRX), and a cellular TRX reducing
  3374.          catalyst agent (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8813721&quot;&gt;DTT&lt;/a&gt;-redox
  3375.  
  3376.  
  3377.  
  3378.  
  3379.  
  3380.  
  3381.  
  3382.          reagent) to S-nitrosoglutathione (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8702596&quot;&gt;GSNO&lt;/a&gt;)
  3383.          intermediate &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12801522&quot;&gt;via&lt;/a&gt;
  3384.          cysteine residues &#39;influences&#39;&lt;/big&gt;&lt;big&gt;-catalyst &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21453190&quot;&gt;mediated&lt;/a&gt;
  3385.        &lt;/big&gt;&lt;big&gt;(post-translational modifications) &lt;/big&gt;&lt;big&gt;PTMs&lt;/big&gt;&lt;big&gt;;
  3386.          and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15818395&quot;&gt;possibly&lt;/a&gt;
  3387.          1,25&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16061374&quot;&gt;D(3)&lt;/a&gt;-Calcitriol;
  3388.  
  3389.  
  3390.  
  3391.  
  3392.  
  3393.  
  3394.  
  3395.  
  3396.  
  3397.  
  3398.  
  3399.  
  3400.  
  3401.  
  3402.  
  3403.  
  3404.  
  3405.          NADPH:&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;oxygen&lt;/a&gt;
  3406.          oxidoreductases correlated with&amp;nbsp; &lt;/big&gt;&lt;big&gt;(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3170595&quot;&gt;Trx-1&lt;/a&gt;)
  3407.        &lt;/big&gt;&lt;big&gt;a protein &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21453190&quot;&gt;disulfide&lt;/a&gt;
  3408.          oxidoreductase.&lt;/big&gt;&lt;br /&gt;
  3409. &lt;big&gt; &amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17012768&quot;&gt;Peroxynitrite&lt;/a&gt;&lt;small&gt;**
  3410.  
  3411.  
  3412.  
  3413.  
  3414.  
  3415.  
  3416.  
  3417.          &lt;/small&gt;converts superoxide to hydrogen peroxide (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24062305&quot;&gt;H2O2&lt;/a&gt;)-induced
  3418.  
  3419.  
  3420.  
  3421.          Trx &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16263712&quot;&gt;degradation&lt;/a&gt;,
  3422.          in concentrations that detoxify &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12386145&quot;&gt;reactive
  3423.            oxygen&lt;/a&gt; species (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17081769&quot;&gt;ROS&lt;/a&gt;)&lt;/big&gt;&lt;big&gt;,
  3424.        &lt;/big&gt;&lt;big&gt;demonstrated by &lt;/big&gt;&lt;big&gt; &lt;/big&gt;&lt;big&gt; superoxide
  3425.          dismutases (SOD)-&lt;/big&gt;&lt;big&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15723974&quot;&gt;catalase&lt;/a&gt;: &lt;/big&gt;&lt;big&gt;&lt;a href=&quot;http://lnwme.blogspot.com/2014/07/characterization-of-human-thioredoxin.html#footnote_4_1125&quot; id=&quot;identifier_4_1125&quot; title=&quot;&quot;&gt;↩&lt;/a&gt;&lt;/big&gt;&lt;big&gt; and peroxidases, &lt;/big&gt;&lt;big&gt;converting superoxide &lt;/big&gt;&lt;big&gt;to
  3426.  
  3427.  
  3428.  
  3429.          hydrogen peroxide which is decomposed to water plus &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;oxidized&lt;/a&gt;
  3430.          thioredoxin to maintain the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20218863&quot;&gt;anti-apoptotic&lt;/a&gt;
  3431.          (C62) function of thioredoxins additional &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;five&lt;/a&gt;
  3432.          sulfhydryl group &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19328186&quot;&gt;thiols&lt;/a&gt;
  3433.          in the fully reduced state, in a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17823364&quot;&gt;Trx-dependent&lt;/a&gt;
  3434.          manner. Reactive oxygen species (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16159878&quot;&gt;ROS&lt;/a&gt;)
  3435.          can cause DNA damage, and uncontrolled cellular &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16424062&quot;&gt;proliferation&lt;/a&gt;
  3436.          or apoptotic death of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22867430&quot;&gt;cancer&lt;/a&gt;
  3437.          cells.The &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9354464&quot;&gt;NADPH&lt;/a&gt;
  3438.          (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9315320&quot;&gt;Trx
  3439.            system&lt;/a&gt;) oxidizing &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16750198&quot;&gt;substrate&lt;/a&gt;-dependent
  3440.  
  3441.  
  3442.  
  3443.  
  3444.  
  3445.  
  3446.  
  3447.  
  3448.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;
  3449.            reduction&lt;/a&gt; of Thioredoxin reductase-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15824742&quot;&gt;TrxR&lt;/a&gt;
  3450.          has a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12214272&quot;&gt;reversibly&lt;/a&gt;
  3451.          modulated role in restoration of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8958209&quot;&gt;GR&lt;/a&gt;
  3452.          (glucocorticoid &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10232049&quot;&gt;receptor&lt;/a&gt;)
  3453.          function, and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20584310&quot;&gt;DNA&lt;/a&gt;
  3454.          binding domain.&lt;/big&gt;&lt;br /&gt;
  3455. &lt;br /&gt;
  3456. &lt;span style=&quot;font-size: x-small;&quot;&gt;(Click on image to Zoom)&lt;/span&gt;&lt;br /&gt;
  3457. &lt;big&gt;&amp;nbsp;&lt;/big&gt;&lt;big&gt; &lt;a href=&quot;https://plus.google.com/photos/100787464692550241934/albums/6031543788040075489/6031551361126214834?hl=en&amp;amp;pid=6031551361126214834&amp;amp;oid=100787464692550241934&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;1XOB&quot; border=&quot;0&quot; height=&quot;126&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj-HkZJBjlc_MRfSlWEWHzQANaKPyk4ZpzTTF5PA4DwL7Md1xBWa9Vla3MeZFdL7j1G8LHrZrp5rtLbVYYtuwUC7AB-rud9e7qcWeueeG-lrkHXio2xF6WHdTOhai47E9It6cWbWQ/w899-h567-no/1XOB_TR1.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;
  3458.          Secreted Trx may participate in removing inhibitors of
  3459.          collagen-degrading metalloproteinases. PMID: &lt;a href=&quot;http://www.uniprot.org/citations/14503974&quot;&gt;14503974&lt;/a&gt; the molecular
  3460.          mechanisms underlying functional the TR1-Trx1 redox pair and
  3461.          structure determination of an active site of the ligand
  3462.          mini-stromelysin-1 TR-1 augmentation composed of TR (Trx
  3463.          reductase activities) the main function of &lt;a href=&quot;http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=TR1&quot;&gt;TR1&lt;/a&gt; here is to
  3464.          reduce Trx1 also validated as a ligand PMID; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23105116&quot;&gt;23105116&lt;/a&gt;, have
  3465.          been characterized between ligand bound and free structures
  3466.          PMID; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20661909&quot;&gt;20661909&lt;/a&gt;, for specific isolation of&amp;nbsp; C35S &lt;/big&gt;&lt;big&gt;
  3467.          sel&lt;/big&gt;&lt;big&gt;enocysteine (SeCys)-containing protein &lt;/big&gt;&lt;big&gt;shows
  3468.  
  3469.  
  3470.  
  3471.  
  3472.  
  3473.  
  3474.          the best docking position found, consists of one strand at
  3475.          position [PROline]76:A.side chain: from the four-stranded
  3476.          antiparallel beta sheet was with wild-type TrxA C32-35S
  3477.          located in the Thioredoxin_fold (PDB accession code 1XOB&lt;/big&gt;&lt;big&gt;:
  3478.          PMID: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15987909&quot;&gt;15987909&lt;/a&gt;&lt;/big&gt;&lt;big&gt;) , TR1 as a single hybrid PDB (Cys32
  3479.          and Cys35 for Trx1, and for TR1) pubmed/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20536427&quot;&gt;20536427&lt;/a&gt; investigate
  3480.          the possible mechanism. {{{During this reduction, the
  3481.          thiol-disulfide oxidoreductase thioredoxin-1 (Trx1) linked&lt;/big&gt;&lt;big&gt;&lt;a href=&quot;https://plus.google.com/photos/100787464692550241934/albums/6031543788040075489/6031881084282980578?hl=en&amp;amp;pid=6031881084282980578&amp;amp;oid=100787464692550241934&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;NADP&quot; border=&quot;0&quot; height=&quot;151&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgqTQlVFCRZ8yODpzpa-Tg8Mgv3ogtxZY1SS-wXJWhyphenhyphen0L6QrHo3XwGQv97rddvmHP46_8AvKu0ufInSgJfZ2cHnjRkmMH9CaKMBF2KBQ989TwMh7fkpKlSI9fG14wbvq2yWMN1gvQ/w752-h567-no/1auc-1aiu-d60_aspartate1.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/big&gt;&lt;big&gt;
  3482.          thioredoxin reductase (TRR2) a working model suggesting that
  3483.          deregulation of the thioredoxin reductase TXNRD1 and|}}} its
  3484.          characteristic substrate thioredoxin (TR [1]), concomitant
  3485.          with diminution of their Trx reductase cellular contents is
  3486.          highly related to glutamate excitotoxicity PMID: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20620191&quot;&gt;20620191&lt;/a&gt;;
  3487.          TR1: hStromelysin-1&lt;br /&gt;
  3488.          &lt;br /&gt;
  3489.          &lt;br /&gt;
  3490.          &amp;nbsp;&lt;a href=&quot;https://plus.google.com/photos/100787464692550241934/albums/6031543788040075489/6031880511750227922?hl=en&amp;amp;pid=6031880511750227922&amp;amp;oid=100787464692550241934&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;enlarge&quot; border=&quot;0&quot; height=&quot;184&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgCPSOfeZt3nTxcc_b76Dh0ucVnZbjgpOXwmgkgFTmofpHg8qucWSY1BMpt5cZMWHurqoEQ_D1aUneddxK2GVchEz3eSsIO6irQY6nX6S2O1UmvK22CQiEQgqZfE2Ln8fEQHfCUGA/w616-h567-no/1auc-1aiu.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;An ET
  3491.          (electron transfer) mechanism from NADPH and another enzyme
  3492.          thioredoxin reductase pubmed/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17369362&quot;&gt;17369362&lt;/a&gt; the charged residue
  3493.          aspartate D60 (Fig.2) pubmed/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9369469&quot;&gt;9369469&lt;/a&gt;/ plays a role in the
  3494.          degradation of proteins and in apoptotic processes induced by
  3495.          oxidative stress PMID: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16263712&quot;&gt;16263712&lt;/a&gt;&amp;nbsp; to determine the effect
  3496.          of&amp;nbsp; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21527993&quot;&gt;zerumbone&lt;/a&gt;
  3497.          ZSD1 (from shampoo ginger; Name: &lt;a href=&quot;http://www.uniprot.org/uniprot/E3W9C4&quot;&gt;Alpha-humulene&lt;/a&gt;)
  3498.          on NADP-malate dehydrogenase,&lt;a href=&quot;https://plus.google.com/photos/100787464692550241934/albums/6031543788040075489/6031881365289478514?hl=en&amp;amp;pid=6031881365289478514&amp;amp;oid=100787464692550241934&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;NADP&quot; border=&quot;0&quot; height=&quot;141&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhbVKC19raKsBNZMijqlxZGxWzzkcZdKethx1NxP7KPEdIuby1LIrfvu-tio4aL41wzQN7HtoSbEXb6oek7oOeXOVUFu4KzDRD8oXNxf0kmRuwT1HqUDbuI1Wmh2v7vYL76X9BGCA/w806-h567-no/nadp2.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt; TRX
  3499.          dependent oxidoreductase, that NADPH does not contain.
  3500.          Monomeric Thioredoxin is present across phyla from humans to
  3501.          plants PMID: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20661909&quot;&gt;20661909&lt;/a&gt;, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11012661&quot;&gt;11012661&lt;/a&gt; mediated in vivo by
  3502.          thioredoxin-catalyzed reduction and re-oxidation of cystine
  3503.          residues PubMed id: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10196131&quot;&gt;10196131&lt;/a&gt; (Fig.3-PDB&lt;/big&gt;&lt;big&gt;: &lt;a href=&quot;http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=1CIV&quot;&gt;1CIV&lt;/a&gt;&lt;/big&gt;&lt;big&gt;,
  3504.          NADP). Trx is able to activate vegetal NADP-malate
  3505.          dehydrogenase PMID: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3170595&quot;&gt;3170595&lt;/a&gt; (excluding the initial methionine)
  3506.          Met is located at the N-terminal - PMID: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11807942&quot;&gt;11807942&lt;/a&gt;, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2684271&quot;&gt;2684271&lt;/a&gt;. &lt;/big&gt;&lt;big&gt;A relatively rigid local configuration for the TRX-aspartate residue D60
  3507. is found but which implies that the (NADP-TrxR) protein fluctuates among
  3508. the numerous protein models and mutations over the time scales
  3509. fluctuations.&lt;/big&gt;&lt;br /&gt;
  3510. &lt;br /&gt;
  3511. &lt;br /&gt;
  3512. &lt;span style=&quot;font-size: xx-small;&quot;&gt; &lt;/span&gt;&lt;br /&gt;
  3513. &lt;br /&gt;
  3514. &lt;li class=&quot;footnote&quot; id=&quot;footnote_4_1125&quot;&gt;&lt;span style=&quot;font-size: xx-small;&quot;&gt;Trx (&lt;a href=&quot;http://lnwme.blogspot.com/2014/07/characterization-of-human-thioredoxin.html&quot;&gt;thioredoxin&lt;/a&gt;) a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16712839&quot;&gt;redox&lt;/a&gt;-regulating protein also &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9409558&quot;&gt;controls&lt;/a&gt; the antioxidant enzyme activity of the main
  3515.    cellular antioxidant enzymes (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10374946&quot;&gt;AOE&lt;/a&gt;)
  3516.    superoxide dismutase (SOD) and catalase.&lt;/span&gt;[&lt;a href=&quot;http://lnwme.blogspot.com/2014/07/characterization-of-human-thioredoxin.html#identifier_4_1125&quot;&gt;↩&lt;/a&gt;]&lt;/li&gt;
  3517. &lt;br /&gt;
  3518. (Reference: 1-189)&lt;br /&gt;
  3519. &lt;a name=&#39;more&#39;&gt;&lt;/a&gt;&lt;br /&gt;
  3520. &lt;br /&gt;
  3521. &lt;div class=&quot;details&quot;&gt;
  3522. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7788295&quot;&gt;Solution
  3523.  
  3524.  
  3525.  
  3526.  
  3527.  
  3528.        structure of human thioredoxin in a mixed disulfide intermediate
  3529.        complex with its target peptide from the transcription factor NF
  3530.        kappa B.&lt;/a&gt;Qin J, Clore GM, Kennedy WM, Huth JR, Gronenborn AM.&lt;span class=&quot;jrnl&quot; title=&quot;Structure (London, England : 1993)&quot;&gt;Structure&lt;/span&gt;.
  3531.      1995 Mar 15;3(3):289-97.PMID:7788295&lt;/div&gt;
  3532. &lt;div class=&quot;details&quot;&gt;
  3533. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8958209&quot;&gt;Thioredoxin:
  3534.  
  3535.  
  3536.  
  3537.  
  3538.  
  3539.        a redox-regulating cellular cofactor for glucocorticoid hormone
  3540.        action. Cross talk between endocrine control of stress response
  3541.        and cellular antioxidant defense system.&lt;/a&gt;Makino Y, Okamoto K,
  3542.      Yoshikawa N, Aoshima M, Hirota K, Yodoi J, Umesono K, Makino I,
  3543.      Tanaka H.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of clinical
  3544.        investigation&quot;&gt;, J Clin Invest&lt;/span&gt;. 1996 Dec
  3545.      1;98(11):2469-77.PMID:8958209&lt;/div&gt;
  3546. &lt;div class=&quot;details&quot;&gt;
  3547. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11012661&quot;&gt;Physiological
  3548.  
  3549.  
  3550.  
  3551.  
  3552.        functions of thioredoxin and thioredoxin reductase.&lt;/a&gt;Arnér ES,
  3553.      Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;European journal of
  3554.        biochemistry / FEBS&quot;&gt;,Eur J Biochem&lt;/span&gt;. 2000
  3555.      Oct;267(20):6102-9. Review.PMID:11012661&lt;/div&gt;
  3556. &lt;div class=&quot;details&quot;&gt;
  3557. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10232049&quot;&gt;Thioredoxin
  3558.  
  3559.  
  3560.  
  3561.  
  3562.        in the endocrine response to stress.&lt;/a&gt;Tanaka H, Makino Y,
  3563.      Okamoto K.&lt;span class=&quot;jrnl&quot; title=&quot;Vitamins and hormones&quot;&gt;Vitam
  3564.        Horm&lt;/span&gt;. 1999;57:153-75. Review.,PMID:10232049&lt;/div&gt;
  3565. &lt;div class=&quot;details&quot;&gt;
  3566. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9369469&quot;&gt;Human
  3567.  
  3568.  
  3569.  
  3570.  
  3571.  
  3572.        thioredoxin homodimers: regulation by pH, role of aspartate 60,
  3573.        and crystal structure of the aspartate 60 --&amp;gt; asparagine
  3574.        mutant.&lt;/a&gt;Andersen JF, Sanders DA, Gasdaska JR, Weichsel A,
  3575.      Powis G, Montfort WR.&lt;span class=&quot;jrnl&quot; title=&quot;Biochemistry&quot;&gt;Biochemistry&lt;/span&gt;.
  3576.      1997 Nov 18;36(46):13979-88.PMID:9369469&lt;/div&gt;
  3577. &lt;div class=&quot;details&quot;&gt;
  3578. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9108029&quot;&gt;AP-1
  3579.  
  3580.  
  3581.  
  3582.  
  3583.        transcriptional activity is regulated by a direct association
  3584.        between thioredoxin and Ref-1.&lt;/a&gt;Hirota K, Matsui M, Iwata S,
  3585.      Nishiyama A, Mori K, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Proceedings
  3586.        of the National Academy of Sciences of the United States of
  3587.        America&quot;&gt;Proc Natl Acad Sci U S A&lt;/span&gt;. 1997 Apr
  3588.      15;94(8):3633-8.PMID:9108029&lt;/div&gt;
  3589. &lt;div class=&quot;details&quot;&gt;
  3590. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24062305&quot;&gt;Thioredoxin
  3591.  
  3592.  
  3593.  
  3594.  
  3595.  
  3596.        1 is inactivated due to oxidation induced by peroxiredoxin under
  3597.        oxidative stress and reactivated by the glutaredoxin system.&lt;/a&gt;Du
  3598.  
  3599.  
  3600.  
  3601.  
  3602.      Y, Zhang H, Zhang X, Lu J, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;.
  3603.      2013 Nov 8;288(45):32241-7. doi: 10.1074/jbc.M113.495150. Epub
  3604.      2013 Sep 23.PMID:24062305&lt;/div&gt;
  3605. &lt;div class=&quot;details&quot;&gt;
  3606. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7601465&quot;&gt;Thioredoxin,
  3607.  
  3608.  
  3609.  
  3610.  
  3611.        a mediator of growth inhibition, maps to 9q31.&lt;/a&gt;Heppell-Parton
  3612.      A, Cahn A, Bench A, Lowe N, Lehrach H, Zehetner G, Rabbitts P.&lt;span class=&quot;jrnl&quot; title=&quot;Genomics&quot;&gt;Genomics&lt;/span&gt;. 1995 Mar
  3613.      20;26(2):379-81.PMID:7601465&lt;/div&gt;
  3614. &lt;div class=&quot;details&quot;&gt;
  3615. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10982790&quot;&gt;Truncated
  3616.  
  3617.  
  3618.  
  3619.  
  3620.  
  3621.        thioredoxin is a mitogenic cytokine for resting human peripheral
  3622.        blood mononuclear cells and is present in human plasma.&lt;/a&gt;Pekkari
  3623.  
  3624.  
  3625.  
  3626.  
  3627.      K, Gurunath R, Arner ES, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The
  3628.        Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2000 Dec
  3629.      1;275(48):37474-80.PMID:10982790&lt;/div&gt;
  3630. &lt;div class=&quot;details&quot;&gt;
  3631. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1874447&quot;&gt;Isolation
  3632.  
  3633.  
  3634.  
  3635.  
  3636.        and characterization of human thioredoxin-encoding genes.&lt;/a&gt;Tonissen
  3637.  
  3638.  
  3639.  
  3640.  
  3641.      KF, Wells JR.&lt;span class=&quot;jrnl&quot; title=&quot;Gene&quot;&gt;Gene&lt;/span&gt;. 1991 Jun
  3642.      30;102(2):221-8.PMID:1874447&lt;/div&gt;
  3643. &lt;div class=&quot;details&quot;&gt;
  3644. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8144037&quot;&gt;Genomic
  3645.  
  3646.  
  3647.  
  3648.  
  3649.        cloning of human thioredoxin-encoding gene: mapping of the
  3650.        transcription start point and analysis of the promoter.&lt;/a&gt;Kaghad
  3651.  
  3652.  
  3653.  
  3654.  
  3655.      M, Dessarps F, Jacquemin-Sablon H, Caput D, Fradelizi D, Wollman
  3656.      EE.&lt;span class=&quot;jrnl&quot; title=&quot;Gene&quot;&gt;Gene&lt;/span&gt;. 1994 Mar
  3657.      25;140(2):273-8.PMID:8144037&lt;/div&gt;
  3658. &lt;div class=&quot;details&quot;&gt;
  3659. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16712525&quot;&gt;The
  3660.  
  3661.  
  3662.  
  3663.  
  3664.        tert-butylhydroquinone-mediated activation of the human
  3665.        thioredoxin gene reveals a novel promoter structure.&lt;/a&gt;Osborne
  3666.      SA, Hawkes HJ, Baldwin BL, Alexander KA, Svingen T, Clarke FM,
  3667.      Tonissen KF.&lt;span class=&quot;jrnl&quot; title=&quot;The Biochemical journal&quot;&gt;Biochem
  3668.  
  3669.  
  3670.  
  3671.  
  3672.        J&lt;/span&gt;. 2006 Sep 1;398(2):269-77.PMID:16712525&lt;/div&gt;
  3673. &lt;div class=&quot;details&quot;&gt;
  3674. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19018770&quot;&gt;Involvement
  3675.  
  3676.  
  3677.  
  3678.  
  3679.        of thioredoxin-binding protein 2 in the antitumor activity of
  3680.        CD437.&lt;/a&gt;Matsuoka S, Tsuchiya H, Sakabe T, Watanabe Y,
  3681.      Hoshikawa Y, Kurimasa A, Itamochi H, Harada T, Terakawa N,
  3682.      Masutani H, Yodoi J, Shiota G.&lt;span class=&quot;jrnl&quot; title=&quot;Cancer
  3683.        science&quot;&gt;Cancer Sci&lt;/span&gt;. 2008 Dec;99(12):2485-90. doi:
  3684.      10.1111/j.1349-7006.2008.00979.x. Epub 2008 Nov 17.PMID:19018770&lt;/div&gt;
  3685. &lt;div class=&quot;details&quot;&gt;
  3686. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15234975&quot;&gt;Importin
  3687.  
  3688.  
  3689.  
  3690.  
  3691.        alpha1 (Rch1) mediates nuclear translocation of
  3692.        thioredoxin-binding protein-2/vitamin D(3)-up-regulated protein
  3693.        1.&lt;/a&gt;Nishinaka Y, Masutani H, Oka S, Matsuo Y, Yamaguchi Y,
  3694.      Nishio K, Ishii Y, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal
  3695.        of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2004 Sep
  3696.      3;279(36):37559-65. Epub 2004 Jul 2.PMID:15234975&lt;/div&gt;
  3697. &lt;div class=&quot;details&quot;&gt;
  3698. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15818395&quot;&gt;The
  3699.  
  3700.  
  3701.  
  3702.  
  3703.        thioredoxin system in retroviral infection and apoptosis.&lt;/a&gt;Masutani
  3704.  
  3705.  
  3706.  
  3707.  
  3708.      H, Ueda S, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Cell death and
  3709.        differentiation&quot;&gt;Cell Death Differ&lt;/span&gt;. 2005 Aug;12 Suppl
  3710.      1:991-8. Review.PMID:15818395&lt;/div&gt;
  3711. &lt;div class=&quot;details&quot;&gt;
  3712. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11778846&quot;&gt;Regulatory
  3713.  
  3714.  
  3715.  
  3716.  
  3717.        roles of thioredoxin in oxidative stress-induced cellular
  3718.        responses.&lt;/a&gt;Nishinaka Y, Masutani H, Nakamura H, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Redox report : communications in free
  3719.        radical research&quot;&gt;Redox Rep&lt;/span&gt;. 2001;6(5):289-95.
  3720.      Review.PMID:11778846&lt;/div&gt;
  3721. &lt;div class=&quot;details&quot;&gt;
  3722. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17012763&quot;&gt;Thioredoxin-binding
  3723.  
  3724.  
  3725.  
  3726.  
  3727.        protein-2 (TBP-2): its potential roles in the aging process.&lt;/a&gt;Yoshida
  3728.  
  3729.  
  3730.  
  3731.  
  3732.      T, Kondo N, Oka S, Ahsan MK, Hara T, Masutani H, Nakamura H, Yodoi
  3733.      J.&lt;span class=&quot;jrnl&quot; title=&quot;BioFactors (Oxford, England)&quot;&gt;Biofactors&lt;/span&gt;.
  3734.      2006;27(1-4):47-51. Review.PMID:17012763&lt;/div&gt;
  3735. &lt;div class=&quot;details&quot;&gt;
  3736. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17603038&quot;&gt;Regulation
  3737.  
  3738.  
  3739.  
  3740.  
  3741.        of the bioavailability of thioredoxin in the lens by a specific
  3742.        thioredoxin-binding protein (TBP-2).&lt;/a&gt;Liyanage NP, Fernando
  3743.      MR, Lou MF.&lt;span class=&quot;jrnl&quot; title=&quot;Experimental eye research&quot;&gt;Exp
  3744.  
  3745.  
  3746.  
  3747.  
  3748.        Eye Res&lt;/span&gt;. 2007 Aug;85(2):270-9. Epub 2007 May
  3749.      21.PMID:17603038&lt;/div&gt;
  3750. &lt;div class=&quot;details&quot;&gt;
  3751. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10419473&quot;&gt;Identification
  3752.  
  3753.  
  3754.  
  3755.  
  3756.  
  3757.        of thioredoxin-binding protein-2/vitamin D(3) up-regulated
  3758.        protein 1 as a negative regulator of thioredoxin function and
  3759.        expression.&lt;/a&gt;Nishiyama A, Matsui M, Iwata S, Hirota K,
  3760.      Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol
  3761.        Chem&lt;/span&gt;. 1999 Jul 30;274(31):21645-50.PMID:10419473&lt;/div&gt;
  3762. &lt;div class=&quot;details&quot;&gt;
  3763. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12189205&quot;&gt;The
  3764.  
  3765.  
  3766.  
  3767.  
  3768.  
  3769.        histone deacetylase inhibitor SAHA arrests cancer cell growth,
  3770.        up-regulates thioredoxin-binding protein-2, and down-regulates
  3771.        thioredoxin.&lt;/a&gt;Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA,
  3772.      Marks PA, Richon VM.&lt;span class=&quot;jrnl&quot; title=&quot;Proceedings of the
  3773.        National Academy of Sciences of the United States of America&quot;&gt;Proc
  3774.  
  3775.  
  3776.  
  3777.  
  3778.        Natl Acad Sci U S A&lt;/span&gt;. 2002 Sep 3;99(18):11700-5. Epub 2002
  3779.      Aug 20.PMID:12189205&lt;/div&gt;
  3780. &lt;div class=&quot;details&quot;&gt;
  3781. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10843682&quot;&gt;Vitamin
  3782.  
  3783.  
  3784.  
  3785.  
  3786.        D3 up-regulated protein 1 mediates oxidative stress via
  3787.        suppressing the thioredoxin function.&lt;/a&gt;Junn E, Han SH, Im JY,
  3788.      Yang Y, Cho EW, Um HD, Kim DK, Lee KW, Han PL, Rhee SG, Choi I.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of immunology (Baltimore, Md. :
  3789.        1950)&quot;&gt;J Immunol&lt;/span&gt;. 2000 Jun
  3790.      15;164(12):6287-95.PMID:10843682&lt;/div&gt;
  3791. &lt;div class=&quot;details&quot;&gt;
  3792. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12723971&quot;&gt;Differential
  3793.  
  3794.  
  3795.  
  3796.  
  3797.  
  3798.        role of glutaredoxin and thioredoxin in metabolic oxidative
  3799.        stress-induced activation of apoptosis signal-regulating kinase
  3800.        1.&lt;/a&gt;Song JJ, Lee YJ.&lt;span class=&quot;jrnl&quot; title=&quot;The Biochemical
  3801.        journal&quot;&gt;Biochem J&lt;/span&gt;. 2003 Aug 1;373(Pt
  3802.      3):845-53.PMID:12723971&lt;/div&gt;
  3803. &lt;div class=&quot;details&quot;&gt;
  3804. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18501712&quot;&gt;A
  3805.        novel function of peroxiredoxin 1 (Prx-1) in apoptosis
  3806.        signal-regulating kinase 1 (ASK1)-mediated signaling pathway.&lt;/a&gt;Kim
  3807.  
  3808.  
  3809.  
  3810.  
  3811.      SY, Kim TJ, Lee KY.&lt;span class=&quot;jrnl&quot; title=&quot;FEBS letters&quot;&gt;FEBS
  3812.        Lett&lt;/span&gt;. 2008 Jun 11;582(13):1913-8. doi:
  3813.      10.1016/j.febslet.2008.05.015. Epub 2008 May 22.PMID:18501712&lt;/div&gt;
  3814. &lt;div class=&quot;details&quot;&gt;
  3815. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17561491&quot;&gt;A
  3816.        novel class of antioxidants inhibit LPS induction of tissue
  3817.        factor by selective inhibition of the activation of ASK1 and MAP
  3818.        kinases.&lt;/a&gt;Luyendyk JP, Piper JD, Tencati M, Reddy KV, Holscher
  3819.      T, Zhang R, Luchoomun J, Chen X, Min W, Kunsch C, Mackman N.&lt;span class=&quot;jrnl&quot; title=&quot;Arteriosclerosis, thrombosis, and vascular
  3820.        biology&quot;&gt;Arterioscler Thromb Vasc Biol&lt;/span&gt;. 2007
  3821.      Aug;27(8):1857-63. Epub 2007 Jun 7.PMID:17561491&lt;/div&gt;
  3822. &lt;div class=&quot;details&quot;&gt;
  3823. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9564042&quot;&gt;Mammalian
  3824.  
  3825.  
  3826.  
  3827.  
  3828.        thioredoxin is a direct inhibitor of apoptosis signal-regulating
  3829.        kinase (ASK) 1.&lt;/a&gt;Saitoh M, Nishitoh H, Fujii M, Takeda K,
  3830.      Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H.&lt;span class=&quot;jrnl&quot; title=&quot;The EMBO journal&quot;&gt;EMBO J&lt;/span&gt;. 1998 May
  3831.      1;17(9):2596-606.PMID:9564042&lt;/div&gt;
  3832. &lt;div class=&quot;details&quot;&gt;
  3833. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16311508&quot;&gt;Involvement
  3834.  
  3835.  
  3836.  
  3837.  
  3838.        of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and
  3839.        Alzheimer&#39;s disease.&lt;/a&gt;Akterin S, Cowburn RF, Miranda-Vizuete
  3840.      A, Jiménez A, Bogdanovic N, Winblad B, Cedazo-Minguez A.&lt;span class=&quot;jrnl&quot; title=&quot;Cell death and differentiation&quot;&gt;Cell Death
  3841.        Differ&lt;/span&gt;. 2006 Sep;13(9):1454-65. Epub 2005 Nov
  3842.      25.PMID:16311508&lt;/div&gt;
  3843. &lt;div class=&quot;details&quot;&gt;
  3844. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15818395&quot;&gt;The
  3845.  
  3846.  
  3847.  
  3848.  
  3849.        thioredoxin system in retroviral infection and apoptosis.&lt;/a&gt;Masutani
  3850.  
  3851.  
  3852.  
  3853.  
  3854.      H, Ueda S, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Cell death and
  3855.        differentiation&quot;&gt;Cell Death Differ&lt;/span&gt;. 2005 Aug;12 Suppl
  3856.      1:991-8. Review.PMID:15818395&lt;/div&gt;
  3857. &lt;div class=&quot;details&quot;&gt;
  3858. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12089063&quot;&gt;Thioredoxin
  3859.  
  3860.  
  3861.  
  3862.  
  3863.  
  3864.        promotes ASK1 ubiquitination and degradation to inhibit
  3865.        ASK1-mediated apoptosis in a redox activity-independent manner.&lt;/a&gt;Liu
  3866.  
  3867.  
  3868.  
  3869.  
  3870.      Y, Min W.&lt;span class=&quot;jrnl&quot; title=&quot;Circulation research&quot;&gt;Circ Res&lt;/span&gt;.
  3871.      2002 Jun 28;90(12):1259-66.PMID:12089063&lt;/div&gt;
  3872. &lt;div class=&quot;details&quot;&gt;
  3873. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17652454&quot;&gt;Disulfide
  3874.  
  3875.  
  3876.  
  3877.  
  3878.  
  3879.        Bond-mediated multimerization of Ask1 and its reduction by
  3880.        thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal
  3881.        kinase activation and apoptosis.&lt;/a&gt;Nadeau PJ, Charette SJ,
  3882.      Toledano MB, Landry J.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular biology
  3883.        of the cell&quot;&gt;Mol Biol Cell&lt;/span&gt;. 2007 Oct;18(10):3903-13. Epub
  3884.      2007 Jul 25.PMID:17652454&lt;/div&gt;
  3885. &lt;div class=&quot;details&quot;&gt;
  3886. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10419473&quot;&gt;Identification
  3887.  
  3888.  
  3889.  
  3890.  
  3891.  
  3892.        of thioredoxin-binding protein-2/vitamin D(3) up-regulated
  3893.        protein 1 as a negative regulator of thioredoxin function and
  3894.        expression.&lt;/a&gt;Nishiyama A, Matsui M, Iwata S, Hirota K,
  3895.      Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol
  3896.        Chem&lt;/span&gt;. 1999 Jul 30;274(31):21645-50.PMID:10419473&lt;/div&gt;
  3897. &lt;div class=&quot;details&quot;&gt;
  3898. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17724081&quot;&gt;Thioredoxin
  3899.  
  3900.  
  3901.  
  3902.  
  3903.  
  3904.        and TRAF family proteins regulate reactive oxygen
  3905.        species-dependent activation of ASK1 through reciprocal
  3906.        modulation of the N-terminal homophilic interaction of ASK1.&lt;/a&gt;Fujino
  3907.  
  3908.  
  3909.  
  3910.  
  3911.      G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K, Ichijo
  3912.      H.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular and cellular biology&quot;&gt;Mol
  3913.        Cell Biol&lt;/span&gt;. 2007 Dec;27(23):8152-63. Epub 2007 Aug
  3914.      27.PMID:17724081&lt;/div&gt;
  3915. &lt;div class=&quot;details&quot;&gt;
  3916. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24062305&quot;&gt;Thioredoxin
  3917.  
  3918.  
  3919.  
  3920.  
  3921.  
  3922.        1 is inactivated due to oxidation induced by peroxiredoxin under
  3923.        oxidative stress and reactivated by the glutaredoxin system.&lt;/a&gt;Du
  3924.  
  3925.  
  3926.  
  3927.  
  3928.      Y, Zhang H, Zhang X, Lu J, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;.
  3929.      2013 Nov 8;288(45):32241-7. doi: 10.1074/jbc.M113.495150. Epub
  3930.      2013 Sep 23.PMID:24062305&lt;/div&gt;
  3931. &lt;div class=&quot;details&quot;&gt;
  3932. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17258890&quot;&gt;Granzyme
  3933.  
  3934.  
  3935.  
  3936.  
  3937.  
  3938.        B induction signalling pathway in acute myeloid leukemia cell
  3939.        lines stimulated by tumor necrosis factor alpha and Fas ligand.&lt;/a&gt;Guilloton
  3940.  
  3941.  
  3942.  
  3943.  
  3944.      F, Jean C, de Thonel A, Laurent G, Quillet-Mary A.&lt;span class=&quot;jrnl&quot; title=&quot;Cellular signalling&quot;&gt;Cell Signal&lt;/span&gt;.
  3945.      2007 Jun;19(6):1132-40. Epub 2007 Jan 3.PMID:17258890&lt;/div&gt;
  3946. &lt;div class=&quot;details&quot;&gt;
  3947. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15792362&quot;&gt;Effects
  3948.  
  3949.  
  3950.  
  3951.  
  3952.        of dietary selenium on post-ischemic expression of antioxidant
  3953.        mRNA.&lt;/a&gt;Venardos K, Ashton K, Headrick J, Perkins A.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular and cellular biochemistry&quot;&gt;Mol
  3954.        Cell Biochem&lt;/span&gt;. 2005 Feb;270(1-2):131-8.PMID:15792362&lt;/div&gt;
  3955. &lt;div class=&quot;details&quot;&gt;
  3956. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11744405&quot;&gt;Thioredoxin
  3957.  
  3958.  
  3959.  
  3960.  
  3961.        reductase - its role in epidermal redox status.&lt;/a&gt;Schallreuter
  3962.      KU, Wood JM.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of photochemistry
  3963.        and photobiology. B, Biology&quot;&gt;J Photochem Photobiol B&lt;/span&gt;.
  3964.      2001 Nov 15;64(2-3):179-84. Review.PMID:1174440&lt;/div&gt;
  3965. &lt;div class=&quot;details&quot;&gt;
  3966. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19018770&quot;&gt;Involvement
  3967.  
  3968.  
  3969.  
  3970.  
  3971.        of thioredoxin-binding protein 2 in the antitumor activity of
  3972.        CD437.&lt;/a&gt;Matsuoka S, Tsuchiya H, Sakabe T, Watanabe Y,
  3973.      Hoshikawa Y, Kurimasa A, Itamochi H, Harada T, Terakawa N,
  3974.      Masutani H, Yodoi J, Shiota G.&lt;span class=&quot;jrnl&quot; title=&quot;Cancer
  3975.        science&quot;&gt;Cancer Sci&lt;/span&gt;. 2008 Dec;99(12):2485-90. doi:
  3976.      10.1111/j.1349-7006.2008.00979.x. Epub 2008 Nov 17.PMID:19018770&lt;/div&gt;
  3977. &lt;div class=&quot;details&quot;&gt;
  3978. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21266044&quot;&gt;The
  3979.  
  3980.  
  3981.  
  3982.  
  3983.        logic of kinetic regulation in the thioredoxin system.&lt;/a&gt;Pillay
  3984.      CS, Hofmeyr JH, Rohwer JM.&lt;span class=&quot;jrnl&quot; title=&quot;BMC systems
  3985.        biology&quot;&gt;BMC Syst Biol&lt;/span&gt;. 2011 Jan 25;5:15. doi:
  3986.      10.1186/1752-0509-5-15.PMID:21266044&lt;/div&gt;
  3987. &lt;div class=&quot;details&quot;&gt;
  3988. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18544525&quot;&gt;Regulation
  3989.  
  3990.  
  3991.  
  3992.  
  3993.  
  3994.        of the catalytic activity and structure of human thioredoxin 1
  3995.        via oxidation and S-nitrosylation of cysteine residues.&lt;/a&gt;Hashemy
  3996.  
  3997.  
  3998.  
  3999.  
  4000.      SI, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological
  4001.        chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2008 Aug 8;283(32):21890-8. doi:
  4002.      10.1074/jbc.M801047200. Epub 2008 Jun 10.PMID:18544525&lt;/div&gt;
  4003. &lt;div class=&quot;details&quot;&gt;
  4004. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20536427&quot;&gt;Mammalian
  4005.  
  4006.  
  4007.  
  4008.  
  4009.        thioredoxin reductase 1: roles in redox homoeostasis and
  4010.        characterization of cellular targets.&lt;/a&gt;Turanov AA, Kehr S,
  4011.      Marino SM, Yoo MH, Carlson BA, Hatfield DL, Gladyshev VN.&lt;span class=&quot;jrnl&quot; title=&quot;The Biochemical journal&quot;&gt;Biochem J&lt;/span&gt;.
  4012.      2010 Sep 1;430(2):285-93. doi: 10.1042/BJ20091378.PMID:20536427&lt;/div&gt;
  4013. &lt;div class=&quot;details&quot;&gt;
  4014. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3170595&quot;&gt;Cloning
  4015.  
  4016.  
  4017.  
  4018.  
  4019.        and expression of a cDNA for human thioredoxin.&lt;/a&gt;Wollman EE,
  4020.      d&#39;Auriol L, Rimsky L, Shaw A, Jacquot JP, Wingfield P, Graber P,
  4021.      Dessarps F, Robin P, Galibert F, et al.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;.
  4022.      1988 Oct 25;263(30):15506-12.PMID:3170595&lt;/div&gt;
  4023. &lt;div class=&quot;details&quot;&gt;
  4024. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19385090&quot;&gt;Thioredoxin
  4025.  
  4026.  
  4027.  
  4028.  
  4029.        1 delivery as new therapeutics.&lt;/a&gt;Nakamura H, Hoshino Y,
  4030.      Okuyama H, Matsuo Y, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Advanced
  4031.        drug delivery reviews&quot;&gt;Adv Drug Deliv Rev&lt;/span&gt;. 2009 Apr
  4032.      28;61(4):303-9. Review.PMID:19385090&lt;/div&gt;
  4033. &lt;div class=&quot;details&quot;&gt;
  4034. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11012661&quot;&gt;Physiological
  4035.  
  4036.  
  4037.  
  4038.  
  4039.        functions of thioredoxin and thioredoxin reductase.&lt;/a&gt;Arnér ES,
  4040.      Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;European journal of
  4041.        biochemistry / FEBS&quot;&gt;Eur J Biochem&lt;/span&gt;. 2000
  4042.      Oct;267(20):6102-9. Review.PMID:11012661&lt;/div&gt;
  4043. &lt;div class=&quot;details&quot;&gt;
  4044. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23212077&quot;&gt;Small
  4045.  
  4046.  
  4047.  
  4048.        changes huge impact: the role of thioredoxin 1 in the regulation
  4049.        of apoptosis by S-nitrosylation.&lt;/a&gt;Li H, Wan A, Xu G, Ye D.&lt;span class=&quot;jrnl&quot; title=&quot;Acta biochimica et biophysica Sinica&quot;&gt;Acta
  4050.        Biochim Biophys Sin (Shanghai)&lt;/span&gt;. 2013 Mar;45(3):153-61.
  4051.      doi: 10.1093/abbs/gms103. Epub 2012 Dec 4. Review.PMID:23212077&lt;/div&gt;
  4052. &lt;div class=&quot;details&quot;&gt;
  4053. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;Distinction
  4054.  
  4055.  
  4056.  
  4057.        of thioredoxin transnitrosylation and denitrosylation target
  4058.        proteins by the ICAT quantitative approach.&lt;/a&gt;Wu C, Parrott AM,
  4059.      Liu T, Jain MR, Yang Y, Sadoshima J, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of proteomics&quot;&gt;J Proteomics&lt;/span&gt;. 2011 Oct
  4060.      19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
  4061.      Jun 17.PMID:21704743&lt;/div&gt;
  4062. &lt;div class=&quot;details&quot;&gt;
  4063. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20536427&quot;&gt;Mammalian
  4064.  
  4065.  
  4066.  
  4067.        thioredoxin reductase 1: roles in redox homoeostasis and
  4068.        characterization of cellular targets.&lt;/a&gt;Turanov AA, Kehr S,
  4069.      Marino SM, Yoo MH, Carlson BA, Hatfield DL, Gladyshev VN.&lt;span class=&quot;jrnl&quot; title=&quot;The Biochemical journal&quot;&gt;Biochem J&lt;/span&gt;.
  4070.      2010 Sep 1;430(2):285-93. doi: 10.1042/BJ20091378.PMID:20536427&lt;/div&gt;
  4071. &lt;div class=&quot;details&quot;&gt;
  4072. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9315320&quot;&gt;Selenium
  4073.  
  4074.  
  4075.  
  4076.        and the thioredoxin and glutaredoxin systems.&lt;/a&gt;Björnstedt M,
  4077.      Kumar S, Björkhem L, Spyrou G, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;Biomedical and environmental sciences : BES&quot;&gt;Biomed
  4078.        Environ Sci&lt;/span&gt;. 1997 Sep;10(2-3):271-9. Review.PMID:9315320&lt;/div&gt;
  4079. &lt;div class=&quot;details&quot;&gt;
  4080. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16766796&quot;&gt;The
  4081.  
  4082.  
  4083.  
  4084.        interaction of thioredoxin with Txnip. Evidence for formation of
  4085.        a mixed disulfide by disulfide exchange.&lt;/a&gt;atwari P, Higgins
  4086.      LJ, Chutkow WA, Yoshioka J, Lee RT.&lt;span class=&quot;jrnl&quot; title=&quot;The
  4087.        Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2006 Aug
  4088.      4;281(31):21884-91. Epub 2006 Jun 9.PMID:16766796&lt;/div&gt;
  4089. &lt;div class=&quot;details&quot;&gt;
  4090. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19244202&quot;&gt;Alterations
  4091.  
  4092.  
  4093.  
  4094.        of the thioredoxin system by hyperoxia: implications for
  4095.        alveolar development.&lt;/a&gt;Tipple TE, Welty SE, Nelin LD, Hansen
  4096.      JM, Rogers LK.&lt;span class=&quot;jrnl&quot; title=&quot;American journal of
  4097.        respiratory cell and molecular biology&quot;&gt;Am J Respir Cell Mol
  4098.        Biol&lt;/span&gt;. 2009 Nov;41(5):612-9. doi:
  4099.      10.1165/rcmb.2008-0224OC. Epub 2009 Feb 24.PMID:19244202&lt;/div&gt;
  4100. &lt;div class=&quot;details&quot;&gt;
  4101. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10814541&quot;&gt;A
  4102.        possible interaction of thioredoxin with VDUP1 in HeLa cells
  4103.        detected in a yeast two-hybrid system.&lt;/a&gt;Yamanaka H, Maehira F,
  4104.      Oshiro M, Asato T, Yanagawa Y, Takei H, Nakashima Y.&lt;span class=&quot;jrnl&quot; title=&quot;Biochemical and biophysical research
  4105.        communications&quot;&gt;Biochem Biophys Res Commun&lt;/span&gt;. 2000 May
  4106.      19;271(3):796-800.PMID:10814541&lt;/div&gt;
  4107. &lt;div class=&quot;details&quot;&gt;
  4108. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16766796&quot;&gt;The
  4109.  
  4110.  
  4111.  
  4112.        interaction of thioredoxin with Txnip. Evidence for formation of
  4113.        a mixed disulfide by disulfide exchange.&lt;/a&gt;Patwari P, Higgins
  4114.      LJ, Chutkow WA, Yoshioka J, Lee RT.&lt;span class=&quot;jrnl&quot; title=&quot;The
  4115.        Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2006 Aug
  4116.      4;281(31):21884-91. Epub 2006 Jun 9.PMID:16766796&lt;/div&gt;
  4117. &lt;div class=&quot;details&quot;&gt;
  4118. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17021908&quot;&gt;Thioredoxin
  4119.  
  4120.  
  4121.  
  4122.        in the cardiovascular system.&lt;/a&gt;World CJ, Yamawaki H, Berk BC.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of molecular medicine (Berlin,
  4123.        Germany)&quot;&gt;J Mol Med (Berl)&lt;/span&gt;. 2006 Dec;84(12):997-1003.
  4124.      Epub 2006 Oct 5. Review.PMID:17021908&lt;/div&gt;
  4125. &lt;div class=&quot;details&quot;&gt;
  4126. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15792362&quot;&gt;Effects
  4127.  
  4128.        of dietary selenium on post-ischemic expression of antioxidant
  4129.        mRNA.&lt;/a&gt;Venardos K, Ashton K, Headrick J, Perkins A.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular and cellular biochemistry&quot;&gt;Mol
  4130.        Cell Biochem&lt;/span&gt;. 2005 Feb;270(1-2):131-8.PMID:15792362&lt;/div&gt;
  4131. &lt;div class=&quot;details&quot;&gt;
  4132. &lt;/div&gt;
  4133. &lt;div class=&quot;details&quot;&gt;
  4134. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17916779&quot;&gt;Targeted
  4135.  
  4136.  
  4137.  
  4138.        deletion of thioredoxin-interacting protein regulates cardiac
  4139.        dysfunction in response to pressure overload.&lt;/a&gt;Yoshioka J,
  4140.      Imahashi K, Gabel SA, Chutkow WA, Burds AA, Gannon J, Schulze PC,
  4141.      MacGillivray C, London RE, Murphy E, Lee RT.&lt;span class=&quot;jrnl&quot; title=&quot;Circulation research&quot;&gt;Circ Res&lt;/span&gt;. 2007 Dec
  4142.      7;101(12):1328-38. Epub 2007 Oct 4.PMID:17916779&lt;/div&gt;
  4143. &lt;div class=&quot;details&quot;&gt;
  4144. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16766796&quot;&gt;The
  4145.  
  4146.  
  4147.  
  4148.        interaction of thioredoxin with Txnip. Evidence for formation of
  4149.        a mixed disulfide by disulfide exchange.&lt;/a&gt;Patwari P, Higgins
  4150.      LJ, Chutkow WA, Yoshioka J, Lee RT.&lt;span class=&quot;jrnl&quot; title=&quot;The
  4151.        Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2006 Aug
  4152.      4;281(31):21884-91. Epub 2006 Jun 9.PMID:16766796&lt;/div&gt;
  4153. &lt;div class=&quot;details&quot;&gt;
  4154. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19074570&quot;&gt;Diabetes
  4155.  
  4156.  
  4157.  
  4158.        impairs exercise training-associated thioredoxin response and
  4159.        glutathione status in rat brain.&lt;/a&gt;Lappalainen Z, Lappalainen
  4160.      J, Oksala NK, Laaksonen DE, Khanna S, Sen CK, Atalay M.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of applied physiology (Bethesda, Md.
  4161.        : 1985)&quot;&gt;J Appl Physiol (1985)&lt;/span&gt;. 2009 Feb;106(2):461-7.
  4162.      doi:10.1152/japplphysiol.91252.2008. Epub 2008 Dec
  4163.      12.PMID:19074570&lt;/div&gt;
  4164. &lt;div class=&quot;details&quot;&gt;
  4165. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17707404&quot;&gt;Reconstitution
  4166.  
  4167.  
  4168.  
  4169.  
  4170.        of the mitochondrial PrxIII antioxidant defence pathway: general
  4171.        properties and factors affecting PrxIII activity and oligomeric
  4172.        state.&lt;/a&gt;Cao Z, Bhella D, Lindsay JG.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of molecular biology&quot;&gt;J Mol Biol&lt;/span&gt;. 2007 Sep
  4173.      28;372(4):1022-33. Epub 2007 Jul 21.PMID:17707404&lt;/div&gt;
  4174. &lt;div class=&quot;details&quot;&gt;
  4175. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21266044&quot;&gt;The
  4176.  
  4177.  
  4178.  
  4179.        logic of kinetic regulation in the thioredoxin system.&lt;/a&gt;Pillay
  4180.      CS, Hofmeyr JH, Rohwer JM.&lt;span class=&quot;jrnl&quot; title=&quot;BMC systems
  4181.        biology&quot;&gt;BMC Syst Biol&lt;/span&gt;. 2011 Jan 25;5:15. doi:
  4182.      10.1186/1752-0509-5-15.PMID:21266044&lt;/div&gt;
  4183. &lt;div class=&quot;details&quot;&gt;
  4184. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3170595&quot;&gt;Cloning
  4185.  
  4186.        and expression of a cDNA for human thioredoxin.&lt;/a&gt;Wollman EE,
  4187.      d&#39;Auriol L, Rimsky L, Shaw A, Jacquot JP, Wingfield P, Graber P,
  4188.      Dessarps F, Robin P, Galibert F, et al.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;.
  4189.      1988 Oct 25;263(30):15506-12.PMID:3170595&lt;/div&gt;
  4190. &lt;div class=&quot;details&quot;&gt;
  4191. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17707404&quot;&gt;Reconstitution
  4192.  
  4193.  
  4194.  
  4195.  
  4196.        of the mitochondrial PrxIII antioxidant defence pathway: general
  4197.        properties and factors affecting PrxIII activity and oligomeric
  4198.        state.&lt;/a&gt;Cao Z, Bhella D, Lindsay JG.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of molecular biology&quot;&gt;J Mol Biol&lt;/span&gt;. 2007 Sep
  4199.      28;372(4):1022-33. Epub 2007 Jul 21.PMID:17707404&lt;/div&gt;
  4200. &lt;div class=&quot;details&quot;&gt;
  4201. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7640917&quot;&gt;Balancing
  4202.  
  4203.  
  4204.  
  4205.        science and practice in indicator development: the Maryland
  4206.        Hospital Association Quality Indicator (QI) project.&lt;/a&gt;Kazandjian
  4207.  
  4208.  
  4209.  
  4210.      VA, Wood P, Lawthers J.&lt;span class=&quot;jrnl&quot; title=&quot;International
  4211.        journal for quality in health care : journal of the
  4212.        International Society for Quality in Health Care / ISQua&quot;&gt;Int J
  4213.        Qual Health Care&lt;/span&gt;. 1995 Mar;7(1):39-46.PMID:7640917&lt;/div&gt;
  4214. &lt;div class=&quot;details&quot;&gt;
  4215. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18497292&quot;&gt;Regulated
  4216.  
  4217.  
  4218.  
  4219.        protein denitrosylation by cytosolic and mitochondrial
  4220.        thioredoxins.&lt;/a&gt;Benhar M, Forrester MT, Hess DT, Stamler JS.&lt;span class=&quot;jrnl&quot; title=&quot;Science (New York, N.Y.)&quot;&gt;Science&lt;/span&gt;.
  4221.      2008 May 23;320(5879):1050-4. doi:
  4222.      10.1126/science.1158265.PMID:18497292&lt;/div&gt;
  4223. &lt;div class=&quot;details&quot;&gt;
  4224. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18544525&quot;&gt;Regulation
  4225.  
  4226.  
  4227.  
  4228.  
  4229.        of the catalytic activity and structure of human thioredoxin 1
  4230.        via oxidation and S-nitrosylation of cysteine residues.&lt;/a&gt;Hashemy
  4231.  
  4232.  
  4233.  
  4234.      SI, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological
  4235.        chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2008 Aug 8;283(32):21890-8. doi:
  4236.      10.1074/jbc.M801047200. Epub 2008 Jun 10.PMID:18544525&lt;/div&gt;
  4237. &lt;div class=&quot;details&quot;&gt;
  4238. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18979503&quot;&gt;Thioredoxin
  4239.  
  4240.  
  4241.  
  4242.        system inhibitors as mediators of apoptosis for cancer therapy.&lt;/a&gt;Tonissen
  4243.  
  4244.  
  4245.  
  4246.      KF, Di Trapani G.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular nutrition
  4247.        &amp;amp; food research&quot;&gt;Mol Nutr Food Res&lt;/span&gt;. 2009
  4248.      Jan;53(1):87-103. doi: 10.1002/mnfr.200700492.
  4249.      Review.PMID:18979503&lt;/div&gt;
  4250. &lt;div class=&quot;details&quot;&gt;
  4251. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16987025&quot;&gt;The
  4252.  
  4253.  
  4254.  
  4255.        role of apoptosis signal-regulating kinase 1 in cardiomyocyte
  4256.        apoptosis.&lt;/a&gt;Nishida K, Otsu K.&lt;span class=&quot;jrnl&quot; title=&quot;Antioxidants &amp;amp; redox signaling&quot;&gt;Antioxid Redox Signal&lt;/span&gt;.
  4257.      2006 Sep-Oct;8(9-10):1729-36. Review.PMID:16987025&lt;/div&gt;
  4258. &lt;div class=&quot;details&quot;&gt;
  4259. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18544525&quot;&gt;Regulation
  4260.  
  4261.  
  4262.  
  4263.  
  4264.        of the catalytic activity and structure of human thioredoxin 1
  4265.        via oxidation and S-nitrosylation of cysteine residues.&lt;/a&gt;Hashemy
  4266.  
  4267.  
  4268.  
  4269.      SI, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological
  4270.        chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2008 Aug 8;283(32):21890-8. doi:
  4271.      10.1074/jbc.M801047200. Epub 2008 Jun 10.PMID:1854452&lt;/div&gt;
  4272. &lt;div class=&quot;details&quot;&gt;
  4273. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12089063&quot;&gt;Thioredoxin
  4274.  
  4275.  
  4276.  
  4277.  
  4278.        promotes ASK1 ubiquitination and degradation to inhibit
  4279.        ASK1-mediated apoptosis in a redox activity-independent manner.&lt;/a&gt;Liu
  4280.  
  4281.  
  4282.  
  4283.      Y, Min W.&lt;span class=&quot;jrnl&quot; title=&quot;Circulation research&quot;&gt;Circ Res&lt;/span&gt;.
  4284.      2002 Jun 28;90(12):1259-66.PMID:12089063&lt;/div&gt;
  4285. &lt;div class=&quot;details&quot;&gt;
  4286. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18497292&quot;&gt;Regulated
  4287.  
  4288.  
  4289.  
  4290.        protein denitrosylation by cytosolic and mitochondrial
  4291.        thioredoxins.&lt;/a&gt;Benhar M, Forrester MT, Hess DT, Stamler JS.&lt;span class=&quot;jrnl&quot; title=&quot;Science (New York, N.Y.)&quot;&gt;Science&lt;/span&gt;.
  4292.      2008 May 23;320(5879):1050-4. doi:
  4293.      10.1126/science.1158265.PMID:18497292&lt;/div&gt;
  4294. &lt;div class=&quot;details&quot;&gt;
  4295. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19328186&quot;&gt;Attenuation
  4296.  
  4297.  
  4298.  
  4299.        of neuronal degeneration in thioredoxin-1 overexpressing mice
  4300.        after mild focal ischemia.&lt;/a&gt;Zhou F, Gomi M, Fujimoto M, Hayase
  4301.      M, Marumo T, Masutani H, Yodoi J, Hashimoto N, Nozaki K, Takagi Y.&lt;span class=&quot;jrnl&quot; title=&quot;Brain research&quot;&gt;Brain Res&lt;/span&gt;. 2009 May
  4302.      26;1272:62-70. doi: 10.1016/j.brainres.2009.03.023. Epub 2009 Mar
  4303.      25.PMID:19328186&lt;/div&gt;
  4304. &lt;div class=&quot;details&quot;&gt;
  4305. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17606900&quot;&gt;Thioredoxin
  4306.  
  4307.  
  4308.  
  4309.        is required for S-nitrosation of procaspase-3 and the inhibition
  4310.        of apoptosis in Jurkat cells.&lt;/a&gt;Mitchell DA, Morton SU,
  4311.      Fernhoff NB, Marletta MA.&lt;span class=&quot;jrnl&quot; title=&quot;Proceedings of
  4312.        the National Academy of Sciences of the United States of
  4313.        America&quot;&gt;Proc Natl Acad Sci U S A&lt;/span&gt;. 2007 Jul
  4314.      10;104(28):11609-14. Epub 2007 Jul 2.PMID:17606900&lt;/div&gt;
  4315. &lt;div class=&quot;details&quot;&gt;
  4316. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21479441&quot;&gt;Epigallocatechin-3-gallate
  4317.  
  4318.  
  4319.  
  4320.  
  4321.        exhibits anti-tumor effect by perturbing redox homeostasis,
  4322.        modulating the release of pro-inflammatory mediators and
  4323.        decreasing the invasiveness of glioblastoma cells.&lt;/a&gt;Agarwal A,
  4324.      Sharma V, Tewari R, Koul N, Joseph C, Sen E.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular medicine reports&quot;&gt;Mol Med Rep&lt;/span&gt;. 2008
  4325.      Jul-Aug;1(4):511-5.PMID:21479441&lt;/div&gt;
  4326. &lt;div class=&quot;details&quot;&gt;
  4327. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19328186&quot;&gt;Attenuation
  4328.  
  4329.  
  4330.  
  4331.        of neuronal degeneration in thioredoxin-1 overexpressing mice
  4332.        after mild focal ischemia.&lt;/a&gt;Zhou F, Gomi M, Fujimoto M, Hayase
  4333.      M, Marumo T, Masutani H, Yodoi J, Hashimoto N, Nozaki K, Takagi Y.&lt;span class=&quot;jrnl&quot; title=&quot;Brain research&quot;&gt;Brain Res&lt;/span&gt;. 2009 May
  4334.      26;1272:62-70. doi: 10.1016/j.brainres.2009.03.023. Epub 2009 Mar
  4335.      25.PMID:19328186&lt;/div&gt;
  4336. &lt;div class=&quot;details&quot;&gt;
  4337. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11751890&quot;&gt;The
  4338.  
  4339.  
  4340.  
  4341.        roles of thioredoxin in protection against oxidative
  4342.        stress-induced apoptosis in SH-SY5Y cells.&lt;/a&gt;Andoh T, Chock PB,
  4343.      Chiueh CC.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological
  4344.        chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2002 Mar 22;277(12):9655-60. Epub
  4345.      2001 Dec 19.PMID:11751890&lt;/div&gt;
  4346. &lt;div class=&quot;details&quot;&gt;
  4347. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17606900&quot;&gt;Thioredoxin
  4348.  
  4349.  
  4350.  
  4351.        is required for S-nitrosation of procaspase-3 and the inhibition
  4352.        of apoptosis in Jurkat cells.&lt;/a&gt;Mitchell DA, Morton SU,
  4353.      Fernhoff NB, Marletta MA.&lt;span class=&quot;jrnl&quot; title=&quot;Proceedings of
  4354.        the National Academy of Sciences of the United States of
  4355.        America&quot;&gt;Proc Natl Acad Sci U S A&lt;/span&gt;. 2007 Jul
  4356.      10;104(28):11609-14. Epub 2007 Jul 2.PMID:17606900&lt;/div&gt;
  4357. &lt;div class=&quot;details&quot;&gt;
  4358. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20460580&quot;&gt;Methylglyoxal
  4359.  
  4360.  
  4361.  
  4362.        increases cardiomyocyte ischemia-reperfusion injury via
  4363.        glycative inhibition of thioredoxin activity.&lt;/a&gt;Wang XL, Lau
  4364.      WB, Yuan YX, Wang YJ, Yi W, Christopher TA, Lopez BL, Liu HR, Ma
  4365.      XL.&lt;span class=&quot;jrnl&quot; title=&quot;American journal of physiology.
  4366.        Endocrinology and metabolism&quot;&gt;Am J Physiol Endocrinol Metab&lt;/span&gt;.
  4367.      2010 Aug;299(2):E207-14. doi: 10.1152/ajpendo.00215.2010. Epub
  4368.      2010 May 11.PMID:20460580&lt;/div&gt;
  4369. &lt;div class=&quot;details&quot;&gt;
  4370. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20660346&quot;&gt;Redox
  4371.  
  4372.  
  4373.  
  4374.        regulatory mechanism of transnitrosylation by thioredoxin.&lt;/a&gt;Wu
  4375.      C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT,
  4376.      Sadoshima J, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular &amp;amp;
  4377.        cellular proteomics : MCP&quot;&gt;Mol Cell Proteomics&lt;/span&gt;. 2010
  4378.      Oct;9(10):2262-75. doi: 10.1074/mcp.M110.000034. Epub 2010 Jul
  4379.      21.PMID:20660346&lt;/div&gt;
  4380. &lt;div class=&quot;details&quot;&gt;
  4381. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19074570&quot;&gt;Diabetes
  4382.  
  4383.  
  4384.  
  4385.        impairs exercise training-associated thioredoxin response and
  4386.        glutathione status in rat brain.&lt;/a&gt;Lappalainen Z, Lappalainen
  4387.      J, Oksala NK, Laaksonen DE, Khanna S, Sen CK, Atalay M.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of applied physiology (Bethesda, Md.
  4388.        : 1985)&quot;&gt;J Appl Physiol (1985)&lt;/span&gt;. 2009 Feb;106(2):461-7.
  4389.      doi: 10.1152/japplphysiol.91252.2008. Epub 2008 Dec
  4390.      12.PMID:19074570&lt;/div&gt;
  4391. &lt;div class=&quot;details&quot;&gt;
  4392. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24549090&quot;&gt;Zerumbone-loaded
  4393.  
  4394.  
  4395.  
  4396.  
  4397.        nanostructured lipid carrier induces G2/M cell cycle arrest and
  4398.        apoptosis via mitochondrial pathway in a human lymphoblastic
  4399.        leukemia cell line.&lt;/a&gt;Rahman HS, Rasedee A, Abdul AB, Zeenathul
  4400.      NA, Othman HH, Yeap SK, How CW, Hafiza WA.&lt;span class=&quot;jrnl&quot; title=&quot;International journal of nanomedicine&quot;&gt;Int J Nanomedicine&lt;/span&gt;.
  4401.      2014 Jan 16;9:527-38. doi: 10.2147/IJN.S54346. eCollection
  4402.      2014.PMID:24549090&lt;br /&gt;
  4403. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12016152&quot;&gt;Zerumbone,
  4404.  
  4405.  
  4406.  
  4407.  
  4408.        a Southeast Asian ginger sesquiterpene, markedly suppresses free
  4409.        radical generation, proinflammatory protein production, and
  4410.        cancer cell proliferation accompanied by apoptosis: the
  4411.        alpha,beta-unsaturated carbonyl group is a prerequisite.&lt;/a&gt;Murakami
  4412.  
  4413.  
  4414.  
  4415.      A, Takahashi D, Kinoshita T, Koshimizu K, Kim HW, Yoshihiro A,
  4416.      Nakamura Y, Jiwajinda S, Terao J, Ohigashi H.&lt;span class=&quot;jrnl&quot; title=&quot;Carcinogenesis&quot;&gt;Carcinogenesis&lt;/span&gt;. 2002
  4417.      May;23(5):795-802.PMID:12016152&lt;/div&gt;
  4418. &lt;div class=&quot;details&quot;&gt;
  4419. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19074570&quot;&gt;Diabetes
  4420.  
  4421.  
  4422.  
  4423.        impairs exercise training-associated thioredoxin response and
  4424.        glutathione status in rat brain.&lt;/a&gt;Lappalainen Z, Lappalainen
  4425.      J, Oksala NK, Laaksonen DE, Khanna S, Sen CK, Atalay M.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of applied physiology (Bethesda, Md.
  4426.        : 1985)&quot;&gt;J Appl Physiol (1985)&lt;/span&gt;. 2009 Feb;106(2):461-7.
  4427.      doi: 10.1152/japplphysiol.91252.2008. Epub 2008 Dec
  4428.      12.PMID:19074570&lt;/div&gt;
  4429. &lt;div class=&quot;details&quot;&gt;
  4430. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17972886&quot;&gt;Probing
  4431.  
  4432.  
  4433.  
  4434.        the chemistry of thioredoxin catalysis with force.&lt;/a&gt;Wiita AP,
  4435.      Perez-Jimenez R, Walther KA, Gräter F, Berne BJ, Holmgren A,
  4436.      Sanchez-Ruiz JM, Fernandez JM.&lt;span class=&quot;jrnl&quot; title=&quot;Nature&quot;&gt;Nature&lt;/span&gt;.
  4437.      2007 Nov 1;450(7166):124-7.PMID:17972886&lt;/div&gt;
  4438. &lt;div class=&quot;details&quot;&gt;
  4439. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21324905&quot;&gt;Thioredoxin
  4440.  
  4441.  
  4442.  
  4443.        increases exocytosis by denitrosylating
  4444.        N-ethylmaleimide-sensitive factor.&lt;/a&gt;Ito T, Yamakuchi M,
  4445.      Lowenstein CJ.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological
  4446.        chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2011 Apr 1;286(13):11179-84. doi:
  4447.      10.1074/jbc.M110.201780. Epub 2011 Feb 15.PMID:21324905&lt;/div&gt;
  4448. &lt;div class=&quot;details&quot;&gt;
  4449. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17012768&quot;&gt;The
  4450.  
  4451.  
  4452.  
  4453.        thiol-based redox networks of pathogens: unexploited targets in
  4454.        the search for new drugs.&lt;/a&gt;Jaeger T, Flohé L.&lt;span class=&quot;jrnl&quot; title=&quot;BioFactors (Oxford, England)&quot;&gt;Biofactors&lt;/span&gt;.
  4455.      2006;27(1-4):109-20. Review.PMID:17012768&lt;/div&gt;
  4456. &lt;div class=&quot;details&quot;&gt;
  4457. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20660346&quot;&gt;Redox
  4458.  
  4459.  
  4460.  
  4461.        regulatory mechanism of transnitrosylation by thioredoxin.&lt;/a&gt;Wu
  4462.      C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT,
  4463.      Sadoshima J, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular &amp;amp;
  4464.        cellular proteomics : MCP&quot;&gt;Mol Cell Proteomics&lt;/span&gt;. 2010
  4465.      Oct;9(10):2262-75. doi: 10.1074/mcp.M110.000034. Epub 2010 Jul
  4466.      21.PMID:20660346&lt;/div&gt;
  4467. &lt;div class=&quot;details&quot;&gt;
  4468. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8805557&quot;&gt;Crystal
  4469.  
  4470.  
  4471.  
  4472.        structures of reduced, oxidized, and mutated human thioredoxins:
  4473.        evidence for a regulatory homodimer.&lt;/a&gt;Weichsel A, Gasdaska JR,
  4474.      Powis G, Montfort WR.&lt;span class=&quot;jrnl&quot; title=&quot;Structure (London,
  4475.        England : 1993)&quot;&gt;Structure&lt;/span&gt;. 1996 Jun
  4476.      15;4(6):735-51.PMID:8805557&lt;/div&gt;
  4477. &lt;div class=&quot;details&quot;&gt;
  4478. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15818395&quot;&gt;The
  4479.  
  4480.  
  4481.  
  4482.        thioredoxin system in retroviral infection and apoptosis.&lt;/a&gt;Masutani
  4483.  
  4484.  
  4485.  
  4486.      H, Ueda S, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Cell death and
  4487.        differentiation&quot;&gt;Cell Death Differ&lt;/span&gt;. 2005 Aug;12 Suppl
  4488.      1:991-8. Review.PMID:15818395&lt;/div&gt;
  4489. &lt;div class=&quot;details&quot;&gt;
  4490. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;Distinction
  4491.  
  4492.  
  4493.  
  4494.        of thioredoxin transnitrosylation and denitrosylation target
  4495.        proteins by the ICAT quantitative approach.&lt;/a&gt;Wu C, Parrott AM,
  4496.      Liu T, Jain MR, Yang Y, Sadoshima J, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of proteomics&quot;&gt;J Proteomics&lt;/span&gt;. 2011 Oct
  4497.      19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
  4498.      Jun 17.PMID:21704743&lt;/div&gt;
  4499. &lt;div class=&quot;details&quot;&gt;
  4500. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12244325&quot;&gt;Redox
  4501.  
  4502.  
  4503.  
  4504.        regulatory and anti-apoptotic functions of thioredoxin depend on
  4505.        S-nitrosylation at cysteine 69.&lt;/a&gt;Haendeler J, Hoffmann J,
  4506.      Tischler V, Berk BC, Zeiher AM, Dimmeler S.&lt;span class=&quot;jrnl&quot; title=&quot;Nature cell biology&quot;&gt;Nat Cell Biol&lt;/span&gt;. 2002
  4507.      Oct;4(10):743-9.PMID:12244325&lt;/div&gt;
  4508. &lt;div class=&quot;details&quot;&gt;
  4509. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18544525&quot;&gt;Regulation
  4510.  
  4511.  
  4512.  
  4513.  
  4514.        of the catalytic activity and structure of human thioredoxin 1
  4515.        via oxidation and S-nitrosylation of cysteine residues.&lt;/a&gt;Hashemy
  4516.  
  4517.  
  4518.  
  4519.      SI, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological
  4520.        chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2008 Aug 8;283(32):21890-8. doi:
  4521.      10.1074/jbc.M801047200. Epub 2008 Jun 10.PMID:18544525&lt;/div&gt;
  4522. &lt;div class=&quot;details&quot;&gt;
  4523. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12816947&quot;&gt;Redox
  4524.  
  4525.  
  4526.  
  4527.        potential of human thioredoxin 1 and identification of a second
  4528.        dithiol/disulfide motif.&lt;/a&gt;Watson WH, Pohl J, Montfort WR,
  4529.      Stuchlik O, Reed MS, Powis G, Jones DP.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;.
  4530.      2003 Aug 29;278(35):33408-15. Epub 2003 Jun 19.PMID:1281694&lt;/div&gt;
  4531. &lt;div class=&quot;details&quot;&gt;
  4532. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9369469&quot;&gt;Human
  4533.  
  4534.  
  4535.  
  4536.  
  4537.        thioredoxin homodimers: regulation by pH, role of aspartate 60,
  4538.        and crystal structure of the aspartate 60 --&amp;gt; asparagine
  4539.        mutant.&lt;/a&gt;Andersen JF, Sanders DA, Gasdaska JR, Weichsel A,
  4540.      Powis G, Montfort WR.&lt;span class=&quot;jrnl&quot; title=&quot;Biochemistry&quot;&gt;Biochemistry&lt;/span&gt;.
  4541.      1997 Nov 18;36(46):13979-88.PMID:9369469&lt;/div&gt;
  4542. &lt;div class=&quot;details&quot;&gt;
  4543. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;Distinction
  4544.  
  4545.  
  4546.  
  4547.        of thioredoxin transnitrosylation and denitrosylation target
  4548.        proteins by the ICAT quantitative approach.&lt;/a&gt;Wu C, Parrott AM,
  4549.      Liu T, Jain MR, Yang Y, Sadoshima J, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of proteomics&quot;&gt;J Proteomics&lt;/span&gt;. 2011 Oct
  4550.      19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
  4551.      Jun 17.PMID:21704743&lt;/div&gt;
  4552. &lt;div class=&quot;details&quot;&gt;
  4553. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15485910&quot;&gt;Essential
  4554.  
  4555.  
  4556.  
  4557.        role for mitochondrial thioredoxin reductase in hematopoiesis,
  4558.        heart development, and heart function.&lt;/a&gt;Conrad M, Jakupoglu C,
  4559.      Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK,
  4560.      Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW,
  4561.      Brielmeier M.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular and cellular
  4562.        biology&quot;&gt;Mol Cell Biol&lt;/span&gt;. 2004
  4563.      Nov;24(21):9414-23.PMID:15485910&lt;/div&gt;
  4564. &lt;div class=&quot;details&quot;&gt;
  4565. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21453190&quot;&gt;Thioredoxin
  4566.  
  4567.  
  4568.  
  4569.  
  4570.        1-mediated post-translational modifications: reduction,
  4571.        transnitrosylation, denitrosylation, and related proteomics
  4572.        methodologies.&lt;/a&gt;Wu C, Parrott AM, Fu C, Liu T, Marino SM,
  4573.      Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve
  4574.      A, Simmons WJ, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Antioxidants &amp;amp;
  4575.        redox signaling&quot;&gt;Antioxid Redox Signal&lt;/span&gt;. 2011 Nov
  4576.      1;15(9):2565-604. doi: 10.1089/ars.2010.3831. Epub 2011 Jun 8.
  4577.      Review.PMID:21453190&lt;/div&gt;
  4578. &lt;div class=&quot;details&quot;&gt;
  4579. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11012661&quot;&gt;Physiological
  4580.  
  4581.  
  4582.  
  4583.        functions of thioredoxin and thioredoxin reductase.&lt;/a&gt;Arnér ES,
  4584.      Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;European journal of
  4585.        biochemistry / FEBS&quot;&gt;Eur J Biochem&lt;/span&gt;. 2000
  4586.      Oct;267(20):6102-9. Review.PMID:11012661&lt;/div&gt;
  4587. &lt;div class=&quot;details&quot;&gt;
  4588. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20660346&quot;&gt;Redox
  4589.  
  4590.  
  4591.  
  4592.        regulatory mechanism of transnitrosylation by thioredoxin.&lt;/a&gt;Wu
  4593.      C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT,
  4594.      Sadoshima J, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular &amp;amp;
  4595.        cellular proteomics : MCP&quot;&gt;Mol Cell Proteomics&lt;/span&gt;. 2010
  4596.      Oct;9(10):2262-75. doi: 10.1074/mcp.M110.000034. Epub 2010 Jul
  4597.      21.PMID:20660346&lt;/div&gt;
  4598. &lt;div class=&quot;details&quot;&gt;
  4599. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11702225&quot;&gt;A
  4600.        genome-wide survey of human thioredoxin and glutaredoxin family
  4601.        pseudogenes.&lt;/a&gt;Spyrou G, Wilson W, Padilla CA, Holmgren A,
  4602.      Miranda-Vizuete A.&lt;span class=&quot;jrnl&quot; title=&quot;Human genetics&quot;&gt;Hum
  4603.        Genet&lt;/span&gt;. 2001 Oct;109(4):429-39.PMID:11702225&lt;/div&gt;
  4604. &lt;div class=&quot;details&quot;&gt;
  4605. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17008712&quot;&gt;The
  4606.  
  4607.  
  4608.  
  4609.        origami of thioredoxin-like folds.&lt;/a&gt;Pan JL, Bardwell JC.&lt;span class=&quot;jrnl&quot; title=&quot;Protein science : a publication of the
  4610.        Protein Society&quot;&gt;Protein Sci&lt;/span&gt;. 2006
  4611.      Oct;15(10):2217-27.PMID:17008712&lt;/div&gt;
  4612. &lt;div class=&quot;details&quot;&gt;
  4613. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;Distinction
  4614.  
  4615.  
  4616.  
  4617.        of thioredoxin transnitrosylation and denitrosylation target
  4618.        proteins by the ICAT quantitative approach.&lt;/a&gt;Wu C, Parrott AM,
  4619.      Liu T, Jain MR, Yang Y, Sadoshima J, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of proteomics&quot;&gt;J Proteomics&lt;/span&gt;. 2011 Oct
  4620.      19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
  4621.      Jun 17.PMID:21704743&lt;/div&gt;
  4622. &lt;div class=&quot;details&quot;&gt;
  4623. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11807942&quot;&gt;Thioredoxin
  4624.  
  4625.  
  4626.  
  4627.  
  4628.        and peptide methionine sulfoxide reductase: convergence of
  4629.        similar structure and function in distinct structural folds.&lt;/a&gt;Gladyshev
  4630.  
  4631.  
  4632.  
  4633.      VN.&lt;span class=&quot;jrnl&quot; title=&quot;Proteins&quot;&gt;Proteins&lt;/span&gt;. 2002 Feb
  4634.      1;46(2):149-52.PMID:11807942&lt;/div&gt;
  4635. &lt;div class=&quot;details&quot;&gt;
  4636. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;Glutathione
  4637.  
  4638.  
  4639.  
  4640.  
  4641.        and glutaredoxin act as a backup of human thioredoxin reductase
  4642.        1 to reduce thioredoxin 1 preventing cell death by
  4643.        aurothioglucose.&lt;/a&gt;Du Y, Zhang H, Lu J, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol
  4644.        Chem&lt;/span&gt;. 2012 Nov 2;287(45):38210-9. doi:
  4645.      10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247&lt;/div&gt;
  4646. &lt;div class=&quot;details&quot;&gt;
  4647. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20662007&quot;&gt;Crystal
  4648.  
  4649.  
  4650.  
  4651.        structure of human thioredoxin revealing an unraveled helix and
  4652.        exposed S-nitrosation site.&lt;/a&gt;Weichsel A, Kem M, Montfort WR.&lt;span class=&quot;jrnl&quot; title=&quot;Protein science : a publication of the
  4653.        Protein Society&quot;&gt;Protein Sci&lt;/span&gt;. 2010 Sep;19(9):1801-6. doi:
  4654.      10.1002/pro.455.PMID:20662007&lt;/div&gt;
  4655. &lt;div class=&quot;details&quot;&gt;
  4656. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20661909&quot;&gt;Structure
  4657.  
  4658.  
  4659.  
  4660.        of human thioredoxin exhibits a large conformational change.&lt;/a&gt;Hall
  4661.  
  4662.  
  4663.  
  4664.      G, Emsley J.&lt;span class=&quot;jrnl&quot; title=&quot;Protein science : a
  4665.        publication of the Protein Society&quot;&gt;Protein Sci&lt;/span&gt;. 2010
  4666.      Sep;19(9):1807-11. doi: 10.1002/pro.466.PMID:20661909&lt;/div&gt;
  4667. &lt;div class=&quot;details&quot;&gt;
  4668. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16115022&quot;&gt;Requirements
  4669.  
  4670.  
  4671.  
  4672.        for the different cysteines in the chemotactic and desensitizing
  4673.        activity of human thioredoxin.&lt;/a&gt;Bizzarri C, Holmgren A,
  4674.      Pekkari K, Chang G, Colotta F, Ghezzi P, Bertini R.&lt;span class=&quot;jrnl&quot; title=&quot;Antioxidants &amp;amp; redox signaling&quot;&gt;Antioxid
  4675.        Redox Signal&lt;/span&gt;. 2005 Sep-Oct;7(9-10):1189-94.PMID:16115022&lt;/div&gt;
  4676. &lt;div class=&quot;details&quot;&gt;
  4677. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9369469&quot;&gt;Human
  4678.  
  4679.  
  4680.  
  4681.  
  4682.        thioredoxin homodimers: regulation by pH, role of aspartate 60,
  4683.        and crystal structure of the aspartate 60 --&amp;gt; asparagine
  4684.        mutant.&lt;/a&gt;Andersen JF, Sanders DA, Gasdaska JR, Weichsel A,
  4685.      Powis G, Montfort WR.&lt;span class=&quot;jrnl&quot; title=&quot;Biochemistry&quot;&gt;Biochemistry&lt;/span&gt;.
  4686.      1997 Nov 18;36(46):13979-88.PMID:9369469&lt;/div&gt;
  4687. &lt;div class=&quot;details&quot;&gt;
  4688. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2684271&quot;&gt;A
  4689.        proton nuclear magnetic resonance assignment and secondary
  4690.        structure determination of recombinant human thioredoxin.&lt;/a&gt;Forman-Kay
  4691.  
  4692.  
  4693.  
  4694.      JD, Clore GM, Driscoll PC, Wingfield P, Richards FM, Gronenborn
  4695.      AM.&lt;span class=&quot;jrnl&quot; title=&quot;Biochemistry&quot;&gt;Biochemistry&lt;/span&gt;.
  4696.      1989 Aug 22;28(17):7088-97.PMID:2684271&lt;/div&gt;
  4697. &lt;div class=&quot;details&quot;&gt;
  4698. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8805557&quot;&gt;Crystal
  4699.  
  4700.  
  4701.  
  4702.        structures of reduced, oxidized, and mutated human thioredoxins:
  4703.        evidence for a regulatory homodimer.&lt;/a&gt;Weichsel A, Gasdaska JR,
  4704.      Powis G, Montfort WR.&lt;span class=&quot;jrnl&quot; title=&quot;Structure (London,
  4705.        England : 1993)&quot;&gt;Structure&lt;/span&gt;. 1996 Jun
  4706.      15;4(6):735-51.PMID:8805557&lt;/div&gt;
  4707. &lt;div class=&quot;details&quot;&gt;
  4708. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1332947&quot;&gt;Secretion
  4709.  
  4710.  
  4711.  
  4712.        of thioredoxin by normal and neoplastic cells through a
  4713.        leaderless secretory pathway.&lt;/a&gt;Rubartelli A, Bajetto A,
  4714.      Allavena G, Wollman E, Sitia R.&lt;span class=&quot;jrnl&quot; title=&quot;The
  4715.        Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 1992 Dec
  4716.      5;267(34):24161-4.PMID:1332947&lt;/div&gt;
  4717. &lt;div class=&quot;details&quot;&gt;
  4718. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8049254&quot;&gt;The
  4719.  
  4720.  
  4721.  
  4722.  
  4723.        predicted amino acid sequence of human thioredoxin is identical
  4724.        to that of the autocrine growth factor human adult T-cell
  4725.        derived factor (ADF): thioredoxin mRNA is elevated in some human
  4726.        tumors.&lt;/a&gt;Gasdaska PY, Oblong JE, Cotgreave IA, Powis G.&lt;span class=&quot;jrnl&quot; title=&quot;Biochimica et biophysica acta&quot;&gt;Biochim
  4727.        Biophys Acta&lt;/span&gt;. 1994 Aug 2;1218(3):292-6.PMID:8049254&lt;/div&gt;
  4728. &lt;div class=&quot;details&quot;&gt;
  4729. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15818395&quot;&gt;The
  4730.  
  4731.  
  4732.  
  4733.        thioredoxin system in retroviral infection and apoptosis.&lt;/a&gt;Masutani
  4734.  
  4735.  
  4736.  
  4737.      H, Ueda S, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Cell death and
  4738.        differentiation&quot;&gt;Cell Death Differ&lt;/span&gt;. 2005 Aug;12 Suppl
  4739.      1:991-8. Review.PMID:15818395&lt;/div&gt;
  4740. &lt;div class=&quot;details&quot;&gt;
  4741. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11841832&quot;&gt;Thioredoxin-mediated
  4742.  
  4743.  
  4744.  
  4745.        redox control of human T cell lymphotropic virus type I (HTLV-I)
  4746.        gene expression.&lt;/a&gt;Sasada T, Nakamura H, Masutani H, Ueda S,
  4747.      Sono H, Takabayashi A, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular
  4748.        immunology&quot;&gt;Mol Immunol&lt;/span&gt;. 2002
  4749.      Feb;38(10):723-32.PMID:11841832&lt;/div&gt;
  4750. &lt;div class=&quot;details&quot;&gt;
  4751. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21526215&quot;&gt;Increased
  4752.  
  4753.  
  4754.  
  4755.        inflammatory signaling and lethality of influenza H1N1 by
  4756.        nuclear thioredoxin-1.&lt;/a&gt;Go YM, Kang SM, Roede JR, Orr M, Jones
  4757.      DP.&lt;span class=&quot;jrnl&quot; title=&quot;PloS one&quot;&gt;PLoS One&lt;/span&gt;. 2011 Apr
  4758.      15;6(4):e18918. doi: 10.1371/journal.pone.0018918.PMID:21526215&lt;/div&gt;
  4759. &lt;div class=&quot;details&quot;&gt;
  4760. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9143692&quot;&gt;Redox
  4761.  
  4762.  
  4763.  
  4764.        regulation of cellular activation.&lt;/a&gt;Nakamura H, Nakamura K,
  4765.      Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Annual review of immunology&quot;&gt;Annu
  4766.  
  4767.  
  4768.  
  4769.        Rev Immunol&lt;/span&gt;. 1997;15:351-69. Review.PMID:9143692&lt;/div&gt;
  4770. &lt;div class=&quot;details&quot;&gt;
  4771. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20660346&quot;&gt;Redox
  4772.  
  4773.  
  4774.  
  4775.        regulatory mechanism of transnitrosylation by thioredoxin.&lt;/a&gt;Wu
  4776.      C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT,
  4777.      Sadoshima J, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular &amp;amp;
  4778.        cellular proteomics : MCP&quot;&gt;Mol Cell Proteomics&lt;/span&gt;. 2010
  4779.      Oct;9(10):2262-75. doi: 10.1074/mcp.M110.000034. Epub 2010 Jul
  4780.      21.PMID:20660346&lt;/div&gt;
  4781. &lt;div class=&quot;details&quot;&gt;
  4782. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;Distinction
  4783.  
  4784.  
  4785.  
  4786.        of thioredoxin transnitrosylation and denitrosylation target
  4787.        proteins by the ICAT quantitative approach.&lt;/a&gt;Wu C, Parrott AM,
  4788.      Liu T, Jain MR, Yang Y, Sadoshima J, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of proteomics&quot;&gt;J Proteomics&lt;/span&gt;. 2011 Oct
  4789.      19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
  4790.      Jun 17.PMID:21704743&lt;/div&gt;
  4791. &lt;div class=&quot;details&quot;&gt;
  4792. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21453190&quot;&gt;Thioredoxin
  4793.  
  4794.  
  4795.  
  4796.  
  4797.        1-mediated post-translational modifications: reduction,
  4798.        transnitrosylation, denitrosylation, and related proteomics
  4799.        methodologies.&lt;/a&gt;Wu C, Parrott AM, Fu C, Liu T, Marino SM,
  4800.      Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve
  4801.      A, Simmons WJ, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Antioxidants &amp;amp;
  4802.        redox signaling&quot;&gt;Antioxid Redox Signal&lt;/span&gt;. 2011 Nov
  4803.      1;15(9):2565-604. doi: 10.1089/ars.2010.3831. Epub 2011 Jun 8.
  4804.      Review.PMID:21453190&lt;/div&gt;
  4805. &lt;div class=&quot;details&quot;&gt;
  4806. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9108029&quot;&gt;AP-1
  4807.  
  4808.  
  4809.  
  4810.        transcriptional activity is regulated by a direct association
  4811.        between thioredoxin and Ref-1.&lt;/a&gt;Hirota K, Matsui M, Iwata S,
  4812.      Nishiyama A, Mori K, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Proceedings
  4813.        of the National Academy of Sciences of the United States of
  4814.        America&quot;&gt;Proc Natl Acad Sci U S A&lt;/span&gt;. 1997 Apr
  4815.      15;94(8):3633-8.PMID:9108029&lt;/div&gt;
  4816. &lt;div class=&quot;details&quot;&gt;
  4817. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17606900&quot;&gt;Thioredoxin
  4818.  
  4819.  
  4820.  
  4821.        is required for S-nitrosation of procaspase-3 and the inhibition
  4822.        of apoptosis in Jurkat cells.&lt;/a&gt;Mitchell DA, Morton SU,
  4823.      Fernhoff NB, Marletta MA.&lt;span class=&quot;jrnl&quot; title=&quot;Proceedings of
  4824.        the National Academy of Sciences of the United States of
  4825.        America&quot;&gt;Proc Natl Acad Sci U S A&lt;/span&gt;. 2007 Jul
  4826.      10;104(28):11609-14. Epub 2007 Jul 2.PMID:17606900&lt;/div&gt;
  4827. &lt;div class=&quot;details&quot;&gt;
  4828. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23212077&quot;&gt;Small
  4829.  
  4830.  
  4831.  
  4832.        changes huge impact: the role of thioredoxin 1 in the regulation
  4833.        of apoptosis by S-nitrosylation.&lt;/a&gt;Li H, Wan A, Xu G, Ye D.&lt;span class=&quot;jrnl&quot; title=&quot;Acta biochimica et biophysica Sinica&quot;&gt;Acta
  4834.        Biochim Biophys Sin (Shanghai)&lt;/span&gt;. 2013 Mar;45(3):153-61.
  4835.      doi: 10.1093/abbs/gms103. Epub 2012 Dec 4. Review.PMID:23212077&lt;/div&gt;
  4836. &lt;div class=&quot;details&quot;&gt;
  4837. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20662007&quot;&gt;Crystal
  4838.  
  4839.  
  4840.  
  4841.        structure of human thioredoxin revealing an unraveled helix and
  4842.        exposed S-nitrosation site.&lt;/a&gt;Weichsel A, Kem M, Montfort WR.&lt;span class=&quot;jrnl&quot; title=&quot;Protein science : a publication of the
  4843.        Protein Society&quot;&gt;Protein Sci&lt;/span&gt;. 2010 Sep;19(9):1801-6. doi:
  4844.      10.1002/pro.455.PMID:20662007&lt;/div&gt;
  4845. &lt;div class=&quot;details&quot;&gt;
  4846. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21453190&quot;&gt;Thioredoxin
  4847.  
  4848.  
  4849.  
  4850.  
  4851.        1-mediated post-translational modifications: reduction,
  4852.        transnitrosylation, denitrosylation, and related proteomics
  4853.        methodologies.&lt;/a&gt;Wu C, Parrott AM, Fu C, Liu T, Marino SM,
  4854.      Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve
  4855.      A, Simmons WJ, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Antioxidants &amp;amp;
  4856.        redox signaling&quot;&gt;Antioxid Redox Signal&lt;/span&gt;. 2011 Nov
  4857.      1;15(9):2565-604. doi: 10.1089/ars.2010.3831. Epub 2011 Jun 8.
  4858.      Review.PMID:21453190&lt;/div&gt;
  4859. &lt;div class=&quot;details&quot;&gt;
  4860. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16916647&quot;&gt;Substrate
  4861.  
  4862.  
  4863.  
  4864.        and functional diversity of lysine acetylation revealed by a
  4865.        proteomics survey.&lt;/a&gt;Kim SC, Sprung R, Chen Y, Xu Y, Ball H,
  4866.      Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang
  4867.      XJ, Zhao Y.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular cell&quot;&gt;Mol Cell&lt;/span&gt;.
  4868.      2006 Aug;23(4):607-18.PMID:16916647&lt;/div&gt;
  4869. &lt;div class=&quot;details&quot;&gt;
  4870. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10585464&quot;&gt;Thioredoxin-dependent
  4871.  
  4872.  
  4873.  
  4874.        redox regulation of p53-mediated p21 activation.&lt;/a&gt;Ueno M,
  4875.      Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T,
  4876.      Yamaoka Y, Yodoi J, Nikaido T.&lt;span class=&quot;jrnl&quot; title=&quot;The
  4877.        Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 1999 Dec
  4878.      10;274(50):35809-15.PMID:10585464&lt;/div&gt;
  4879. &lt;div class=&quot;details&quot;&gt;
  4880. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15824742&quot;&gt;Roles
  4881.  
  4882.  
  4883.  
  4884.        of thioredoxin reductase 1 and APE/Ref-1 in the control of basal
  4885.        p53 stability and activity.&lt;/a&gt;Seemann S, Hainaut P.&lt;span class=&quot;jrnl&quot; title=&quot;Oncogene&quot;&gt;Oncogene&lt;/span&gt;. 2005 Jun
  4886.      2;24(24):3853-63.PMID:15824742&lt;/div&gt;
  4887. &lt;div class=&quot;details&quot;&gt;
  4888. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7788295&quot;&gt;Solution
  4889.  
  4890.  
  4891.  
  4892.  
  4893.        structure of human thioredoxin in a mixed disulfide intermediate
  4894.        complex with its target peptide from the transcription factor NF
  4895.        kappa B.&lt;/a&gt;Qin J, Clore GM, Kennedy WM, Huth JR, Gronenborn AM.&lt;span class=&quot;jrnl&quot; title=&quot;Structure (London, England : 1993)&quot;&gt;Structure&lt;/span&gt;.
  4896.      1995 Mar 15;3(3):289-97.PMID:7788295&lt;/div&gt;
  4897. &lt;div class=&quot;details&quot;&gt;
  4898. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8736558&quot;&gt;The
  4899.  
  4900.  
  4901.  
  4902.        solution structure of human thioredoxin complexed with its
  4903.        target from Ref-1 reveals peptide chain reversal.&lt;/a&gt;Qin J,
  4904.      Clore GM, Kennedy WP, Kuszewski J, Gronenborn AM.&lt;span class=&quot;jrnl&quot; title=&quot;Structure (London, England : 1993)&quot;&gt;Structure&lt;/span&gt;.
  4905.      1996 May 15;4(5):613-20.PMID:8736558&lt;/div&gt;
  4906. &lt;div class=&quot;details&quot;&gt;
  4907. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9143692&quot;&gt;Redox
  4908.  
  4909.  
  4910.  
  4911.        regulation of cellular activation.&lt;/a&gt;Nakamura H, Nakamura K,
  4912.      Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Annual review of immunology&quot;&gt;Annu
  4913.  
  4914.  
  4915.  
  4916.        Rev Immunol&lt;/span&gt;. 1997;15:351-69. Review.PMID:9143692&lt;/div&gt;
  4917. &lt;div class=&quot;details&quot;&gt;
  4918. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17115890&quot;&gt;Contribution
  4919.  
  4920.  
  4921.  
  4922.        of thioredoxin reductase to T-cell mitogenesis and NF-kappaB
  4923.        DNA-binding promoted by selenite.&lt;/a&gt;Ueno H, Kajihara H,
  4924.      Nakamura H, Yodoi J, Nakamuro K.&lt;span class=&quot;jrnl&quot; title=&quot;Antioxidants &amp;amp; redox signaling&quot;&gt;Antioxid Redox Signal&lt;/span&gt;.
  4925.      2007 Jan;9(1):115-21.PMID:17115890&lt;/div&gt;
  4926. &lt;div class=&quot;details&quot;&gt;
  4927. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19628032&quot;&gt;Thioredoxin-related
  4928.  
  4929.  
  4930.  
  4931.  
  4932.        protein 14, a new member of the thioredoxin family with
  4933.        disulfide reductase activity: implication in the redox
  4934.        regulation of TNF-alpha signaling.&lt;/a&gt;Jeong W, Jung Y, Kim H,
  4935.      Park SJ, Rhee SG.&lt;span class=&quot;jrnl&quot; title=&quot;Free radical biology
  4936.        &amp;amp; medicine&quot;&gt;Free Radic Biol Med&lt;/span&gt;. 2009 Nov
  4937.      1;47(9):1294-303. doi: 10.1016/j.freeradbiomed.2009.07.021. Epub
  4938.      2009 Jul 21. Review.PMID:19628032&lt;/div&gt;
  4939. &lt;div class=&quot;details&quot;&gt;
  4940. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9143692&quot;&gt;Redox
  4941.  
  4942.  
  4943.  
  4944.        regulation of cellular activation.&lt;/a&gt;Nakamura H, Nakamura K,
  4945.      Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Annual review of immunology&quot;&gt;Annu
  4946.  
  4947.  
  4948.  
  4949.        Rev Immunol&lt;/span&gt;. 1997;15:351-69. Review.PMID:9143692&lt;/div&gt;
  4950. &lt;div class=&quot;details&quot;&gt;
  4951. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9108029&quot;&gt;AP-1
  4952.  
  4953.  
  4954.  
  4955.        transcriptional activity is regulated by a direct association
  4956.        between thioredoxin and Ref-1.&lt;/a&gt;Hirota K, Matsui M, Iwata S,
  4957.      Nishiyama A, Mori K, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Proceedings
  4958.        of the National Academy of Sciences of the United States of
  4959.        America&quot;&gt;Proc Natl Acad Sci U S A&lt;/span&gt;. 1997 Apr
  4960.      15;94(8):3633-8.PMID:9108029&lt;/div&gt;
  4961. &lt;div class=&quot;details&quot;&gt;
  4962. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10585464&quot;&gt;Thioredoxin-dependent
  4963.  
  4964.  
  4965.  
  4966.        redox regulation of p53-mediated p21 activation.&lt;/a&gt;Ueno M,
  4967.      Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T,
  4968.      Yamaoka Y, Yodoi J, Nikaido T.&lt;span class=&quot;jrnl&quot; title=&quot;The
  4969.        Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 1999 Dec
  4970.      10;274(50):35809-15.PMID:10585464&lt;/div&gt;
  4971. &lt;div class=&quot;details&quot;&gt;
  4972. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11118054&quot;&gt;Thioredoxin
  4973.  
  4974.  
  4975.  
  4976.  
  4977.        nuclear translocation and interaction with redox factor-1
  4978.        activates the activator protein-1 transcription factor in
  4979.        response to ionizing radiation.&lt;/a&gt;Wei SJ, Botero A, Hirota K,
  4980.      Bradbury CM, Markovina S, Laszlo A, Spitz DR, Goswami PC, Yodoi J,
  4981.      Gius D.&lt;span class=&quot;jrnl&quot; title=&quot;Cancer research&quot;&gt;Cancer Res&lt;/span&gt;.
  4982.      2000 Dec 1;60(23):6688-95.PMID:11118054&lt;/div&gt;
  4983. &lt;div class=&quot;details&quot;&gt;
  4984. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9915858&quot;&gt;Direct
  4985.  
  4986.  
  4987.  
  4988.        association with thioredoxin allows redox regulation of
  4989.        glucocorticoid receptor function.&lt;/a&gt;Makino Y, Yoshikawa N,
  4990.      Okamoto K, Hirota K, Yodoi J, Makino I, Tanaka H.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol
  4991.        Chem&lt;/span&gt;. 1999 Jan 29;274(5):3182-8.PMID:9915858&lt;/div&gt;
  4992. &lt;div class=&quot;details&quot;&gt;
  4993. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10823822&quot;&gt;Thioredoxin
  4994.  
  4995.  
  4996.  
  4997.        facilitates the induction of heme oxygenase-1 in response to
  4998.        inflammatory mediators.&lt;/a&gt;Wiesel P, Foster LC, Pellacani A,
  4999.      Layne MD, Hsieh CM, Huggins GS, Strauss P, Yet SF, Perrella MA.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol
  5000.        Chem&lt;/span&gt;. 2000 Aug 11;275(32):24840-6.PMID:10823822&lt;/div&gt;
  5001. &lt;div class=&quot;details&quot;&gt;
  5002. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11012661&quot;&gt;Physiological
  5003.  
  5004.  
  5005.  
  5006.        functions of thioredoxin and thioredoxin reductase.&lt;/a&gt;Arnér ES,
  5007.      Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;European journal of
  5008.        biochemistry / FEBS&quot;&gt;Eur J Biochem&lt;/span&gt;. 2000
  5009.      Oct;267(20):6102-9. Review.PMID:11012661&lt;/div&gt;
  5010. &lt;div class=&quot;details&quot;&gt;
  5011. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19859790&quot;&gt;c-Jun-NH2
  5012.  
  5013.  
  5014.  
  5015.        terminal kinase (JNK)-mediates AP-1 activation by thioredoxin:
  5016.        phosphorylation of cJun, JunB, and Fra-1.&lt;/a&gt;Das KC, Muniyappa
  5017.      H.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular and cellular biochemistry&quot;&gt;Mol
  5018.  
  5019.  
  5020.  
  5021.        Cell Biochem&lt;/span&gt;. 2010 Apr;337(1-2):53-63. doi:
  5022.      10.1007/s11010-009-0285-0. Epub 2009 Oct 27.PMID:19859790&lt;/div&gt;
  5023. &lt;div class=&quot;details&quot;&gt;
  5024. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12214272&quot;&gt;Thioredoxin
  5025.  
  5026.  
  5027.  
  5028.  
  5029.        reductase regulates AP-1 activity as well as thioredoxin nuclear
  5030.        localization via active cysteines in response to ionizing
  5031.        radiation.&lt;/a&gt;Karimpour S, Lou J, Lin LL, Rene LM, Lagunas L, Ma
  5032.      X, Karra S, Bradbury CM, Markovina S, Goswami PC, Spitz DR, Hirota
  5033.      K, Kalvakolanu DV, Yodoi J, Gius D.&lt;span class=&quot;jrnl&quot; title=&quot;Oncogene&quot;&gt;Oncogene&lt;/span&gt;. 2002 Sep
  5034.      12;21(41):6317-27.PMID:12214272&lt;/div&gt;
  5035. &lt;div class=&quot;details&quot;&gt;
  5036. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10585464&quot;&gt;Thioredoxin-dependent
  5037.  
  5038.  
  5039.  
  5040.        redox regulation of p53-mediated p21 activation.&lt;/a&gt;Ueno M,
  5041.      Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T,
  5042.      Yamaoka Y, Yodoi J, Nikaido T.&lt;span class=&quot;jrnl&quot; title=&quot;The
  5043.        Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 1999 Dec
  5044.      10;274(50):35809-15.PMID:10585464&lt;/div&gt;
  5045. &lt;div class=&quot;details&quot;&gt;
  5046. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17652454&quot;&gt;Disulfide
  5047.  
  5048.  
  5049.  
  5050.  
  5051.        Bond-mediated multimerization of Ask1 and its reduction by
  5052.        thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal
  5053.        kinase activation and apoptosis.&lt;/a&gt;Nadeau PJ, Charette SJ,
  5054.      Toledano MB, Landry J.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular biology
  5055.        of the cell&quot;&gt;Mol Biol Cell&lt;/span&gt;. 2007 Oct;18(10):3903-13. Epub
  5056.      2007 Jul 25.PMID:17652454&lt;/div&gt;
  5057. &lt;div class=&quot;details&quot;&gt;
  5058. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8805557&quot;&gt;Crystal
  5059.  
  5060.  
  5061.  
  5062.        structures of reduced, oxidized, and mutated human thioredoxins:
  5063.        evidence for a regulatory homodimer.&lt;/a&gt;Weichsel A, Gasdaska JR,
  5064.      Powis G, Montfort WR.&lt;span class=&quot;jrnl&quot; title=&quot;Structure (London,
  5065.        England : 1993)&quot;&gt;Structure&lt;/span&gt;. 1996 Jun
  5066.      15;4(6):735-51.PMID:8805557&lt;/div&gt;
  5067. &lt;div class=&quot;details&quot;&gt;
  5068. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12214272&quot;&gt;Thioredoxin
  5069.  
  5070.  
  5071.  
  5072.  
  5073.        reductase regulates AP-1 activity as well as thioredoxin nuclear
  5074.        localization via active cysteines in response to ionizing
  5075.        radiation.&lt;/a&gt;Karimpour S, Lou J, Lin LL, Rene LM, Lagunas L, Ma
  5076.      X, Karra S, Bradbury CM, Markovina S, Goswami PC, Spitz DR, Hirota
  5077.      K, Kalvakolanu DV, Yodoi J, Gius D.&lt;span class=&quot;jrnl&quot; title=&quot;Oncogene&quot;&gt;Oncogene&lt;/span&gt;. 2002 Sep
  5078.      12;21(41):6317-27.PMID:12214272&lt;/div&gt;
  5079. &lt;div class=&quot;details&quot;&gt;
  5080. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;Glutathione
  5081.  
  5082.  
  5083.  
  5084.        and glutaredoxin act as a backup of human thioredoxin reductase
  5085.        1 to reduce thioredoxin 1 preventing cell death by
  5086.        aurothioglucose.&lt;/a&gt;Du Y, Zhang H, Lu J, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol
  5087.        Chem&lt;/span&gt;. 2012 Nov 2;287(45):38210-9. doi:
  5088.      10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247&lt;/div&gt;
  5089. &lt;div class=&quot;details&quot;&gt;
  5090. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9315320&quot;&gt;Selenium
  5091.  
  5092.  
  5093.        and the thioredoxin and glutaredoxin systems.&lt;/a&gt;Björnstedt M,
  5094.      Kumar S, Björkhem L, Spyrou G, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;Biomedical and environmental sciences : BES&quot;&gt;Biomed
  5095.        Environ Sci&lt;/span&gt;. 1997 Sep;10(2-3):271-9. Review.PMID:9315320&lt;/div&gt;
  5096. &lt;div class=&quot;details&quot;&gt;
  5097. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20306235&quot;&gt;Regulation
  5098.  
  5099.  
  5100.        of redox signaling by selenoproteins.&lt;/a&gt;Hawkes WC, Alkan Z.&lt;span class=&quot;jrnl&quot; title=&quot;Biological trace element research&quot;&gt;Biol
  5101.        Trace Elem Res&lt;/span&gt;. 2010 Jun;134(3):235-51. doi:
  5102.      10.1007/s12011-010-8656-7. Epub 2010 Mar 20.PMID:20306235&lt;/div&gt;
  5103. &lt;div class=&quot;details&quot;&gt;
  5104. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16214824&quot;&gt;Thioredoxin
  5105.  
  5106.  
  5107.        and dihydrolipoic acid inhibit elastase activity in cystic
  5108.        fibrosis sputum.&lt;/a&gt;Lee RL, Rancourt RC, del Val G, Pack K,
  5109.      Pardee C, Accurso FJ, White CW.&lt;span class=&quot;jrnl&quot; title=&quot;American
  5110.        journal of physiology. Lung cellular and molecular physiology&quot;&gt;Am
  5111.  
  5112.  
  5113.        J Physiol Lung Cell Mol Physiol&lt;/span&gt;. 2005
  5114.      Nov;289(5):L875-82.PMID:16214824&lt;/div&gt;
  5115. &lt;div class=&quot;details&quot;&gt;
  5116. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7961915&quot;&gt;The
  5117.  
  5118.  
  5119.        thioredoxin and glutaredoxin systems are efficient electron
  5120.        donors to human plasma glutathione peroxidase.&lt;/a&gt;Björnstedt M,
  5121.      Xue J, Huang W, Akesson B, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;.
  5122.      1994 Nov 25;269(47):29382-4.PMID:7961915&lt;/div&gt;
  5123. &lt;div class=&quot;details&quot;&gt;
  5124. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8702596&quot;&gt;S-nitrosoglutathione
  5125.  
  5126.  
  5127.        is cleaved by the thioredoxin system with liberation of
  5128.        glutathione and redox regulating nitric oxide.&lt;/a&gt;Nikitovic D,
  5129.      Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological
  5130.        chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 1996 Aug
  5131.      9;271(32):19180-5.PMID:8702596&lt;/div&gt;
  5132. &lt;div class=&quot;details&quot;&gt;
  5133. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15754001&quot;&gt;Antisense-thioredoxin
  5134.  
  5135.  
  5136.        inhibits angiogenesis via pVHL-mediated hypoxia-inducible
  5137.        factor-1alpha degradation.&lt;/a&gt;Kim WJ, Cho H, Lee SW, Kim YJ, Kim
  5138.      KW.&lt;span class=&quot;jrnl&quot; title=&quot;International journal of oncology&quot;&gt;Int
  5139.  
  5140.  
  5141.        J Oncol&lt;/span&gt;. 2005 Apr;26(4):1049-52.PMID:15754001&lt;/div&gt;
  5142. &lt;div class=&quot;details&quot;&gt;
  5143. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10232049&quot;&gt;Thioredoxin
  5144.  
  5145.  
  5146.        in the endocrine response to stress.&lt;/a&gt;Tanaka H, Makino Y,
  5147.      Okamoto K.&lt;span class=&quot;jrnl&quot; title=&quot;Vitamins and hormones&quot;&gt;Vitam
  5148.        Horm&lt;/span&gt;. 1999;57:153-75. Review.PMID:10232049&lt;/div&gt;
  5149. &lt;div class=&quot;details&quot;&gt;
  5150. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23212077&quot;&gt;Small
  5151.  
  5152.  
  5153.        changes huge impact: the role of thioredoxin 1 in the regulation
  5154.        of apoptosis by S-nitrosylation.&lt;/a&gt;Li H, Wan A, Xu G, Ye D.&lt;span class=&quot;jrnl&quot; title=&quot;Acta biochimica et biophysica Sinica&quot;&gt;Acta
  5155.        Biochim Biophys Sin (Shanghai)&lt;/span&gt;. 2013 Mar;45(3):153-61.
  5156.      doi: 10.1093/abbs/gms103. Epub 2012 Dec 4. Review.PMID:23212077&lt;/div&gt;
  5157. &lt;div class=&quot;details&quot;&gt;
  5158. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21704743&quot;&gt;Distinction
  5159.  
  5160.  
  5161.        of thioredoxin transnitrosylation and denitrosylation target
  5162.        proteins by the ICAT quantitative approach.&lt;/a&gt;Wu C, Parrott AM,
  5163.      Liu T, Jain MR, Yang Y, Sadoshima J, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Journal of proteomics&quot;&gt;J Proteomics&lt;/span&gt;. 2011 Oct
  5164.      19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
  5165.      Jun 17.PMID:21704743&lt;/div&gt;
  5166. &lt;div class=&quot;details&quot;&gt;
  5167. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20660346&quot;&gt;Redox
  5168.  
  5169.  
  5170.        regulatory mechanism of transnitrosylation by thioredoxin.&lt;/a&gt;Wu
  5171.      C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT,
  5172.      Sadoshima J, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular &amp;amp;
  5173.        cellular proteomics : MCP&quot;&gt;Mol Cell Proteomics&lt;/span&gt;. 2010
  5174.      Oct;9(10):2262-75. doi: 10.1074/mcp.M110.000034. Epub 2010 Jul
  5175.      21.PMID:20660346&lt;/div&gt;
  5176. &lt;div class=&quot;details&quot;&gt;
  5177. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18544525&quot;&gt;Regulation
  5178.  
  5179.  
  5180.  
  5181.        of the catalytic activity and structure of human thioredoxin 1
  5182.        via oxidation and S-nitrosylation of cysteine residues.&lt;/a&gt;Hashemy
  5183.  
  5184.  
  5185.      SI, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological
  5186.        chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2008 Aug 8;283(32):21890-8. doi:
  5187.      10.1074/jbc.M801047200. Epub 2008 Jun 10.PMID:18544525&lt;/div&gt;
  5188. &lt;div class=&quot;details&quot;&gt;
  5189. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8813721&quot;&gt;Redox
  5190.  
  5191.  
  5192.  
  5193.        regulation of thyroid-transcription factors, Pax-8 and TTF-1, is
  5194.        involved in their increased DNA-binding activities by
  5195.        thyrotropin in rat thyroid FRTL-5 cells.&lt;/a&gt;Kambe F, Nomura Y,
  5196.      Okamoto T, Seo H.&lt;span class=&quot;jrnl&quot; title=&quot;Molecular endocrinology
  5197.        (Baltimore, Md.)&quot;&gt;Mol Endocrinol&lt;/span&gt;. 1996
  5198.      Jul;10(7):801-12.PMID:8813721&lt;/div&gt;
  5199. &lt;div class=&quot;details&quot;&gt;
  5200. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8702596&quot;&gt;S-nitrosoglutathione
  5201.  
  5202.  
  5203.        is cleaved by the thioredoxin system with liberation of
  5204.        glutathione and redox regulating nitric oxide.&lt;/a&gt;Nikitovic D,
  5205.      Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological
  5206.        chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 1996 Aug
  5207.      9;271(32):19180-5.PMID:8702596&lt;/div&gt;
  5208. &lt;div class=&quot;details&quot;&gt;
  5209. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12801522&quot;&gt;S-nitrosylation
  5210.  
  5211.  
  5212.        of thioredoxin mediates activation of apoptosis
  5213.        signal-regulating kinase 1.&lt;/a&gt;Sumbayev VV.&lt;span class=&quot;jrnl&quot; title=&quot;Archives of biochemistry and biophysics&quot;&gt;Arch Biochem
  5214.        Biophys&lt;/span&gt;. 2003 Jul 1;415(1):133-6.PMID:12801522&lt;/div&gt;
  5215. &lt;div class=&quot;details&quot;&gt;
  5216. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21453190&quot;&gt;Thioredoxin
  5217.  
  5218.  
  5219.  
  5220.        1-mediated post-translational modifications: reduction,
  5221.        transnitrosylation, denitrosylation, and related proteomics
  5222.        methodologies.&lt;/a&gt;Wu C, Parrott AM, Fu C, Liu T, Marino SM,
  5223.      Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve
  5224.      A, Simmons WJ, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Antioxidants &amp;amp;
  5225.        redox signaling&quot;&gt;Antioxid Redox Signal&lt;/span&gt;. 2011 Nov
  5226.      1;15(9):2565-604. doi: 10.1089/ars.2010.3831. Epub 2011 Jun 8.
  5227.      Review.PMID:21453190&lt;/div&gt;
  5228. &lt;div class=&quot;details&quot;&gt;
  5229. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15818395&quot;&gt;The
  5230.  
  5231.  
  5232.        thioredoxin system in retroviral infection and apoptosis.&lt;/a&gt;Masutani
  5233.  
  5234.  
  5235.      H, Ueda S, Yodoi J.&lt;span class=&quot;jrnl&quot; title=&quot;Cell death and
  5236.        differentiation&quot;&gt;Cell Death Differ&lt;/span&gt;. 2005 Aug;12 Suppl
  5237.      1:991-8. Review.PMID:15818395&lt;/div&gt;
  5238. &lt;div class=&quot;details&quot;&gt;
  5239. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16061374&quot;&gt;Altered
  5240.  
  5241.  
  5242.        thioredoxin subcellular localization and redox status in MCF-7
  5243.        cells following 1,25-dihydroxyvitamin D3 treatment.&lt;/a&gt;Byrne BM,
  5244.      Welsh J.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of steroid
  5245.        biochemistry and molecular biology&quot;&gt;J Steroid Biochem Mol Biol&lt;/span&gt;.
  5246.      2005 Oct;97(1-2):57-64. Epub 2005 Aug 2.PMID:16061374&lt;/div&gt;
  5247. &lt;div class=&quot;details&quot;&gt;
  5248. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;Glutathione
  5249.  
  5250.  
  5251.  
  5252.        and glutaredoxin act as a backup of human thioredoxin reductase
  5253.        1 to reduce thioredoxin 1 preventing cell death by
  5254.        aurothioglucose.&lt;/a&gt;Du Y, Zhang H, Lu J, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol
  5255.        Chem&lt;/span&gt;. 2012 Nov 2;287(45):38210-9. doi:
  5256.      10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247&lt;/div&gt;
  5257. &lt;div class=&quot;details&quot;&gt;
  5258. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3170595&quot;&gt;Cloning
  5259.  
  5260.  
  5261.        and expression of a cDNA for human thioredoxin.&lt;/a&gt;Wollman EE,
  5262.      d&#39;Auriol L, Rimsky L, Shaw A, Jacquot JP, Wingfield P, Graber P,
  5263.      Dessarps F, Robin P, Galibert F, et al.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;.
  5264.      1988 Oct 25;263(30):15506-12.PMID:3170595&lt;/div&gt;
  5265. &lt;div class=&quot;details&quot;&gt;
  5266. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21453190&quot;&gt;Thioredoxin
  5267.  
  5268.  
  5269.  
  5270.        1-mediated post-translational modifications: reduction,
  5271.        transnitrosylation, denitrosylation, and related proteomics
  5272.        methodologies.&lt;/a&gt;Wu C, Parrott AM, Fu C, Liu T, Marino SM,
  5273.      Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve
  5274.      A, Simmons WJ, Li H.&lt;span class=&quot;jrnl&quot; title=&quot;Antioxidants &amp;amp;
  5275.        redox signaling&quot;&gt;Antioxid Redox Signal&lt;/span&gt;. 2011 Nov
  5276.      1;15(9):2565-604. doi: 10.1089/ars.2010.3831. Epub 2011 Jun 8.
  5277.      Review.PMID:21453190&lt;/div&gt;
  5278. &lt;div class=&quot;details&quot;&gt;
  5279. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17012768&quot;&gt;The
  5280.  
  5281.  
  5282.        thiol-based redox networks of pathogens: unexploited targets in
  5283.        the search for new drugs.&lt;/a&gt;Jaeger T, Flohé L.&lt;span class=&quot;jrnl&quot; title=&quot;BioFactors (Oxford, England)&quot;&gt;Biofactors&lt;/span&gt;.
  5284.      2006;27(1-4):109-20. Review.PMID:17012768&lt;/div&gt;
  5285. &lt;div class=&quot;details&quot;&gt;
  5286. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24062305&quot;&gt;Thioredoxin
  5287.  
  5288.  
  5289.  
  5290.        1 is inactivated due to oxidation induced by peroxiredoxin under
  5291.        oxidative stress and reactivated by the glutaredoxin system.&lt;/a&gt;Du
  5292.  
  5293.  
  5294.      Y, Zhang H, Zhang X, Lu J, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;.
  5295.      2013 Nov 8;288(45):32241-7. doi: 10.1074/jbc.M113.495150. Epub
  5296.      2013 Sep 23.PMID:24062305&lt;/div&gt;
  5297. &lt;div class=&quot;details&quot;&gt;
  5298. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16263712&quot;&gt;Cathepsin
  5299.  
  5300.  
  5301.        D and H2O2 stimulate degradation of thioredoxin-1: implication
  5302.        for endothelial cell apoptosis.&lt;/a&gt;Haendeler J, Popp R, Goy C,
  5303.      Tischler V, Zeiher AM, Dimmeler S.&lt;span class=&quot;jrnl&quot; title=&quot;The
  5304.        Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2005 Dec
  5305.      30;280(52):42945-51. Epub 2005 Nov 1.PMID:16263712&lt;/div&gt;
  5306. &lt;div class=&quot;details&quot;&gt;
  5307. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12386145&quot;&gt;Vitamin
  5308.  
  5309.  
  5310.  
  5311.        D3-upregulated protein-1 (VDUP-1) regulates redox-dependent
  5312.        vascular smooth muscle cell proliferation through interaction
  5313.        with thioredoxin.&lt;/a&gt;Schulze PC, De Keulenaer GW, Yoshioka J,
  5314.      Kassik KA, Lee RT.&lt;span class=&quot;jrnl&quot; title=&quot;Circulation research&quot;&gt;Circ
  5315.  
  5316.  
  5317.        Res&lt;/span&gt;. 2002 Oct 18;91(8):689-95.PMID:12386145&lt;/div&gt;
  5318. &lt;div class=&quot;details&quot;&gt;
  5319. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17081769&quot;&gt;Thioredoxin
  5320.  
  5321.  
  5322.        and protein kinases in redox signaling.&lt;/a&gt;Fujino G, Noguchi T,
  5323.      Takeda K, Ichijo H.&lt;span class=&quot;jrnl&quot; title=&quot;Seminars in cancer
  5324.        biology&quot;&gt;Semin Cancer Biol&lt;/span&gt;. 2006 Dec;16(6):427-35. Epub
  5325.      2006 Sep 26. Review.PMID:17081769&lt;/div&gt;
  5326. &lt;div class=&quot;details&quot;&gt;
  5327. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15723974&quot;&gt;Alpha-adrenergic
  5328.  
  5329.  
  5330.  
  5331.        receptor-stimulated hypertrophy in adult rat ventricular
  5332.        myocytes is mediated via thioredoxin-1-sensitive oxidative
  5333.        modification of thiols on Ras.&lt;/a&gt;Kuster GM, Pimentel DR, Adachi
  5334.      T, Ido Y, Brenner DA, Cohen RA, Liao R, Siwik DA, Colucci WS.&lt;span class=&quot;jrnl&quot; title=&quot;Circulation&quot;&gt;Circulation&lt;/span&gt;. 2005 Mar
  5335.      8;111(9):1192-8. Epub 2005 Feb 21.PMID:15723974&lt;/div&gt;
  5336. &lt;div class=&quot;details&quot;&gt;
  5337. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;Glutathione
  5338.  
  5339.  
  5340.  
  5341.        and glutaredoxin act as a backup of human thioredoxin reductase
  5342.        1 to reduce thioredoxin 1 preventing cell death by
  5343.        aurothioglucose.&lt;/a&gt;Du Y, Zhang H, Lu J, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol
  5344.        Chem&lt;/span&gt;. 2012 Nov 2;287(45):38210-9. doi:
  5345.      10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247&lt;/div&gt;
  5346. &lt;div class=&quot;details&quot;&gt;
  5347. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20218863&quot;&gt;Redox
  5348.  
  5349.  
  5350.        regulation of actin by thioredoxin-1 is mediated by the
  5351.        interaction of the proteins via cysteine 62.&lt;/a&gt;Wang X, Ling S,
  5352.      Zhao D, Sun Q, Li Q, Wu F, Nie J, Qu L, Wang B, Shen X, Bai Y, Li
  5353.      Y, Li Y.&lt;span class=&quot;jrnl&quot; title=&quot;Antioxidants &amp;amp; redox
  5354.        signaling&quot;&gt;Antioxid Redox Signal&lt;/span&gt;. 2010 Sep
  5355.      1;13(5):565-73. doi: 10.1089/ars.2009.2833.PMID:20218863&lt;/div&gt;
  5356. &lt;div class=&quot;details&quot;&gt;
  5357. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;Glutathione
  5358.  
  5359.  
  5360.  
  5361.        and glutaredoxin act as a backup of human thioredoxin reductase
  5362.        1 to reduce thioredoxin 1 preventing cell death by
  5363.        aurothioglucose.&lt;/a&gt;Du Y, Zhang H, Lu J, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol
  5364.        Chem&lt;/span&gt;. 2012 Nov 2;287(45):38210-9. doi:
  5365.      10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247&lt;/div&gt;
  5366. &lt;div class=&quot;details&quot;&gt;
  5367. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19328186&quot;&gt;Attenuation
  5368.  
  5369.  
  5370.        of neuronal degeneration in thioredoxin-1 overexpressing mice
  5371.        after mild focal ischemia.&lt;/a&gt;Zhou F, Gomi M, Fujimoto M, Hayase
  5372.      M, Marumo T, Masutani H, Yodoi J, Hashimoto N, Nozaki K, Takagi Y.&lt;span class=&quot;jrnl&quot; title=&quot;Brain research&quot;&gt;Brain Res&lt;/span&gt;. 2009 May
  5373.      26;1272:62-70. doi: 10.1016/j.brainres.2009.03.023. Epub 2009 Mar
  5374.      25.PMID:19328186&lt;/div&gt;
  5375. &lt;div class=&quot;details&quot;&gt;
  5376. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17823364&quot;&gt;Nuclear
  5377.  
  5378.  
  5379.        redox-signaling is essential for apoptosis inhibition in
  5380.        endothelial cells--important role for nuclear thioredoxin-1.&lt;/a&gt;Schroeder
  5381.  
  5382.  
  5383.      P, Popp R, Wiegand B, Altschmied J, Haendeler J.&lt;span class=&quot;jrnl&quot; title=&quot;Arteriosclerosis, thrombosis, and vascular biology&quot;&gt;Arterioscler
  5384.  
  5385.  
  5386.        Thromb Vasc Biol&lt;/span&gt;. 2007 Nov;27(11):2325-31. Epub 2007 Sep
  5387.      6.PMID:17823364&lt;/div&gt;
  5388. &lt;div class=&quot;details&quot;&gt;
  5389. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16159878&quot;&gt;Endogenous
  5390.  
  5391.  
  5392.        thioredoxin is required for redox cycling of anthracyclines and
  5393.        p53-dependent apoptosis in cancer cells.&lt;/a&gt;Ravi D, Muniyappa H,
  5394.      Das KC.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological
  5395.        chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2005 Dec 2;280(48):40084-96. Epub
  5396.      2005 Sep 13.PMID:16159878&lt;/div&gt;
  5397. &lt;div class=&quot;details&quot;&gt;
  5398. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16424062&quot;&gt;Tagging
  5399.  
  5400.  
  5401.        single-nucleotide polymorphisms in antioxidant defense enzymes
  5402.        and susceptibility to breast cancer.&lt;/a&gt;Cebrian A, Pharoah PD,
  5403.      Ahmed S, Smith PL, Luccarini C, Luben R, Redman K, Munday H,
  5404.      Easton DF, Dunning AM, Ponder BA.&lt;span class=&quot;jrnl&quot; title=&quot;Cancer
  5405.        research&quot;&gt;Cancer Res&lt;/span&gt;. 2006 Jan
  5406.      15;66(2):1225-33.PMID:16424062&lt;/div&gt;
  5407. &lt;div class=&quot;details&quot;&gt;
  5408. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22867430&quot;&gt;Interacting
  5409.  
  5410.  
  5411.        with thioredoxin-1--disease or no disease?&lt;/a&gt;Zschauer TC,
  5412.      Matsushima S, Altschmied J, Shao D, Sadoshima J, Haendeler J.&lt;span class=&quot;jrnl&quot; title=&quot;Antioxidants &amp;amp; redox signaling&quot;&gt;Antioxid
  5413.        Redox Signal&lt;/span&gt;. 2013 Mar 20;18(9):1053-62. doi:
  5414.      10.1089/ars.2012.4822. Epub 2012 Sep 24. Review.PMID:22867430&lt;/div&gt;
  5415. &lt;div class=&quot;details&quot;&gt;
  5416. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9354464&quot;&gt;Mechanisms
  5417.  
  5418.  
  5419.        of the regulation of thioredoxin reductase activity in cancer
  5420.        cells by the chemopreventive agent selenium.&lt;/a&gt;Gallegos A,
  5421.      Berggren M, Gasdaska JR, Powis G.&lt;span class=&quot;jrnl&quot; title=&quot;Cancer
  5422.        research&quot;&gt;Cancer Res&lt;/span&gt;. 1997 Nov
  5423.      1;57(21):4965-70.PMID:9354464&lt;/div&gt;
  5424. &lt;div class=&quot;details&quot;&gt;
  5425. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9315320&quot;&gt;Selenium
  5426.  
  5427.  
  5428.        and the thioredoxin and glutaredoxin systems.&lt;/a&gt;Björnstedt M,
  5429.      Kumar S, Björkhem L, Spyrou G, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;Biomedical and environmental sciences : BES&quot;&gt;Biomed
  5430.        Environ Sci&lt;/span&gt;. 1997 Sep;10(2-3):271-9. Review.PMID:9315320&lt;/div&gt;
  5431. &lt;div class=&quot;details&quot;&gt;
  5432. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16750198&quot;&gt;Truncated
  5433.  
  5434.  
  5435.        mutants of human thioredoxin reductase 1 do not exhibit
  5436.        glutathione reductase activity.&lt;/a&gt;Urig S, Lieske J, Fritz-Wolf
  5437.      K, Irmler A, Becker K.&lt;span class=&quot;jrnl&quot; title=&quot;FEBS letters&quot;&gt;FEBS
  5438.        Lett&lt;/span&gt;. 2006 Jun 26;580(15):3595-600. Epub 2006 May
  5439.      23.PMID:16750198&lt;/div&gt;
  5440. &lt;div class=&quot;details&quot;&gt;
  5441. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22977247&quot;&gt;Glutathione
  5442.  
  5443.  
  5444.  
  5445.        and glutaredoxin act as a backup of human thioredoxin reductase
  5446.        1 to reduce thioredoxin 1 preventing cell death by
  5447.        aurothioglucose.&lt;/a&gt;Du Y, Zhang H, Lu J, Holmgren A.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol
  5448.        Chem&lt;/span&gt;. 2012 Nov 2;287(45):38210-9. doi:
  5449.      10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247&lt;/div&gt;
  5450. &lt;div class=&quot;details&quot;&gt;
  5451. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15824742&quot;&gt;Roles
  5452.  
  5453.  
  5454.        of thioredoxin reductase 1 and APE/Ref-1 in the control of basal
  5455.        p53 stability and activity.&lt;/a&gt;Seemann S, Hainaut P.&lt;span class=&quot;jrnl&quot; title=&quot;Oncogene&quot;&gt;Oncogene&lt;/span&gt;. 2005 Jun
  5456.      2;24(24):3853-63.PMID:15824742&lt;/div&gt;
  5457. &lt;div class=&quot;details&quot;&gt;
  5458. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12214272&quot;&gt;Thioredoxin
  5459.  
  5460.  
  5461.  
  5462.        reductase regulates AP-1 activity as well as thioredoxin nuclear
  5463.        localization via active cysteines in response to ionizing
  5464.        radiation.&lt;/a&gt;Karimpour S, Lou J, Lin LL, Rene LM, Lagunas L, Ma
  5465.      X, Karra S, Bradbury CM, Markovina S, Goswami PC, Spitz DR, Hirota
  5466.      K, Kalvakolanu DV, Yodoi J, Gius D.&lt;span class=&quot;jrnl&quot; title=&quot;Oncogene&quot;&gt;Oncogene&lt;/span&gt;. 2002 Sep
  5467.      12;21(41):6317-27.PMID:12214272&lt;/div&gt;
  5468. &lt;div class=&quot;details&quot;&gt;
  5469. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8958209&quot;&gt;Thioredoxin:
  5470.  
  5471.  
  5472.  
  5473.        a redox-regulating cellular cofactor for glucocorticoid hormone
  5474.        action. Cross talk between endocrine control of stress response
  5475.        and cellular antioxidant defense system.&lt;/a&gt;Makino Y, Okamoto K,
  5476.      Yoshikawa N, Aoshima M, Hirota K, Yodoi J, Umesono K, Makino I,
  5477.      Tanaka H.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of clinical
  5478.        investigation&quot;&gt;J Clin Invest&lt;/span&gt;. 1996 Dec
  5479.      1;98(11):2469-77.PMID:8958209&lt;/div&gt;
  5480. &lt;div class=&quot;details&quot;&gt;
  5481. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10232049&quot;&gt;Thioredoxin
  5482.  
  5483.  
  5484.        in the endocrine response to stress.&lt;/a&gt;Tanaka H, Makino Y,
  5485.      Okamoto K.&lt;span class=&quot;jrnl&quot; title=&quot;Vitamins and hormones&quot;&gt;Vitam
  5486.        Horm&lt;/span&gt;. 1999;57:153-75. Review.PMID:10232049&lt;/div&gt;
  5487. &lt;div class=&quot;details&quot;&gt;
  5488. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20584310&quot;&gt;Role
  5489.  
  5490.  
  5491.        of thioredoxin reductase 1 and thioredoxin interacting protein
  5492.        in prognosis of breast cancer.&lt;/a&gt;Cadenas C, Franckenstein D,
  5493.      Schmidt M, Gehrmann M, Hermes M, Geppert B, Schormann W, Maccoux
  5494.      LJ, Schug M, Schumann A, Wilhelm C, Freis E, Ickstadt K,
  5495.      Rahnenführer J, Baumbach JI, Sickmann A, Hengstler JG.&lt;span class=&quot;jrnl&quot; title=&quot;Breast cancer research : BCR&quot;&gt;Breast Cancer
  5496.        Res&lt;/span&gt;. 2010;12(3):R44. doi: 10.1186/bcr2599. Epub 2010 Jun
  5497.      28.PMID:20584310&lt;/div&gt;
  5498. &lt;div class=&quot;details&quot;&gt;
  5499. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14503974&quot;&gt;Immunohistochemical
  5500.  
  5501.        determination of thioredoxin and glutaredoxin distribution in
  5502.        the human cervix, and possible relation to cervical ripening.&lt;/a&gt;Lysell
  5503.      J, Stjernholm Vladic Y, Ciarlo N, Holmgren A, Sahlin L.&lt;span class=&quot;jrnl&quot; title=&quot;Gynecological endocrinology : the official
  5504.        journal of the International Society of Gynecological
  5505.        Endocrinology&quot;&gt;Gynecol Endocrinol&lt;/span&gt;. 2003 Aug;17(4):303-10.PMID:14503974&lt;/div&gt;
  5506. &lt;div class=&quot;details&quot;&gt;
  5507. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23105116&quot;&gt;Identification
  5508.        of novel interaction between ADAM17 (a disintegrin and
  5509.        metalloprotease 17) and thioredoxin-1.&lt;/a&gt;Aragão AZ, Nogueira
  5510.      ML, Granato DC, Simabuco FM, Honorato RV, Hoffman Z, Yokoo S,
  5511.      Laurindo FR, Squina FM, Zeri AC, Oliveira PS, Sherman NE, Paes
  5512.      Leme AF.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological
  5513.        chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2012 Dec 14;287(51):43071-82.
  5514.      doi: 10.1074/jbc.M112.364513. Epub 2012 Oct 26.PMID:23105116&lt;/div&gt;
  5515. &lt;div class=&quot;details&quot;&gt;
  5516. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15987909&quot;&gt;The
  5517.  
  5518.        crystal structure of TrxA(CACA): Insights into the formation of
  5519.        a [2Fe-2S] iron-sulfur cluster in an Escherichia coli
  5520.        thioredoxin mutant.&lt;/a&gt;Collet JF, Peisach D, Bardwell JC, Xu Z.&lt;span class=&quot;jrnl&quot; title=&quot;Protein science : a publication of the
  5521.        Protein Society&quot;&gt;Protein Sci&lt;/span&gt;. 2005 Jul;14(7):1863-9.PMID:&lt;b&gt;15987909&lt;br /&gt;
  5522.      &lt;/b&gt;&lt;/div&gt;
  5523. &lt;div class=&quot;details&quot;&gt;
  5524. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20620191&quot;&gt;Thioredoxin
  5525.        and glutaredoxin system proteins-immunolocalization in the rat
  5526.        central nervous system.&lt;/a&gt;Aon-Bertolino ML, Romero JI, Galeano
  5527.      P, Holubiec M, Badorrey MS, Saraceno GE, Hanschmann EM, Lillig CH,
  5528.      Capani F.&lt;span class=&quot;jrnl&quot; title=&quot;Biochimica et biophysica acta&quot;&gt;Biochim
  5529.        Biophys Acta&lt;/span&gt;. 2011 Jan;1810(1):93-110. doi:
  5530.      10.1016/j.bbagen.2010.06.011. Epub 2010 Jul 8.PMID:20620191&lt;/div&gt;
  5531. &lt;div class=&quot;details&quot;&gt;
  5532. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17369362&quot;&gt;Dissection
  5533.        of complex protein dynamics in human thioredoxin.&lt;/a&gt;Qiu W, Wang
  5534.      L, Lu W, Boechler A, Sanders DA, Zhong D.&lt;span class=&quot;jrnl&quot; title=&quot;Proceedings of the National Academy of Sciences of the
  5535.        United States of America&quot;&gt;Proc Natl Acad Sci U S A&lt;/span&gt;. 2007
  5536.      Mar 27;104(13):5366-71. Epub 2007 Mar 16.PMID:17369362&lt;/div&gt;
  5537. &lt;div class=&quot;details&quot;&gt;
  5538. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16263712&quot;&gt;Cathepsin
  5539.        D and H2O2 stimulate degradation of thioredoxin-1: implication
  5540.        for endothelial cell apoptosis.&lt;/a&gt;Haendeler J, Popp R, Goy C,
  5541.      Tischler V, Zeiher AM, Dimmeler S.&lt;span class=&quot;jrnl&quot; title=&quot;The
  5542.        Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;. 2005 Dec
  5543.      30;280(52):42945-51. Epub 2005 Nov 1.PMID:16263712&lt;/div&gt;
  5544. &lt;div class=&quot;details&quot;&gt;
  5545. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10196131&quot;&gt;Chloroplast
  5546.  
  5547.        NADP-malate dehydrogenase: structural basis of light-dependent
  5548.        regulation of activity by thiol oxidation and reduction.&lt;/a&gt;Carr
  5549.      PD, Verger D, Ashton AR, Ollis DL.&lt;span class=&quot;jrnl&quot; title=&quot;Structure (London, England : 1993)&quot;&gt;Structure&lt;/span&gt;.
  5550.      1999 Apr 15;7(4):461-75.PMID:10196131&lt;/div&gt;
  5551. &lt;div class=&quot;details&quot;&gt;
  5552. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3170595&quot;&gt;Cloning
  5553.        and expression of a cDNA for human thioredoxin.&lt;/a&gt;Wollman EE,
  5554.      d&#39;Auriol L, Rimsky L, Shaw A, Jacquot JP, Wingfield P, Graber P,
  5555.      Dessarps F, Robin P, Galibert F, et al.&lt;span class=&quot;jrnl&quot; title=&quot;The Journal of biological chemistry&quot;&gt;J Biol Chem&lt;/span&gt;.
  5556.      1988 Oct 25;263(30):15506-12.PMID:3170595&lt;/div&gt;
  5557. &lt;div class=&quot;details&quot;&gt;
  5558. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2684271&quot;&gt;A
  5559.        proton nuclear magnetic resonance assignment and secondary
  5560.        structure determination of recombinant human thioredoxin.&lt;/a&gt;Forman-Kay
  5561.      JD, Clore GM, Driscoll PC, Wingfield P, Richards FM, Gronenborn
  5562.      AM.&lt;span class=&quot;jrnl&quot; title=&quot;Biochemistry&quot;&gt;Biochemistry&lt;/span&gt;.
  5563.      1989 Aug 22;28(17):7088-97.PMID:2684271&lt;br /&gt;
  5564. &lt;span style=&quot;font-size: xx-small;&quot;&gt;&lt;br /&gt;&lt;/span&gt;&lt;/div&gt;
  5565. &lt;div class=&quot;details&quot;&gt;
  5566. &lt;/div&gt;
  5567. &lt;div class=&quot;details&quot;&gt;
  5568. &lt;br /&gt;&lt;/div&gt;
  5569. &lt;div class=&quot;details&quot;&gt;
  5570. &lt;/div&gt;
  5571. &lt;div class=&quot;details&quot;&gt;
  5572. &lt;/div&gt;
  5573. &lt;/div&gt;
  5574. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  5575. google_ad_client=&quot;pub-9610428118332343&quot;;
  5576. google_ad_host=&quot;&quot;;
  5577. google_ad_width=200;
  5578. google_ad_height=90;
  5579. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  5580. google_color_border=&quot;EEEECC&quot;;
  5581. google_color_bg=&quot;EEEECC&quot;;
  5582. google_color_link=&quot;445566&quot;;
  5583. google_color_url=&quot;445566&quot;;
  5584. google_color_text=&quot;333333&quot;;
  5585. //--&gt;&lt;/script&gt;
  5586. &lt;script type=&quot;text/javascript&quot;
  5587.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  5588. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2014/07/characterization-of-human-thioredoxin.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj-HkZJBjlc_MRfSlWEWHzQANaKPyk4ZpzTTF5PA4DwL7Md1xBWa9Vla3MeZFdL7j1G8LHrZrp5rtLbVYYtuwUC7AB-rud9e7qcWeueeG-lrkHXio2xF6WHdTOhai47E9It6cWbWQ/s72-w899-h567-c-no/1XOB_TR1.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-3289101353440327221</guid><pubDate>Mon, 14 Apr 2014 02:54:00 +0000</pubDate><atom:updated>2014-07-04T11:22:08.549-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">GCG</category><category domain="http://www.blogger.com/atom/ns#">GSH glutathione</category><category domain="http://www.blogger.com/atom/ns#">GST glutathione</category><category domain="http://www.blogger.com/atom/ns#">H2O2</category><category domain="http://www.blogger.com/atom/ns#">NQO</category><category domain="http://www.blogger.com/atom/ns#">peroxiredoxin</category><category domain="http://www.blogger.com/atom/ns#">SOD1</category><category domain="http://www.blogger.com/atom/ns#">UGA</category><title>Gluathione peroxidase (GSH-Px1-GPX1) a extracellular selenoenzyme expression modulates xenobiotic metabolising enzymes.</title><description>&lt;div align=&quot;justify&quot;&gt;
  5589. &amp;nbsp; &amp;nbsp;&amp;nbsp; Glutathione peroxidase (EC 1.11.1.9) protects against &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18044138&quot;&gt;oxidative
  5590.      damage&lt;/a&gt; via the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19826042&quot;&gt;chemoprotective&lt;/a&gt;
  5591.    action of nitric-oxide mediated lipid peroxidation and anti
  5592.    oxidative defense by gluathione (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7961915&quot;&gt;GSH-Px1&lt;/a&gt;-GPX1)
  5593.  
  5594.  
  5595.  
  5596.  
  5597.  
  5598.  
  5599.  
  5600.  
  5601.  
  5602.  
  5603.  
  5604.  
  5605.  
  5606.  
  5607.  
  5608.  
  5609.  
  5610.  
  5611.  
  5612.  
  5613.  
  5614.  
  5615.  
  5616.  
  5617.  
  5618.  
  5619.    a extracellular selenoenzyme, extracellular glutathione peroxidase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8135533&quot;&gt;E-GPx&lt;/a&gt;) and
  5620.    cellular (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11103801&quot;&gt;C-GPx&lt;/a&gt;)
  5621.    detoxifies hydroperoxides. Other antioxidant genes&amp;nbsp;(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17944819&quot;&gt;AOX&lt;/a&gt;) as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19818074&quot;&gt;Gpx1&lt;/a&gt;,&amp;nbsp;is
  5622.    located in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12470500&quot;&gt;cytosol&lt;/a&gt; and
  5623.    in (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10833429&quot;&gt;mt&lt;/a&gt;)
  5624.    mitochondria. Epithelial antioxidative enzymes (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12665121&quot;&gt;AOEs&lt;/a&gt;) are
  5625.    activities of GSH-Px1 (gluathione peroxidase), (SOD) superoxide
  5626.    dismutase, and thioredoxine reductase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19818074&quot;&gt;TXNRD1&lt;/a&gt;) by
  5627.    itself or with thioredoxin (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7961915&quot;&gt;Trx&lt;/a&gt;) are
  5628.    antioxidant enzymes. Glutaredoxin (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20552295&quot;&gt;Grx&lt;/a&gt;) are
  5629.    reduced by the oxidation of glutathione an antioxidant, (The effect
  5630.    of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19352025?dopt=Abstract&quot;&gt;iridoid&lt;/a&gt;
  5631.     glucosides such as oleuropein an antioxidant, can often be
  5632.    bound to glucose.) phenolic compound &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16377050&quot;&gt;isothiocyanate&lt;/a&gt;
  5633.    sulforaphane found in olive leaf, increased cell-lysate &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20083859&quot;&gt;NAD(P)H&lt;/a&gt;:quinone
  5634.  
  5635.  
  5636.  
  5637.  
  5638.  
  5639.  
  5640.  
  5641.  
  5642.  
  5643.  
  5644.  
  5645.  
  5646.  
  5647.    oxidoreductase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17340195&quot;&gt;NQO1&lt;/a&gt;) phase
  5648.    II activities reduction reactions, catalyzed such as by glutathione-S-transferase (GST) can catalyze the conjugation back
  5649.    to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18373941&quot;&gt;thiol&lt;/a&gt;
  5650.    group and other GPx mimics (converted into &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15680236&quot;&gt;selenocysteine&lt;/a&gt;),
  5651.  
  5652.  
  5653.  
  5654.  
  5655.  
  5656.  
  5657.  
  5658.  
  5659.  
  5660.  
  5661.  
  5662.  
  5663.  
  5664.    to the reaction site of glutathione (GSH) and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14671197&quot;&gt;antioxidants&lt;/a&gt;,
  5665.    implying (GR) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22683538&quot;&gt;reduction&lt;/a&gt;
  5666.    reactions back to glutathione, are an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18498225&quot;&gt;evolutionary&lt;/a&gt;
  5667.    relationship between &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16081649&quot;&gt;GST and GPx&lt;/a&gt;/glutathione
  5668.  
  5669.  
  5670.  
  5671.  
  5672.  
  5673.  
  5674.  
  5675.  
  5676.  
  5677.  
  5678.  
  5679.  
  5680.  
  5681.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20877264&quot;&gt;system&lt;/a&gt;
  5682.    defense in oxidative stress. &quot;Glutathione&quot; peroxidase (Gpx) content,
  5683.    and glutathione reductase (GR) components compose the glutathione
  5684.    (GSH) system, this contains Selenocysteine (Sec), the 21st amino
  5685.    acid at the active GPX site (Homo sapiens chromosome 3, GRCh37
  5686.    primary reference: rs&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1050450&quot;&gt;644261&lt;/a&gt;)-
  5687.  
  5688.  
  5689.  
  5690.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6446261&quot;&gt;TGA&lt;/a&gt;&amp;nbsp;
  5691.  
  5692.  
  5693.  
  5694.    =&amp;gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2307470&quot;&gt;UGA&lt;/a&gt;
  5695.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2976939?dopt=Abstract&quot;&gt;selenocysteine&lt;/a&gt;,
  5696.    which occurs at the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?taxid=9606&amp;amp;chr=3&amp;amp;MAPS=rnaHs,rna-r&amp;amp;cmd=focus&amp;amp;fill=80&amp;amp;query=uid%28-2121880709%29&amp;amp;QSTR=NM_000581%2E2&quot;&gt;active
  5697.  
  5698.  
  5699.  
  5700.      site&lt;/a&gt; of&amp;nbsp; glutathione peroxidase GPX1 is coded by UGA, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/protein/41406084#comment_41406084&quot;&gt;isoform
  5701.  
  5702.  
  5703.      1&lt;/a&gt; NM_201397.1-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/nucleotide/41406083#comment_41406083&quot;&gt;variant
  5704.  
  5705.  
  5706.      1&lt;/a&gt; represents the shorter transcript that&amp;nbsp; encodes the
  5707.    longer isoform 1, as compared to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/protein/41406082#comment_41406082&quot;&gt;isoform
  5708.  
  5709.  
  5710.      2&lt;/a&gt;- NM_000581.2 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/nucleotide/41406083#comment_41406083&quot;&gt;variant
  5711.  
  5712.  
  5713.  
  5714.      2&lt;/a&gt;); (rs&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20852007&quot;&gt;1050450&lt;/a&gt;)
  5715.    is intronless and has a shorter C-terminus. They represent the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16354666&quot;&gt; cDNA&lt;/a&gt; as a
  5716.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21087145&quot;&gt;molecular&lt;/a&gt;
  5717.    mechanism (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1339300&quot;&gt;TGA&lt;/a&gt;)
  5718.    for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22843889&quot;&gt;down-regulation&lt;/a&gt;
  5719.    of mRNA &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18603400&quot;&gt;expression&lt;/a&gt;
  5720.    and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20530237&quot;&gt;transcriptional&lt;/a&gt;
  5721.    code is a regulatory &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11463357&quot;&gt;switch&lt;/a&gt; at
  5722.    the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2976939&quot;&gt;translational&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9126277&quot;&gt;step&lt;/a&gt;
  5723.    delivered to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21052528&quot;&gt;ribosome&lt;/a&gt; in
  5724.    genes similar to Glutathione peroxidase 1 (GP, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23073788&quot;&gt;Gpx1&lt;/a&gt;,
  5725.    GSHPX1): locus 3p13-q12 (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene?term=2876&quot;&gt;§&lt;/a&gt;, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/88800.html?ID=88475&quot;&gt;‡&lt;/a&gt;,).
  5726.  
  5727.  
  5728.  
  5729.  
  5730.  
  5731.  
  5732.  
  5733.  
  5734.  
  5735.  
  5736.  
  5737.  
  5738.  
  5739.  
  5740.  
  5741.  
  5742.  
  5743.  
  5744.  
  5745.  
  5746.  
  5747.  
  5748.  
  5749.  
  5750.  
  5751.  
  5752.  
  5753.  
  5754.  
  5755.  
  5756.  
  5757.  
  5758.  
  5759.  
  5760.  
  5761.  
  5762.  
  5763.  
  5764.  
  5765.  
  5766.  
  5767.  
  5768.  
  5769.  
  5770.    GSH-Px is an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17052796&quot;&gt;essential&lt;/a&gt;
  5771.    nutrient &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11463357&quot;&gt;selenium&lt;/a&gt;
  5772.    dependent &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15670848&quot;&gt;
  5773.      GPX&lt;/a&gt;, by which mRNA translational repression of
  5774.    selenium-binding protein (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20530237&quot;&gt;SBP1&lt;/a&gt;) is
  5775.    accomplished when GPX1 increased in human &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18062829&quot;&gt;plasma&lt;/a&gt;, if
  5776.    selenium-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15203190&quot;&gt;deficient&lt;/a&gt;,
  5777.    while independent of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6662155&quot;&gt;Se values&lt;/a&gt; in
  5778.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12588287&quot;&gt;leukocyte&lt;/a&gt;
  5779.    (White blood cells) from &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20444272&quot;&gt;correspondingly&lt;/a&gt;
  5780.    damaged &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22704671&quot;&gt;DNA&lt;/a&gt;.
  5781.    In &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17625244&quot;&gt;fibroblast&lt;/a&gt;
  5782.    activity, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17625244&quot;&gt;GPx1&lt;/a&gt;
  5783.    was &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15059885&quot;&gt;effective&lt;/a&gt;
  5784.    through the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20109103&quot;&gt;prevention&lt;/a&gt;
  5785.    or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20444272&quot;&gt;repair&lt;/a&gt;
  5786.    of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15203190&quot;&gt;DNA damage&lt;/a&gt;.
  5787.    The reductive &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19254950&quot;&gt;detoxification&lt;/a&gt;
  5788.    of peroxides in cells &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1340432&quot;&gt;modulates&lt;/a&gt;
  5789.    xenobiotic metabolising enzymes via anticarcinogen &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17625244&quot;&gt;supplementation&lt;/a&gt;,
  5790.    e.g. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9349843&quot;&gt;selenium&lt;/a&gt;-yeast
  5791.  
  5792.  
  5793.  
  5794.  
  5795.  
  5796.  
  5797.  
  5798.  
  5799.  
  5800.  
  5801.  
  5802.  
  5803.  
  5804.  
  5805.  
  5806.  
  5807.  
  5808.  
  5809.  
  5810.     in human &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18062829&quot;&gt;plasma&lt;/a&gt;.
  5811.    GPX &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19826042&quot;&gt;in turn&lt;/a&gt;,
  5812.    can lead to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14744747&quot;&gt;carcinogenesis&lt;/a&gt;.
  5813.    The heterozygote has an intraerythrocytic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2294113&quot;&gt;environment&lt;/a&gt;
  5814.    (red blood cell) with the favorable higher &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17012768&quot;&gt;peroxidase&lt;/a&gt;
  5815.    activities role in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10380369&quot;&gt;malarial&lt;/a&gt;
  5816.    resistance. An in-frame &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19195803&quot;&gt;GCG&lt;/a&gt;
  5817.    trinucleotide repeat was &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23289525&quot;&gt;homozygous&lt;/a&gt;
  5818.    for the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/?Term=related_functional_gene_2876%5Bgroup%5D&quot;&gt;pseudogene&lt;/a&gt;
  5819. GPX1 Pro197Leu-like two alleles associated with 6 GCG repeats coding for a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12496980&quot;&gt;polyalanine&lt;/a&gt;
  5820.    tract. CuZn-SOD (copper/zinc-superoxide dismutase) and other &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9593640&quot;&gt;oxidoreductases&lt;/a&gt;
  5821.    contribute to the cellular defenses, repair of oxidative damage to
  5822.    DNA. Chronic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19819955&quot;&gt;hyperglycemia&lt;/a&gt;
  5823.    (excessive blood sugar) causes oxidative stress, &#39;Extract &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20540643&quot;&gt;silymarin&lt;/a&gt;
  5824.    and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20932871&quot;&gt;Berberine&lt;/a&gt;-&#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17434476&quot;&gt;may&lt;/a&gt;&#39;
  5825.    overcome insulin resistance. And for diabetes &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16124050&quot;&gt;Astragalus
  5826.      membranaceus&lt;/a&gt;  can improve the protective effect, an extract
  5827.    from &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19938218?dopt=Abstract&quot;&gt;Shidagonglao&lt;/a&gt;
  5828.    roots (Mahonia fortunei)  or the effects of Berberine from the main
  5829.    alkaloid of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20932871&quot;&gt;Coptis
  5830.  
  5831.  
  5832.  
  5833.  
  5834.  
  5835.  
  5836.  
  5837.  
  5838.  
  5839.  
  5840.  
  5841.  
  5842.  
  5843.  
  5844.  
  5845.  
  5846.  
  5847.  
  5848.  
  5849.  
  5850.  
  5851.      chinensis&lt;/a&gt;  are agents for preventing sepsis and its
  5852.    lipopolysaccharide (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20219985&quot;&gt;LPS&lt;/a&gt;)
  5853.    complications in human microvascular endothelial cells. GPX is
  5854.    down-regulated and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16141655&quot;&gt;peroxiredoxin&lt;/a&gt;
  5855.    (PRX) is up-regulated. Both use &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20552295&quot;&gt;thioredoxin&lt;/a&gt;
  5856.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15358104&quot;&gt;Gpx&lt;/a&gt; and
  5857.    Prx, suppress &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7961915&quot;&gt;Trx&lt;/a&gt;,
  5858.    a cysteine-based &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18498225&quot;&gt;thioredoxin-specific&lt;/a&gt;&amp;nbsp;GPx-&lt;a href=&quot;http://www.uniprot.org/uniprot/P10599&quot;&gt;Txn&lt;/a&gt;&amp;nbsp;expression.) to recharge after reducing hydrogen peroxide (H2O2)
  5859.    along with other &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18054426&quot;&gt;cellular&lt;/a&gt;
  5860.    molecules. Also found in transcripts in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12458889&quot;&gt;ocular&lt;/a&gt;
  5861.    tissues from &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8262911&quot;&gt;oxidative&lt;/a&gt;
  5862.    anterior damaged cells,&amp;nbsp; GSH-dependent recombinant human lens &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9593640&quot;&gt;thioltransferase&lt;/a&gt;
  5863.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11878824&quot;&gt;RHLT&lt;/a&gt;)*
  5864.    being&amp;nbsp; its repair systems. GPX1 could supress &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12221075&quot;&gt;staurosporine&lt;/a&gt;-induced
  5865.  
  5866.  
  5867.  
  5868.  
  5869.  
  5870.  
  5871.  
  5872.  
  5873.  
  5874.  
  5875.  
  5876.  
  5877.  
  5878.  
  5879.  
  5880.  
  5881.  
  5882.  
  5883.  
  5884.  
  5885.  
  5886.  
  5887.  
  5888.  
  5889.  
  5890.  
  5891.  
  5892.  
  5893.  
  5894.  
  5895.  
  5896.  
  5897.  
  5898.  
  5899.  
  5900.  
  5901.  
  5902.  
  5903.  
  5904.  
  5905.  
  5906.  
  5907.    late generation of ROS, corresponding to reduction in visual
  5908.    loss.&amp;nbsp; Its role in pathogenesis of&amp;nbsp; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15158621&quot;&gt;inflammatory
  5909.      disorders&lt;/a&gt; of blood antioxidant &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18806750&quot;&gt;enzyme system&lt;/a&gt;)
  5910.    as an autoimmune disease background, appears to be the hydroperoxide
  5911.    metabolism in&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17012768&quot;&gt;diverse pathogens&lt;/a&gt;*, an enzyme by single administration &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12461474&quot;&gt;streptozotocin&lt;/a&gt;
  5912.     (60 mg/kg) of negative implication, oxidative &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10343979&quot;&gt;damage&lt;/a&gt; or
  5913.    antioxidant status when examined &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21241714&quot;&gt;in contrast&lt;/a&gt;
  5914.    as metabolic syndrome through the GPX &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16784966&quot;&gt;down&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20170713&quot;&gt;regulation&lt;/a&gt;
  5915.    are comparable, with reduced-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21185702&quot;&gt;enzyme&lt;/a&gt;-activity
  5916.  
  5917.    to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19428448&quot;&gt;T
  5918.      allele&lt;/a&gt; of the GPx-1 genetic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19826042&quot;&gt;leucine/proline&lt;/a&gt;
  5919.    polymorphism at &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20306294&quot;&gt;codon 198&lt;/a&gt;&amp;nbsp;
  5920.  
  5921.  
  5922.  
  5923.  
  5924.    approximately 70% for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/sites/varvu?rs=1050450&amp;amp;gene=2876&quot;&gt;pro197&lt;/a&gt;
  5925.    and 30% for &lt;a href=&quot;http://omim.org/entry/138320#0001&quot;&gt;leu197&lt;/a&gt;
  5926.    named Pro198&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19415410&quot;&gt;Leu&lt;/a&gt;
  5927.    (rs&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21185702&quot;&gt;1050450&lt;/a&gt;).
  5928.  
  5929.    The &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22888637&quot;&gt;leucine&lt;/a&gt;-containing
  5930.  
  5931.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21165435&quot;&gt;allele&lt;/a&gt; was
  5932.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12810669&quot;&gt;less
  5933.      responsive&lt;/a&gt; to GPx-1 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19826042&quot;&gt;enzyme&lt;/a&gt;
  5934.    activity. Thioltransferase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9593640&quot;&gt;TTase&lt;/a&gt;) with
  5935.    GPx the dethiolating enzyme, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11028671&quot;&gt; thiol&lt;/a&gt;*
  5936.    catalysis glutaredoxin thioltransferase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20552295&quot;&gt;Grx&lt;/a&gt;)
  5937.    content and activity to the thiol status produced by the oxidation
  5938.    of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16081649&quot;&gt;glutathione&lt;/a&gt;:
  5939.    a seleno-organic compound &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11855823&quot;&gt;ebselen&lt;/a&gt;&amp;nbsp;
  5940.  
  5941.  
  5942.  
  5943.  
  5944.  
  5945.  
  5946.  
  5947.  
  5948.  
  5949.  
  5950.  
  5951.  
  5952.  
  5953.  
  5954.  
  5955.  
  5956.  
  5957.    (2-phenyl-1,2-benzisoselenazol-3(2H)-one) catalyzed in vitro, has
  5958.    been reported to &#39;« &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20690615&quot;&gt;mimic&lt;/a&gt; »
  5959.    development of small-molecule selenium compounds&#39; (&#39;synthetic
  5960.    antioxidant&#39; GPX)&amp;nbsp; required for, a diphenyl diselenide &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17049506&quot;&gt;PhSe group&lt;/a&gt;
  5961.    &#39;in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18062829&quot;&gt;catalytic&lt;/a&gt;
  5962.    activities&#39; is introduced by reaction (a monocyte-derived soluble
  5963.    protein (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12893830&quot;&gt;M-DSP&lt;/a&gt;/Gpx1)
  5964.  
  5965.  
  5966.    with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10880344&quot;&gt;5-LO&lt;/a&gt;,
  5967.    (5-lipoxygenase ) activity this &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12893830&quot;&gt;recovered&lt;/a&gt;
  5968.    (M-DSP)-GPx inactivation&#39;. In which Serum &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15158621&quot;&gt;Malondialdehyde&lt;/a&gt;
  5969.    (MDA) a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22259188&quot;&gt;marker&lt;/a&gt;
  5970.    (oxidative activity) generated from, reactive oxygen species (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/13679085&quot;&gt;ROS&lt;/a&gt;) is &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21667435&quot;&gt;thought&lt;/a&gt; to
  5971.    cause DNA damage with various antioxidants usually &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17584062&quot;&gt;homeostatically&lt;/a&gt;
  5972.    controlled by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15059885&quot;&gt;endogenous&lt;/a&gt;
  5973.    superoxide dismutase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18538307&quot;&gt;SOD&lt;/a&gt;), as a
  5974.    by-product and the oxygen-sensor neuroglobin (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18538307&quot;&gt;Nb&lt;/a&gt;), GSHPx
  5975.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10459841&quot;&gt;reactive
  5976.      neurons&lt;/a&gt; or in brief neuronal damage (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16871233&quot;&gt;apoptosis&lt;/a&gt;)
  5977.    after &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17328894&quot;&gt;ischemia&lt;/a&gt;.
  5978.    Antioxidant enzymes such as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16871233&quot;&gt;Cu/Zn&lt;/a&gt;-superoxide
  5979.  
  5980.  
  5981.  
  5982.  
  5983.  
  5984.  
  5985.  
  5986.  
  5987.  
  5988.  
  5989.  
  5990.  
  5991.  
  5992.  
  5993.  
  5994.  
  5995.  
  5996.    dismutase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15295091&quot;&gt;SOD&lt;/a&gt;)
  5997.    and a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18853169&quot;&gt;21-kD&lt;/a&gt;
  5998.    protein (involved in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17336361&quot;&gt;neuroprotection&lt;/a&gt;) GPx1 both in the free radical chain, protects neurons and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1379465&quot;&gt;Microglial&lt;/a&gt;
  5999.    cells. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19439213&quot;&gt;Microglial&lt;/a&gt; cells are, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17606447&quot;&gt;sensitive&lt;/a&gt; to small changes from
  6000.    Reactive oxygen species (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10343979&quot;&gt;ROS&lt;/a&gt;), &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15318035&quot;&gt;free radical&lt;/a&gt; scavenging &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16112789&quot;&gt;enzymes&lt;/a&gt;-mediated
  6001.  
  6002.  
  6003.  
  6004.  
  6005.  
  6006.  
  6007.  
  6008.  
  6009.  
  6010.  
  6011.  
  6012.  
  6013.  
  6014.  
  6015.  
  6016.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16871233&quot;&gt;apoptosis&lt;/a&gt;. Neuronal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15910762&quot;&gt;loss and&lt;/a&gt; deteriorating &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16871233&quot;&gt;CNS&lt;/a&gt;
  6017.    function: is linked to the pentose phosphate shunt, the (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10459841&quot;&gt;PPP&lt;/a&gt;)
  6018.    pentose phosphate pathway, has a relatively low content of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10609336&quot;&gt;enzymatic
  6019.      antioxidants&lt;/a&gt;, in a higher cellular &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19026164&quot;&gt;ROS&lt;/a&gt; level
  6020.    to oxidative stress. A candidate (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22139612&quot;&gt;SePP1&lt;/a&gt;) selenoprotein (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21936966&quot;&gt;P-plasma&lt;/a&gt;)
  6021. or&amp;nbsp; genetic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20378690&quot;&gt;variations&lt;/a&gt;   homologous to GPX1 are rapidly &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22259188&quot;&gt;degraded&lt;/a&gt; at relative &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20852007&quot;&gt;low&lt;/a&gt; selenium &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22139612&quot;&gt;concentrations&lt;/a&gt;. Microsomal (reconstituted fraction) glutathione transferase-1 (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10220143?dopt=Abstract&quot;&gt;hGSTP1&lt;/a&gt;)
  6022.    decreased cytotoxicity ( cartilage &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18291685&quot;&gt;degradation&lt;/a&gt;
  6023.    and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21251972&quot;&gt;regeneration&lt;/a&gt;
  6024.    [Leucas aspera] to mitochondria damage, directed to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21326956&quot;&gt;citrulline&lt;/a&gt;- containing proteins) by effects of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7888200&quot;&gt;hydrogen
  6025.      peroxide&lt;/a&gt; &#39;H(2)O(2), which causes lipid peroxidation (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15223607&quot;&gt;LPO&lt;/a&gt;) in the  (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21052528&quot;&gt;ER&lt;/a&gt;) endoplasmic reticulum. In
  6026.    which &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16784966&quot;&gt;LPO&lt;/a&gt; product &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9034240&quot;&gt;Malondialdehyde&lt;/a&gt; and other Thiobarbituric acid reactive
  6027.    substances - &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12461474&quot;&gt;TBARS&lt;/a&gt; - are formed as a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8269197&quot;&gt;byproduct&lt;/a&gt;, when the effects of
  6028.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20444272&quot;&gt;GPX1&lt;/a&gt; (
  6029.    glutathione peroxidase 1)&#39; is &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20082261&quot;&gt;measured&lt;/a&gt;, the effects of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17600859&quot;&gt;Centella
  6030.      asiatica&lt;/a&gt;  extract detoxifies. Antioxidants and detoxication
  6031.    agents as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19443942&quot;&gt;antigenotoxic&lt;/a&gt;*
  6032.    agents (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15857201&quot;&gt;isoflavones&lt;/a&gt;
  6033.    via &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19854376&quot;&gt;dietary&lt;/a&gt;
  6034.    intake) were also observed as cytogenetic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21273674&quot;&gt;end-points&lt;/a&gt;* of
  6035.    carcinogenesis. Over-expression could &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12829378&quot;&gt;drain&lt;/a&gt;
  6036.    the&amp;nbsp; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8365784.html?nr=3&amp;amp;pmid=10861977&quot;&gt;reduced
  6037.  
  6038.  
  6039.  
  6040.  
  6041.  
  6042.  
  6043.  
  6044.  
  6045.  
  6046.  
  6047.  
  6048.  
  6049.  
  6050.  
  6051.  
  6052.  
  6053.  
  6054.  
  6055.  
  6056.  
  6057.  
  6058.  
  6059.  
  6060.  
  6061.  
  6062.  
  6063.  
  6064.  
  6065.  
  6066.  
  6067.  
  6068.  
  6069.  
  6070.      glutathione&lt;/a&gt; ( &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20804611&quot;&gt;hepatic&lt;/a&gt; and GSH &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10861977&quot;&gt;dependent&lt;/a&gt; enzymes), cellular
  6071.    glutathione (GSH) levels, GSH acts as a feedback &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11028671&quot;&gt;rate-limiting&lt;/a&gt; inhibitor of its &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10343979&quot;&gt;synthesizing&lt;/a&gt; enzyme
  6072.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10652368&quot;&gt;GCL&lt;/a&gt;
  6073.    (gamma-glutamyl-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15811874&quot;&gt;cysteine&lt;/a&gt;
  6074.    synthetase) activity,&amp;nbsp; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20149787&quot;&gt;Diosgenin&lt;/a&gt; 
  6075.    is a useful Marker degradation-compound of Low-density lipoprotein (LDL) and
  6076.    high-density lipoprotein (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19138652&quot;&gt;HDL&lt;/a&gt;)
  6077.    against oxidation. The compound &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9501919&quot;&gt;buthionine
  6078.      sulfoximine&lt;/a&gt; (BSO) inhibits the first step of glutathione
  6079.    synthesis, concerning the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17015273&quot;&gt;mechanism&lt;/a&gt; of GSH depletion. Gpx suppresses (thioredoxin) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15358104&quot;&gt;Trx&lt;/a&gt; - &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18498225&quot;&gt;expressio&lt;/a&gt;&lt;a href=&quot;https://www.blogger.com/null&quot;&gt;n&lt;/a&gt;, which augments &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21273674&quot;&gt;Anti-clastogenic&lt;/a&gt; (mutagenic agents), potential &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14568353&quot;&gt;DNA&lt;/a&gt;-binding (heritable multigenerational/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16081649&quot;&gt;evolutionary&lt;/a&gt; tolerance), in a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15489334&quot;&gt;cDNA&lt;/a&gt; open reading frame (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8125298&quot;&gt;ORF&lt;/a&gt;) GPx1 is a small &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7489513&quot;&gt;inversion&lt;/a&gt; (~&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16641997&quot;&gt;pericentric&lt;/a&gt;), incorporating the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2976939&quot;&gt;co-translational&lt;/a&gt; selenocysteine which may be unique to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17634480&quot;&gt;insertion&lt;/a&gt; sequence
  6080.    elements.&lt;br /&gt;
  6081. &lt;br /&gt;
  6082. &lt;br /&gt;
  6083. &lt;div align=&quot;justify&quot;&gt;
  6084. &lt;big&gt;&lt;small&gt;&lt;small&gt;(Click on image to zoom)&lt;/small&gt;&lt;/small&gt;&lt;/big&gt;
  6085.  &lt;hr size=&quot;2&quot; width=&quot;100%&quot; /&gt;
  6086. &lt;/div&gt;
  6087. &lt;div align=&quot;justify&quot;&gt;
  6088. &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;&lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/GPx1?authkey=Gv1sRgCM206YOcjrKGjwE#6001950857116413970&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;gpx1&quot; border=&quot;0&quot; height=&quot;217&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjslB9cc-I_4UCrTMG3ywt3jl6KKwPxgf0JY4EPJL4vJEDdp1U8I6eVZsRubAdiOOSGIyxXQzrUdMDl88xTNxCkDVyAxUSao8Ec64_4jaEy6H58XTm-iWrwxhV-fbXLDRqTUhwrXQ/s512/tertiary-final.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;Biological Assembly GPx-1 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18498225&quot;&gt;tetrameric&lt;/a&gt; structure with an altered carcinogen metabolism and reduce oxygen tension to explain the anti-carcinogenic effects, the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21980221&quot;&gt;redox&lt;/a&gt; donor (hTXN-oxidoreductase &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/GPx1?authkey=Gv1sRgCM206YOcjrKGjwE#6003097861291548658&quot;&gt;Figure 4&lt;/a&gt;) status&amp;nbsp; (Figure 2) of one &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16081649&quot;&gt;oxygen&lt;/a&gt;
  6089. atom limited to only two regions may carry missense variant (&lt;a href=&quot;http://www.snps3d.org/modules.php?name=SnpAnalysis&amp;amp;locus_ac=2876&quot;&gt;rasmol_php_C and _D&lt;/a&gt;) a reaction
  6090. incorporated into the overall tetrameric structures instability
  6091. potentially in humans through modulation of biosynthetic and genetically
  6092. modified GSH enzymes binding  the selenocysteine &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17634480&quot;&gt;insertion&lt;/a&gt; sequence
  6093.    elements. The
  6094.    specific activity of the enzyme Sec suggest how the molecular
  6095.    pathway might work, as the glutathione pathway may influence the
  6096.    enzyme Sec reaction site incorporation sequence in the
  6097.    3&#39;-untranslated region &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16354666&quot;&gt;UTR&lt;/a&gt; of
  6098.    glutathione (GSH) may further reveal a signaling pathway that is
  6099.    activated. The differing and interacting roles of GPX1 and (Sec.) &lt;a href=&quot;http://www.rcsb.org/pdb/101/motm.do?momID=104&quot;&gt;Selenocysteine&lt;/a&gt;&lt;a href=&quot;https://www.blogger.com/null&quot;&gt;
  6100.      Synthase&lt;/a&gt; [doi: 10.2210/rcsb_pdb/mom_2008_8] both vectors&lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/GPx1?authkey=Gv1sRgCM206YOcjrKGjwE#6001950867748574002&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;gpx1&quot; border=&quot;0&quot; height=&quot;222&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgGUCYwHr2XQAA9uBxJg7WrcGJJGVS-wSVGzOUbgavaAYP3JquQ0Auxo0BJ5BlHDzllfF9QPkOa9KoaI7YlPAXgkmExKoa09B8gr0FZOZraeX1rEtdenreY7bTfb_PIHsqrb-urwg/w422-h468-no/redox3.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;together with glutathione (HUMAN GLUTATHIONE TRANSFERASE (HGST) PDB
  6101.    ID: &lt;a href=&quot;http://rcsb.org/pdb/explore/explore.do?pdbId=1LJR&quot;&gt;1LJR&lt;/a&gt;
  6102.    ligand &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16081649&quot;&gt;component
  6103.  
  6104.      GSH&lt;/a&gt;: C10 H17 N3 O6 S, molecules colored: aquamarine) did; activates two multiple signaling
  6105.    pathways in one of the Gpx1 variants 1 or 2 nucleotide, the nonsense
  6106.    codon, UGA has both, related to the antioxidative pathway vectors
  6107.    together PDB ID: &lt;a href=&quot;http://rcsb.org/pdb/explore/explore.do?pdbId=1gp1&quot;&gt;1gp1&lt;/a&gt;
  6108.    (2-AMINO-3-SELENINO-PROPIONIC ACID: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12496980&quot;&gt;ALANINE&lt;/a&gt;&amp;nbsp; molecule colored: purple),
  6109.    is located near the selenocysteine insertion sequence element PDB
  6110.    ID: 2F8A (rainbow colored: ribbons) mutant of&amp;nbsp; GPX1. Interrogation of data based on
  6111.    experimentally determined models are limited but revealed network
  6112.    structures that dynamically conveyed information from the
  6113.    antioxidant enzymes that share a common pathway considered most
  6114.    important in the selenocysteine synthesis pathway from the
  6115.    information suggested, and they implicate at least one selenoprotein (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17625244&quot;&gt;GPx-1&lt;/a&gt;) in the process.&lt;/div&gt;
  6116. &lt;/div&gt;
  6117. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  6118. google_ad_client=&quot;pub-9610428118332343&quot;;
  6119. google_ad_host=&quot;&quot;;
  6120. google_ad_width=200;
  6121. google_ad_height=90;
  6122. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  6123. google_color_border=&quot;EEEECC&quot;;
  6124. google_color_bg=&quot;EEEECC&quot;;
  6125. google_color_link=&quot;445566&quot;;
  6126. google_color_url=&quot;445566&quot;;
  6127. google_color_text=&quot;333333&quot;;
  6128. //--&gt;&lt;/script&gt;
  6129. &lt;script type=&quot;text/javascript&quot;
  6130.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  6131. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2014/04/gluathione-peroxidase-gsh-px1-gpx1.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjslB9cc-I_4UCrTMG3ywt3jl6KKwPxgf0JY4EPJL4vJEDdp1U8I6eVZsRubAdiOOSGIyxXQzrUdMDl88xTNxCkDVyAxUSao8Ec64_4jaEy6H58XTm-iWrwxhV-fbXLDRqTUhwrXQ/s72-c/tertiary-final.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-2762788260404939984</guid><pubDate>Tue, 31 Dec 2013 01:08:00 +0000</pubDate><atom:updated>2014-07-03T08:20:45.356-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">G6PD</category><category domain="http://www.blogger.com/atom/ns#">GSH glutathione</category><category domain="http://www.blogger.com/atom/ns#">GST glutathione</category><category domain="http://www.blogger.com/atom/ns#">HMG box</category><category domain="http://www.blogger.com/atom/ns#">NADP</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">NQO</category><category domain="http://www.blogger.com/atom/ns#">NRF2</category><category domain="http://www.blogger.com/atom/ns#">UGT1A1</category><title>G6PD, Exon 12 is an exonic splicing silencer containing/substituted define codon regions involved in the G6PD mRNA¹</title><description>&lt;div align=&quot;justify&quot;&gt;
  6132. G6PD (EC &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12502759?dopt=Abstract&quot;&gt;1.1.1.49&lt;/a&gt;)
  6133.      glucose-6-phosphate dehydrogenase [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/2539&quot;&gt;§§&lt;/a&gt;; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/88475.html?ID=88959&quot;&gt;†&lt;/a&gt;,
  6134.      &lt;a href=&quot;http://www.genecards.org/cgi-bin/carddisp.pl?gene=G6PD#interactionspathways_&quot;&gt;‡&lt;/a&gt;], situated at Xq28 locus-coding region is the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15858258&quot;&gt;rate&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21467295&quot;&gt;limiting&lt;/a&gt;
  6135.      enzyme, of the (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21829610&quot;&gt;PPP&lt;/a&gt;)
  6136.      pentose phosphate pathway. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18164966&quot;&gt;G6PD
  6137.        deficiency&lt;/a&gt;&amp;nbsp; and its&amp;nbsp; X-linked gene mutations exons
  6138.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15558953&quot;&gt;2-13&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17611006&quot;&gt;160&lt;/a&gt;
  6139.      different &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15506519&quot;&gt;mutations&lt;/a&gt;)
  6140.      are the most common inborn error of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17637841&quot;&gt;metabolism&lt;/a&gt;,
  6141.      in human red blood cell (RBC) enzymopathy, among &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12524354&quot;&gt;humans&lt;/a&gt;.
  6142.      G6PD is divided into &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23631859&quot;&gt;12&lt;/a&gt;
  6143.      segments and involves an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23233666&quot;&gt;exonic
  6144.        splicing enhancer&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23631859&quot;&gt;ESE&lt;/a&gt;) in
  6145.      exon &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1953767&quot;&gt;12&lt;/a&gt;
  6146.      with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2986558/figure/fig1/&quot;&gt;13exons&lt;/a&gt;
  6147.      and an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18348143&quot;&gt;intron&lt;/a&gt;
  6148.      present &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2428611&quot;&gt;5&#39;
  6149.        UTR&lt;/a&gt;, proximal to the 5&#39; bkp-breakpoint region. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2428611&quot;&gt;Intron&lt;/a&gt;
  6150.      comparisons from the second to the thirteenth exons of G6PD gene,
  6151.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8364584&quot;&gt;3′ UTR&lt;/a&gt;
  6152.      towards the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8364584&quot;&gt;3&#39;
  6153.  
  6154.  
  6155.  
  6156.  
  6157.        end&lt;/a&gt; of the gene to exon 1 located in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12696079&quot;&gt;5&#39; UTR&lt;/a&gt;
  6158.      G6PD is a region of deleted &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12397357&quot;&gt;alleles&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16255851&quot;&gt;ASO&lt;/a&gt;-PCR)
  6159.      or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11042039&quot;&gt;G-6-PD&lt;/a&gt;
  6160.      the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3393536&quot;&gt;many&lt;/a&gt;
  6161.      population genetics &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12378426&quot;&gt;variants&lt;/a&gt;/wild-type
  6162.  
  6163.  
  6164.  
  6165.  
  6166.  
  6167.  
  6168.      (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17611006&quot;&gt;160&lt;/a&gt;
  6169.      different &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12737943&quot;&gt;mutations&lt;/a&gt;
  6170.      and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2912069&quot;&gt;&amp;nbsp;300&lt;/a&gt;
  6171.      G6PD variants) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15974296&quot;&gt;assuming&lt;/a&gt;
  6172.      that, at &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15054810?dopt=Abstract&quot;&gt;exon2&lt;/a&gt;
  6173.      (2,3-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2924907&quot;&gt;BPG&lt;/a&gt;*
  6174.      levels) are &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2420826&quot;&gt;hypothesized&lt;/a&gt;
  6175.      that G6PD partly &#39;overlaps&#39; the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22121116&quot;&gt;IKBKG&lt;/a&gt;
  6176.      gene confined to the blood. The &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2758468&quot;&gt;subunit&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2758468&quot;&gt;G6PD&lt;/a&gt;),
  6177.      consists of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17660836&quot;&gt;biochemical&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2606104&quot;&gt;characteristics&lt;/a&gt;
  6178.      of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3012556&quot;&gt;531&lt;/a&gt;
  6179.      amino acids. This enzyme is the only process in mature red cells
  6180.      for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15598086&quot;&gt;NADPH&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3012556&quot;&gt;generation&lt;/a&gt;
  6181.      it involves oxidation of glucose as a » &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17673345?dopt=Abstract&quot;&gt;hexose&lt;/a&gt;
  6182.      « ( &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/biosystems/198899&quot;&gt;
  6183.        xenobiotic&lt;/a&gt; compounds) pathway (&#39;naturally found in D-* and
  6184.      the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19248814?dopt=Abstract&quot;&gt;unusual
  6185.  
  6186.  
  6187.  
  6188.  
  6189.  
  6190.  
  6191.  
  6192.  
  6193.  
  6194.  
  6195.  
  6196.  
  6197.  
  6198.  
  6199.  
  6200.  
  6201.        L- &lt;/a&gt;Monosaccharide forms or between 2,3-BPG*) pentose and
  6202.      hexose phosphates, an alternative to glycolysis, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22768742&quot;&gt;converts&lt;/a&gt;
  6203.      glucose &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18302154&quot;&gt;in
  6204.        which&lt;/a&gt; ATP is produced&#39; from the conversion of
  6205.      glucose-6-phosphate into ribulose 5-phosphate in liver cytosol in
  6206.      which a residue in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16934959&quot;&gt;dimer&lt;/a&gt;
  6207.      interface (@ &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16088936&quot;&gt;37°&lt;/a&gt; C)
  6208.      structural &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2836867&quot;&gt;G6PD&lt;/a&gt;
  6209.      is a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6252822&quot;&gt;NADP&lt;/a&gt;+
  6210.      dependent. At the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15858258&quot;&gt;tetramer&lt;/a&gt;
  6211.      interface an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18493020&quot;&gt;Apoenzyme&lt;/a&gt;
  6212.      (PDB:&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22165289&quot;&gt;2BH9&lt;/a&gt;),
  6213.  
  6214.  
  6215.  
  6216.      that stimulates G6PD to produce (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18422600?dopt=Abstract&quot;&gt;reversible&lt;/a&gt;
  6217.      enzyme &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19253370?dopt=Abstract&quot;&gt;transketolase&lt;/a&gt;
  6218.      (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12297368?dopt=Abstract&quot;&gt;TK&lt;/a&gt;)
  6219.      presence is &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325335/figure/F2/&quot;&gt;necessary&lt;/a&gt;)
  6220.      more NADPH. Hemolytic crises or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23185302&quot;&gt;dysregulated&lt;/a&gt;
  6221.      NADPH oxidase located in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3012556&quot;&gt;3&lt;/a&gt;&#39;
  6222.      dependent 5&#39; UTR G6PD in humans determines the response, in which
  6223.      G6PD deficiency is &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24188096&quot;&gt;prevalent&lt;/a&gt;
  6224.      with development of&amp;nbsp; chronic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6851263&quot;&gt;hemolytic&lt;/a&gt;
  6225.      «« anemia (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12680285&quot;&gt;CNSHA&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11112389&quot;&gt;HNSHA&lt;/a&gt;)
  6226.      associated with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3012556&quot;&gt;food&lt;/a&gt;-induced
  6227.  
  6228.  
  6229.  
  6230.  
  6231.      or a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18177777&quot;&gt;exogenous&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17611006&quot;&gt;agent&lt;/a&gt; and
  6232.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15506519&quot;&gt;drug&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23860572&quot;&gt;induced&lt;/a&gt; &lt;a href=&quot;http://www.pharmgkb.org/gene/PA28469#tabview=tab7&amp;amp;subtab=32&quot;&gt;º&lt;/a&gt;&#39;
  6233.      &lt;a href=&quot;http://www.genecards.org/cgi-bin/carddisp.pl?gene=G6PD&amp;amp;bioalma_dis=99#novoseek_dis&quot;&gt;ª&lt;/a&gt;
  6234.      hemolytic crises which led to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22993389&quot;&gt;discovery&lt;/a&gt;
  6235.      of G6PD deficiency. &lt;i&gt;Sulfatase&amp;nbsp; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11060442?dopt=Abstract&quot;&gt;STS&lt;/a&gt;,
  6236.      EC 3.1.6.2) catalyzes Phenyl-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2943286?dopt=Abstract&quot;&gt;Piracetam&lt;/a&gt;&amp;nbsp;[&lt;/i&gt;&lt;a href=&quot;http://lnwme.blogspot.com/2013/12/g6pd-exon-12-is-exonic-splicing.html#footnote_4_4236&quot; id=&quot;identifier_4_4236&quot; title=&quot;&quot;&gt;↩&lt;/a&gt;&lt;i&gt;]&amp;nbsp;it also &lt;a href=&quot;http://peaknootropics.com/shop/piracetam/&quot;&gt;stacks&lt;/a&gt;
  6237.      well&amp;nbsp; and involves the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16506813?dopt=Abstract&quot;&gt;phosphoinositide&lt;/a&gt;
  6238.      3-kinase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16210322?dopt=Abstract&quot;&gt;PI
  6239.  
  6240.  
  6241.  
  6242.  
  6243.  
  6244.  
  6245.  
  6246.  
  6247.  
  6248.  
  6249.  
  6250.  
  6251.  
  6252.  
  6253.        3-k&lt;/a&gt;inase) pathway in the employed doses in related induction
  6254.      of certain enzyme (Glucose 6PD) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6137141?dopt=Abstract&quot;&gt;synthesizing&lt;/a&gt;
  6255.      activities (glycolysis) five metabolite levels of&amp;nbsp; insulin
  6256.      signal transduction.&lt;/i&gt; These include, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21238579&quot;&gt;Sulforaphane&lt;/a&gt;
  6257.       or broccoli-sprout extracts increased cell-lysate NAD(P)H:&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1740099&quot;&gt;quinone&lt;/a&gt;
  6258.      oxidoreductase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21238579&quot;&gt;NQO1&lt;/a&gt;)
  6259.      phase &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1740099&quot;&gt;II&lt;/a&gt;
  6260.      activities (Tanshinone IIA⊕), administered to cells and&amp;nbsp; in
  6261.      human supplementation studies, were found to be in balance with
  6262.      green tea extract (GTE), (EGCG) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16506813?dopt=Abstract&quot;&gt;epigallocatechin-3-gallate&lt;/a&gt;
  6263.      &amp;nbsp; to generate &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15681036&quot;&gt;detoxifying&lt;/a&gt;
  6264.      reactions to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10918522?dopt=Abstract&quot; title=&quot;acetaminophen dosing&quot;&gt;hepatotoxicity&lt;/a&gt; (can be
  6265.      prevented by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10621847?dopt=Abstract&quot;&gt;amalika&lt;/a&gt;,
  6266.      Emblica officinalis &amp;nbsp; which supports the chemopreventive
  6267.      action of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16643877?dopt=Abstract&quot;&gt;silymarin&lt;/a&gt;
  6268.      extract Silibinin , of the milk thistle) preventing nitric oxide-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10098886&quot;&gt;mediated&lt;/a&gt;
  6269.      lipid peroxidation (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18308427?dopt=Abstract&quot;&gt;LPO&lt;/a&gt;)
  6270.      and antioxidant &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12853069?dopt=Abstract&quot;&gt;defense&lt;/a&gt;
  6271.      system (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9508091?dopt=Abstract&quot;&gt;GSH&lt;/a&gt;)
  6272.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10098886?dopt=Abstract&quot;&gt;glutathione&lt;/a&gt;
  6273.      ( &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15598086&quot;&gt;GSH-Px&lt;/a&gt;
  6274.      and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3757268?dopt=Abstract&quot;&gt;GR&lt;/a&gt;)
  6275.      depletion, via an antioxidant response element (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17303087?dopt=Abstract&quot;&gt;ARE&lt;/a&gt;
  6276.      ⊕) mechanism-based inhibitor, element (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20832465&quot;&gt;NRF2&lt;/a&gt;)
  6277.      regulates (ARE)-regulated genes. A lack of NQO1 protein
  6278.      predisposes cells to &lt;a href=&quot;http://www.blogger.com/null&quot;&gt;benzene&lt;/a&gt;
  6279.      toxicity and to various forms of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16909693&quot;&gt;leukemias&lt;/a&gt;
  6280.      and toward therapeutic modulation (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20648652?dopt=Abstract&quot;&gt;Acetylcysteine&lt;/a&gt;
  6281.       and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10918522?dopt=Abstract&quot;&gt;acetaminophen&lt;/a&gt;)
  6282.      of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2040698?dopt=Abstract&quot;&gt;pulmonary&lt;/a&gt;
  6283.      oxygen toxicity. G6PD-deficient variants is the result of&amp;nbsp;
  6284.      various &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2990202&quot;&gt;enzymopathies&lt;/a&gt;
  6285.      (but not &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12737943http://www.ncbi.nlm.nih.gov/pubmed/12737943&quot;&gt;GPI&lt;/a&gt;-chronic
  6286.  
  6287.  
  6288.  
  6289.  
  6290.  
  6291.  
  6292.  
  6293.  
  6294.  
  6295.  
  6296.  
  6297.  
  6298.  
  6299.      hemolysis), that &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19419973&quot;&gt;glucuronidated&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15864125?dopt=Abstract&quot;&gt;bilirubin&lt;/a&gt;
  6300.      values (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12439228?dopt=Abstract&quot;&gt;UGT1A1&lt;/a&gt;
  6301.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1210584?dopt=Abstract&quot;&gt;genotype&lt;/a&gt;)
  6302.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15864125?dopt=Abstract&quot;&gt;tended
  6303.  
  6304.  
  6305.  
  6306.  
  6307.  
  6308.  
  6309.  
  6310.  
  6311.  
  6312.  
  6313.  
  6314.  
  6315.  
  6316.  
  6317.  
  6318.  
  6319.        to&lt;/a&gt; parallel, (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12680285&quot;&gt;CNSHA&lt;/a&gt;) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12439228&quot;&gt;hyperbilirubinemia&lt;/a&gt;
  6320.      with hemolytic anemias, single amino acid substitutions resulting
  6321.      in &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3393536&quot;&gt;mutation&lt;/a&gt;
  6322.      of variants&#39;. Or to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19112496&quot;&gt;inherited&lt;/a&gt;³
  6323.      and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9590495&quot;&gt;acquired&lt;/a&gt;
  6324.      physiologic changes in red cell enzyme &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19233695&quot;&gt;G6PD&lt;/a&gt;
  6325.      deficiency &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10698963&quot;&gt;leading&lt;/a&gt;
  6326.      to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23065279&quot;&gt;favism&lt;/a&gt;
  6327.      ( an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22963789&quot;&gt;A-&lt;/a&gt;
  6328.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21549219&quot;&gt;variant&lt;/a&gt;
  6329.      reaches the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15506519&quot;&gt;polymorphism&lt;/a&gt;
  6330.      level the commonest a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3393536&quot;&gt;Mediterranean&lt;/a&gt;
  6331.      form, other alleles &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2339126?dopt=Abstract&quot;&gt;A&lt;/a&gt;,
  6332.      A+, the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2572288&quot;&gt;primordial&lt;/a&gt;
  6333.      human type &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22848499&quot;&gt;B&lt;/a&gt;
  6334.      cell and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3446582&quot;&gt;normal&lt;/a&gt;
  6335.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2836867&quot;&gt;B+&lt;/a&gt; and a
  6336.      rare &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22848499&quot;&gt;B-&lt;/a&gt;
  6337.      phenotype are neutral. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/24188096&quot;&gt;Malaria&lt;/a&gt;-infected
  6338.  
  6339.  
  6340.  
  6341.  
  6342.  
  6343.  
  6344.  
  6345.  
  6346.  
  6347.  
  6348.  
  6349.  
  6350.  
  6351.  
  6352.      human red cells possess at least &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3511989?dopt=Abstract&quot;&gt;two
  6353.  
  6354.  
  6355.  
  6356.  
  6357.  
  6358.  
  6359.  
  6360.  
  6361.  
  6362.  
  6363.  
  6364.  
  6365.  
  6366.  
  6367.  
  6368.  
  6369.        pathways&lt;/a&gt; (in a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3515319&quot;&gt;dimer&lt;/a&gt; --
  6370.      tetramer &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10745013&quot;&gt;equilibrium&lt;/a&gt;)
  6371.      where carbonic anhydrase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11718695?dopt=Abstract&quot;&gt;CA&lt;/a&gt;)
  6372.      isoenzymes (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21323163&quot;&gt;allozymes&lt;/a&gt;
  6373.      are variants often neutral)&amp;nbsp; the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19284595&quot;&gt;native
  6374.        structure&lt;/a&gt; may serve different roles [malaria &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15718915&quot;&gt;resistance&lt;/a&gt;]
  6375.      in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21376116&quot;&gt;
  6376.        G6PD-deficient&lt;/a&gt; erythrocyte) and transmitted biochemical
  6377.      poly(A) characteristics (58 different -missense-mutations &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8364584&quot;&gt;account for&lt;/a&gt;
  6378.      97, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6533418&quot;&gt;poly(A)&lt;/a&gt;
  6379.      -substitutions-towards mutation of variants) divided into &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19323017?dopt=Abstract&quot;&gt;5
  6380.        classes&lt;/a&gt; of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8283448?dopt=Abstract&quot;&gt;energy&lt;/a&gt;
  6381.      metabolism {&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234268/figure/pone-0028319-g005/&quot;&gt;chart&lt;/a&gt;}
  6382.      enzymes. Where GSH represents red cell enzymes involved in
  6383.      glycolysis, enolase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6451861?dopt=Abstract&quot;&gt;ENO&lt;/a&gt;),
  6384.  
  6385.  
  6386.  
  6387.  
  6388.  
  6389.  
  6390.  
  6391.  
  6392.  
  6393.  
  6394.  
  6395.  
  6396.  
  6397.  
  6398.  
  6399.  
  6400.      phosphoglycerate kinase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19323017?dopt=Abstract&quot;&gt;PGK&lt;/a&gt;),
  6401.  
  6402.  
  6403.  
  6404.  
  6405.  
  6406.  
  6407.  
  6408.  
  6409.  
  6410.  
  6411.  
  6412.  
  6413.  
  6414.  
  6415.  
  6416.  
  6417.      phosphofructokinase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12899918&quot;&gt;PFK&lt;/a&gt; 
  6418.      that phosphorylates fructose 6-phosphate (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/4064053?dopt=Abstract&quot;&gt;PHI&lt;/a&gt;)),&amp;nbsp;
  6419.  
  6420.  
  6421.  
  6422.  
  6423.  
  6424.  
  6425.  
  6426.  
  6427.  
  6428.  
  6429.  
  6430.  
  6431.  
  6432.  
  6433.  
  6434.  
  6435.      hexokinase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12642228?dopt=Abstract&quot;&gt;HK&lt;/a&gt;),
  6436.  
  6437.  
  6438.  
  6439.  
  6440.  
  6441.  
  6442.  
  6443.  
  6444.  
  6445.  
  6446.  
  6447.  
  6448.  
  6449.  
  6450.  
  6451.  
  6452.      aldolase (ALD), and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10747271?dopt=Abstract&quot;&gt;pyruvate&lt;/a&gt;
  6453.      kinase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8477954?dopt=Abstract&quot;&gt;PK&lt;/a&gt;))
  6454.  
  6455.  
  6456.  
  6457.  
  6458.  
  6459.  
  6460.  
  6461.  
  6462.  
  6463.  
  6464.  
  6465.  
  6466.  
  6467.  
  6468.  
  6469.  
  6470.      activity. From class 1--chronic variants with administration of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/448442&quot;&gt;8-azaguanine&lt;/a&gt;
  6471.      to class IV--increased enzyme activity. NADP-linked enzymes, malic
  6472.      enzyme (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7441369?dopt=Abstract&quot;&gt;ME&lt;/a&gt;,
  6473.      EC 1.1.1.40) malic dehydrogenase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6980685&quot;&gt;MDH&lt;/a&gt;) that
  6474.      catalyzes&amp;nbsp; (NAD-ME) by the chemical reaction to NADP-ME and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12501358&quot; title=&quot;Cunninghamella echinulata&quot;&gt;ATP&lt;/a&gt;:&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15556078&quot;&gt;citrate&lt;/a&gt;
  6475.      lyase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12670628?dopt=Abstract&quot;&gt;ACL&lt;/a&gt;)
  6476.      and (IDH)-isocitrate dehydrogenase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12501358&quot;&gt;NADP-ICD&lt;/a&gt;)
  6477.      channeled NADPH into the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/240012&quot;&gt;fatty acid&lt;/a&gt;
  6478.      biosynthesis influences carbohydrate metabolism and partly account
  6479.      for stimulated nucleotide synthesis. Poly(A) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15056564?dopt=Abstract&quot;&gt;RNA&lt;/a&gt;&amp;nbsp;
  6480.  
  6481.  
  6482.  
  6483.  
  6484.  
  6485.  
  6486.  
  6487.  
  6488.  
  6489.  
  6490.  
  6491.  
  6492.  
  6493.  
  6494.      by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20211032&quot;&gt;carnitine&lt;/a&gt;-
  6495.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11577713&quot;&gt;palmitoyl&lt;/a&gt;
  6496.      (CPT) and acyl (ACO) mRNA, or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12475725&quot;&gt;HMG&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15556078&quot; title=&quot;DHEA&quot;&gt;CoA&lt;/a&gt;
  6497.      oxidase donating activities in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3172984&quot;&gt;inhibition&lt;/a&gt;
  6498.      of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17684106&quot;&gt;meiotic&lt;/a&gt;
  6499.      maturation, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17684106&quot;&gt;acetyl&lt;/a&gt;-CoA
  6500.  
  6501.  
  6502.  
  6503.  
  6504.  
  6505.  
  6506.  
  6507.  
  6508.  
  6509.  
  6510.  
  6511.  
  6512.  
  6513.  
  6514.      &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/448442&quot;&gt;carboxylase&lt;/a&gt;
  6515.      (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12501358&quot;&gt;ACC&lt;/a&gt;)
  6516.      was also measured in the forming &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9560802?dopt=Abstract&quot; title=&quot;thiobarbituric&quot;&gt;DNA adducts&lt;/a&gt;. The metabolism of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325335/figure/F2/&quot;&gt;xylitol&lt;/a&gt;
  6517.      remains &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11087741&quot;&gt;intact&lt;/a&gt;
  6518.      to complete the NADPH cycle.&amp;nbsp; The G6PD gene is X-linked, G6PD
  6519.      synthesis leading to G6PD deficiencies which occurs in the oocyte
  6520.      where X-inactivation ( Xq13-XIST; &lt;a href=&quot;http://omim.org/entry/314670&quot;&gt;314670&lt;/a&gt;) large deletions
  6521.      or a loss-of-function mutation does not occur or might be &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8364584&quot;&gt;lethal&lt;/a&gt;,
  6522.      had affected the red cell and white cell series differently, in
  6523.      the mouse presumably the polymorphisms of hemoglobin are on the X
  6524.      chromosome in man, according to hybrid cell studies of a number of
  6525.      domesticated species.&lt;/div&gt;
  6526. &lt;div align=&quot;justify&quot;&gt;
  6527. &lt;br /&gt;&lt;/div&gt;
  6528. &lt;div align=&quot;justify&quot;&gt;
  6529. &lt;table align=&quot;center&quot; border=&quot;1&quot; cellpadding=&quot;2&quot; cellspacing=&quot;2&quot; style=&quot;height: 1997px; width: 400px;&quot;&gt;
  6530.  
  6531.  &lt;tbody&gt;
  6532. &lt;tr&gt;
  6533.      &lt;td valign=&quot;top&quot;&gt;&lt;div align=&quot;justify&quot;&gt;
  6534. &lt;blockquote&gt;
  6535. &lt;big&gt;&lt;big&gt;&amp;nbsp;
  6536.        &lt;/big&gt; &lt;small&gt;Exon 12 is an exonic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16980303&quot;&gt;splicing silencer&lt;/a&gt;¹ containing &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15558953&quot;&gt;other&lt;/a&gt;-(exons II, III-IV, V, VI-VII, VIII, IX, X, and XI-XIII)-spliced exons regions and an exonic splicing enhancer (ESE) in exon 12.
  6537.          Using the G6PD &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23233666&quot;&gt;model&lt;/a&gt;,
  6538.          Exon 12, may define &lt;i&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1953767&quot;&gt;12 base
  6539.              pairs&lt;/a&gt;&lt;/i&gt;, or two DNA base substitutions in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1953767&quot;&gt;deamano-NADP&lt;/a&gt;
  6540.          (EC 1.1.1.49) utilization. &lt;/small&gt;&lt;/big&gt;&lt;big&gt;&lt;small&gt;&lt;big&gt;&lt;big&gt;&lt;a href=&quot;https://picasaweb.google.com/lh/photo/RQaWQd2vigFzay-b4hPl0tMTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;img alt=&quot;g6pd&quot; border=&quot;0&quot; height=&quot;241&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEizFdLQitTX2pvD3uE2F74GNsqpWsDhyphenhyphensP_uEmMcUMS-863IPw-yFf-b8hfCysIxUG5ZVZgTbBJc7A8kJ0RfAy5k7X3nALro5Llsf5YleRtPxEO9G_OYU0NaHV_zfbNgTydmXqb2A/s800/intron12a.png&quot; width=&quot;400&quot; /&gt;&lt;/a&gt;&lt;/big&gt;&lt;/big&gt;&lt;/small&gt;&lt;/big&gt;&lt;/blockquote&gt;
  6541. &lt;/div&gt;
  6542. &lt;div align=&quot;justify&quot;&gt;
  6543. &lt;blockquote&gt;
  6544. &lt;big&gt;&lt;small&gt;
  6545. A regulatory element within
  6546.          exon 12 controls splicing efficiency and the rate of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23631859&quot;&gt;intron
  6547.            removal&lt;/a&gt;. The UGT1A1 gene and the exon 12 of G6PD gene
  6548.          and the polymorphisms of UGT1A1 two DNA base substitutions C1
  6549.          and C2 for example &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22537951&quot;&gt;Gly71Arg&lt;/a&gt;
  6550.          from &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1953767&quot;&gt;Arg
  6551.            to His&lt;/a&gt; are the mutational activities (&lt;/small&gt;&lt;/big&gt;&lt;big&gt;&lt;small&gt;dimer
  6552.  
  6553.  
  6554.        &lt;/small&gt;&lt;/big&gt;&lt;big&gt;&lt;small&gt;&lt;b&gt;pink&lt;/b&gt; PDB: &lt;a href=&quot;http://www.snps3d.org/modules.php?name=SnpAnalysis&amp;amp;locus_ac=2539&amp;amp;FP=T&quot;&gt;rasmol_php&lt;/a&gt;
  6555.          SNP: L235F, Figs. 1-2 and 3) of serine-arginine-rich (SR), &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23233666&quot;&gt; proteins&lt;/a&gt;
  6556.          located in exon 12 of the G6PD &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1953767&quot;&gt;gene&lt;/a&gt;.&lt;/small&gt;&lt;/big&gt;&lt;/blockquote&gt;
  6557. &lt;/div&gt;
  6558. &lt;big&gt;&lt;small&gt;
  6559.    &lt;/small&gt;&lt;/big&gt;&lt;br /&gt;
  6560. &lt;div align=&quot;justify&quot;&gt;
  6561. &lt;blockquote&gt;
  6562. &lt;big&gt;&lt;small&gt;&lt;big&gt;&lt;big&gt;&lt;a href=&quot;https://picasaweb.google.com/lh/photo/Oi9xGfu4LGm3MS38SyzUvNMTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;img alt=&quot;g6pd&quot; border=&quot;0&quot; height=&quot;241&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgl8cTm27iZ4SyrkO6b9aZFPJrsa9dvjYyeXXxBeCU0r4bruC0seqTZOfsLP-40i4RS-mlk8vJt1wNWkcke6jiwDN11s1FQyaQU0EfihRnCZwjQu9BdV7zkWUAci5CnW39q0IKXlQ/s800/intron12.png&quot; width=&quot;400&quot; /&gt;&lt;/a&gt;&lt;/big&gt;&lt;/big&gt; The most common mutations are: 1376 G--&amp;gt;T &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1953767&quot;&gt;substitution&lt;/a&gt;
  6563.          abnormality (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1953767&quot;&gt;C1&lt;/a&gt;)
  6564.          and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16331553&quot;&gt;1388&lt;/a&gt;
  6565.          G--&amp;gt;A (G6PD &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11499668&quot;&gt;Kaiping&lt;/a&gt;)
  6566.          abnormality (C2) is A--&amp;gt;G in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15748456&quot;&gt;exon2&lt;/a&gt;,
  6567.          both in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15748456&quot;&gt;
  6568.            exon &lt;/a&gt;&lt;a href=&quot;http://www.blogger.com/null&quot;&gt;12&lt;/a&gt;
  6569.          binding to the C-rich motifs (ESE) blocked binding of&amp;nbsp;
  6570.          the serine-arginine-rich splicing factor 3 (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23631859&quot;&gt;SRSF3&lt;/a&gt;)
  6571.          but not &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23233666&quot;&gt;SRSF4&lt;/a&gt;,
  6572.          PDB&lt;/small&gt;&lt;/big&gt;&lt;big&gt;&lt;small&gt;-2I2Y&lt;/small&gt;&lt;/big&gt;.&lt;/blockquote&gt;
  6573. &lt;/div&gt;
  6574. &lt;div align=&quot;justify&quot;&gt;
  6575. &lt;blockquote&gt;
  6576. &lt;big&gt;&lt;small&gt;&lt;big&gt;&lt;big&gt;&lt;a href=&quot;https://picasaweb.google.com/lh/photo/Oi9xGfu4LGm3MS38SyzUvNMTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;img alt=&quot;g6pd&quot; border=&quot;0&quot; height=&quot;241&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgl8cTm27iZ4SyrkO6b9aZFPJrsa9dvjYyeXXxBeCU0r4bruC0seqTZOfsLP-40i4RS-mlk8vJt1wNWkcke6jiwDN11s1FQyaQU0EfihRnCZwjQu9BdV7zkWUAci5CnW39q0IKXlQ/s800/intron12.png&quot; width=&quot;400&quot; /&gt;&lt;/a&gt;&lt;/big&gt;&lt;/big&gt; Where &lt;/small&gt;&lt;/big&gt;
  6577.      G6PD partly &#39;overlaps&#39; the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22121116&quot;&gt;IKBKG&lt;/a&gt;
  6578.      gene PDB: &lt;a href=&quot;http://www.rcsb.org/pdb/explore/explore.do?pdbId=2JVX&quot;&gt;2JVX&lt;/a&gt;-&lt;b&gt;blue&lt;/b&gt;-cartoon&lt;big&gt;&lt;small&gt;
  6579.          located in&amp;nbsp; the ribbon with the ESE-&lt;b&gt;red&lt;/b&gt;-exon (XII)
  6580.          12. The G6PD gene is 18 kb long divided into 12 segments
  6581.          ranging in size from &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2428611&quot;&gt;&lt;i&gt;12 base
  6582.              pairs&lt;/i&gt;&lt;/a&gt; to 236 bp and interacts with elements in the
  6583.          beta-globin HBB common polymorphism site &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20203002&quot;&gt; &lt;/a&gt;C1311T/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20203002&quot;&gt;IVS-II&lt;/a&gt;
  6584.          promoter are more common forms of the protein hemoglobin in
  6585.          the beta-globin HBB derived from the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2836867&quot;&gt;3&#39;-end&lt;/a&gt;
  6586.          of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2910917&quot;&gt;intron
  6587.  
  6588.  
  6589.  
  6590.  
  6591.            7&lt;/a&gt; is one of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15885137&quot;&gt;2 types&lt;/a&gt;
  6592.          of subunits in human red cell (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2758468&quot;&gt;RBC&lt;/a&gt;)
  6593.          G6PD. An ratio between heterozygote and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2910917&quot;&gt;hemizygote&lt;/a&gt;
  6594.          in males and between hetero and homozygote in &lt;/small&gt;&lt;/big&gt;&lt;big&gt;&lt;small&gt;females of
  6595.          cellular &lt;/small&gt;&lt;/big&gt;&lt;big&gt;&lt;small&gt;components evident from the state of G6PD activity
  6596.          modified by the rate of&amp;nbsp; (&lt;a href=&quot;http://omim.org/entry/312070&quot;&gt;GdX&lt;/a&gt; &lt;/small&gt;&lt;/big&gt;&lt;big&gt;&lt;small&gt;PMID:
  6597.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8786131&quot;&gt;8786131&lt;/a&gt;,&lt;/small&gt;&lt;/big&gt;&lt;big&gt;&lt;small&gt; PDB:&lt;a href=&quot;http://www.rcsb.org/pdb/explore/explore.do?pdbId=2BH9&quot;&gt;2BH9&lt;/a&gt;&amp;nbsp;
  6598.          a deletion variant of G6PD PMID-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17637841&quot;&gt;17637841&lt;/a&gt;)
  6599.          intron &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23631859&quot;&gt;removal&lt;/a&gt;
  6600.          , shows that an intron present on the 5&#39; UTR (located on Fig.
  6601.          A, the end of &lt;b&gt;blue&lt;/b&gt; cartoon situated near the broken &lt;b&gt;blue&lt;/b&gt;
  6602.          strand) of G6PD the first &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23631859&quot;&gt;intron&lt;/a&gt;
  6603.          of the G6PD genome isozymes can be observed, &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18348143&quot;&gt;GdA&lt;/a&gt;
  6604.          and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23065279&quot;&gt;
  6605.            GdB&lt;/a&gt;&#39;³ can be bound by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23185302&quot;&gt;NADP&lt;/a&gt;
  6606.          by a direct source of ROS effects of high &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17303087&quot;&gt;glucose&lt;/a&gt;,
  6607.          inhibition of PKA decreased &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23185302&quot;&gt;ROS&lt;/a&gt;
  6608.          can use a &lt;/small&gt;&lt;/big&gt;&lt;big&gt;&lt;small&gt;direct repeat-3 (DR3) vitamin D response element
  6609.          liganded &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18348143&quot;&gt;vitamin D&lt;/a&gt;
  6610.          receptor&lt;/small&gt;&lt;/big&gt;.
  6611.    
  6612.        &lt;/blockquote&gt;
  6613. &lt;/div&gt;
  6614. &lt;blockquote&gt;
  6615. &lt;div align=&quot;justify&quot;&gt;
  6616. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/cM57iU-zpT5sFykSzCnLYNMTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;big&gt;&lt;big&gt;&lt;img align=&quot;middle&quot; alt=&quot;g6pd&quot; border=&quot;0&quot; height=&quot;367&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh6dCVmjYOcrRQJ5KEoMpaa6O2wrqxXUM5I6yHaaA0oOIAU6g0TQgssZYkz4e0vb12ncKloNLxwkllraOT2-lPtD2ePm5jmy67m1eX6FS5RKMVD6CoNhD-Xqa4VEuCj9KLcTS97Tg/s512/unit4-pdb-2bh9.png&quot; width=&quot;400&quot; /&gt;&lt;/big&gt;&lt;/big&gt;&lt;/a&gt;&lt;/div&gt;
  6617. &lt;/blockquote&gt;
  6618. &lt;/td&gt;
  6619.    &lt;/tr&gt;
  6620. &lt;/tbody&gt;
  6621. &lt;/table&gt;
  6622. &lt;br /&gt;
  6623. &lt;br /&gt;
  6624. &lt;li class=&quot;footnote&quot; id=&quot;footnote_4_4236&quot;&gt;.....five metabolite levels of  insulin signal transduction.
  6625. [&lt;a href=&quot;http://lnwme.blogspot.com/2013/12/g6pd-exon-12-is-exonic-splicing.html#identifier_4_4236&quot;&gt;↩&lt;/a&gt;]&lt;/li&gt;
  6626. &lt;/div&gt;
  6627. &lt;div align=&quot;justify&quot;&gt;
  6628. &lt;small&gt;&lt;small&gt; &lt;/small&gt;&lt;/small&gt; &lt;/div&gt;
  6629. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  6630. google_ad_client=&quot;pub-9610428118332343&quot;;
  6631. google_ad_host=&quot;&quot;;
  6632. google_ad_width=200;
  6633. google_ad_height=90;
  6634. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  6635. google_color_border=&quot;EEEECC&quot;;
  6636. google_color_bg=&quot;EEEECC&quot;;
  6637. google_color_link=&quot;445566&quot;;
  6638. google_color_url=&quot;445566&quot;;
  6639. google_color_text=&quot;333333&quot;;
  6640. //--&gt;&lt;/script&gt;
  6641. &lt;script type=&quot;text/javascript&quot;
  6642.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  6643. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2013/12/g6pd-exon-12-is-exonic-splicing.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEizFdLQitTX2pvD3uE2F74GNsqpWsDhyphenhyphensP_uEmMcUMS-863IPw-yFf-b8hfCysIxUG5ZVZgTbBJc7A8kJ0RfAy5k7X3nALro5Llsf5YleRtPxEO9G_OYU0NaHV_zfbNgTydmXqb2A/s72-c/intron12a.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-7911512424002123411</guid><pubDate>Tue, 10 Sep 2013 05:17:00 +0000</pubDate><atom:updated>2014-04-13T16:01:56.685-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">beta-globin</category><category domain="http://www.blogger.com/atom/ns#">GATA-1</category><category domain="http://www.blogger.com/atom/ns#">HBB</category><category domain="http://www.blogger.com/atom/ns#">NFE2</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>Intra- and interchromosomal interactions of point mutations occurring in the vicinity of the normal 5-and 3 ends via low and high O(2)-affinities on the beta-globin complex.</title><description>Beta-globin (HBB) locus: 11p15.4&amp;nbsp; [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/3043&quot;&gt;§§&lt;/a&gt;; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/88959.html?ID=88555&quot;&gt;†&lt;/a&gt;, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20301551&quot; title=&quot;Sickle Cell Disease. Sections&quot;&gt;‡&lt;/a&gt;-(HbS)] intra- and interchromosomal interactions with element in the beta-globin &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22028795&quot; title=&quot;pdb 4HHB before and after mutation&quot;&gt;HBB&lt;/a&gt; is one of the 2 types of an asymmetric &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16877501&quot; title=&quot;two adjacent replicators&quot;&gt;purine&lt;/a&gt; : &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16848606&quot; title=&quot;transition from monomers&quot;&gt;pyrimidine&lt;/a&gt; sequences in beta-thalassemia &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/4531009&quot; title=&quot;Aspirin acetylates chromatin&quot;&gt;patients&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14722738&quot; title=&quot;Hydroxyurea in the treatment&quot;&gt;Hydroxyurea&lt;/a&gt;) and normal (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17654503&quot; title=&quot;occur at different frequencies&quot;&gt;nonthalassemic&lt;/a&gt;) individuals from the standard &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23431002&quot; title=&quot;representing 14 populations&quot;&gt;neutral&lt;/a&gt; – &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17490901&quot; title=&quot;he beta globin gene&quot;&gt;model&lt;/a&gt;, to any one or more of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12955718&quot;&gt;200&lt;/a&gt; different &lt;a href=&quot;http://www.uniprot.org/uniprot/P68871#section_features&quot;&gt;mutations&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21075281&quot;&gt;unstable&lt;/a&gt; free globin chain subunits), a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11159543&quot;&gt;heterotetramer&lt;/a&gt; subunits assembly &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20301551&quot;&gt;composed of&lt;/a&gt; ‡ &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1552945&quot; title=&quot;The need to develop&quot;&gt;two α-&lt;/a&gt;hemoglobin chains and two β-hemoglobin chains. In adult (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21077758&quot; title=&quot;1,863MexicanMestizo patients&quot;&gt;Hb&lt;/a&gt;) hemoglobin, the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21333566&quot; title=&quot;seven most common mutations&quot;&gt;IVS&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10556289?dopt=Abstract&quot; title=&quot;target sites in intron 2&quot;&gt;2&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16184579&quot; title=&quot;three novel polymorphisms&quot;&gt;intron&lt;/a&gt;“‘ &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16990440&quot; title=&quot;three polymorphisms&quot;&gt;promoter&lt;/a&gt; a coregulator of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11167015&quot; title=&quot;all GATA sites&quot;&gt;GATA&lt;/a&gt;1 can serve a similar function as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14585970&quot; title=&quot;more compatible with modifying&quot;&gt;NF-E2&lt;/a&gt; here; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8326917.html?nr=2&amp;amp;pmid=10523648&quot; title=&quot;HS2 element mutated in its GATA&quot;&gt;chromatinized &lt;/a&gt;minichromosome associations in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16537808&quot;&gt;erythroid&lt;/a&gt; cells. These data indicate (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22705794&quot;&gt;CTCF&lt;/a&gt;-CCCTC binding factor, interactions affects spatial distances) observations that favor &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9737959?dopt=Abstract&quot; title=&quot;a target for genetic control&quot;&gt;EKLF’s&lt;/a&gt; red cell (RBC) activators erythroid specificity.&amp;nbsp; A &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16418531&quot;&gt;self-organizing&lt;/a&gt; process, proposed &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10652365&quot; title=&quot;EKLF to activate reporter genes&quot;&gt;role&lt;/a&gt; activates an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9668528&quot; title=&quot;phosphorylation&quot;&gt;adjacent&lt;/a&gt; promoter as both (human &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9516123&quot; title=&quot;the developmental switch&quot;&gt;fetal&lt;/a&gt; (gamma)-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8901569&quot; title=&quot;the first transcription factor participating&quot;&gt;to adult&lt;/a&gt; (beta)-globin) are important, however not sufficient (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10523648&quot; title=&quot;basai apparatusPMID: 16858401&quot;&gt;basal&lt;/a&gt;) stabilizing interactions,&amp;nbsp; -both were in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11163187?dopt=Abstract&quot; title=&quot;Nonsense-mediated decay (NMD)&quot;&gt;cis&lt;/a&gt; and in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11336979.html?nr=1&amp;amp;pmid=16508016&quot; title=&quot;factors that participate in stabilizing HBB&quot;&gt;trans&lt;/a&gt; distinct from &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16508016&quot;&gt;alpha-globin&lt;/a&gt; mRNA, the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/4745332.html?nr=1&amp;amp;pmid=6539594&quot; title=&quot;a 28-kDa or a 24-kDa polypeptide&quot;&gt;2 types&lt;/a&gt; of polypeptide chains interrupted by &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/5217181.html?nr=8&amp;amp;pmid=3025666&quot; title=&quot;prealbumin gene two DNA elements&quot;&gt;2 intervening&lt;/a&gt; sequences the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1512262&quot;&gt;so-called&lt;/a&gt;** “&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21816820&quot; title=&quot;PDB=1BBB, R and R2 structures&quot;&gt;switch&lt;/a&gt;“* &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1571556&quot; title=&quot;simple deletions beta-globin gene&quot;&gt;region&lt;/a&gt; (that is, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2578614&quot; title=&quot;OMIM (cited)&quot;&gt;gamma&lt;/a&gt;—-beta -the average zeta potential, of externalized &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19503809&quot; title=&quot;Applications Annexin&quot;&gt;phosphatidylserine&lt;/a&gt; minimal for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11159543&quot; title=&quot;Embryonic zeta&quot;&gt;zeta&lt;/a&gt;-globin HBZ&amp;nbsp; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11782463&quot; title=&quot;double and quadruple mutant&quot;&gt;dissociation&lt;/a&gt; constants (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1487420&quot; title=&quot;Two abnormal hemoglobins&quot;&gt;fast&lt;/a&gt; or slow* moving), to an embryonic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11300346&quot;&gt;alpha&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11582643&quot; title=&quot;test of cord blood&quot;&gt;like&lt;/a&gt; hemoglobin),.&amp;nbsp; Gene-proximal acting &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16943425?dopt=Abstract&quot; title=&quot;&quot;&gt;cis-regulatory&lt;/a&gt; DNA elements (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11778661&quot; title=&quot;DNase I-HS,s&quot;&gt;chromatin&lt;/a&gt;) are maintained that contain &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11486027&quot;&gt;informative mutations&lt;/a&gt; ‘one’ on the 3-prime &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9375381&quot; title=&quot;&quot;&gt;side&lt;/a&gt; of the beta-globin gene ‘and a leftward’ rate of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10666717&quot;&gt;neutral mutation&lt;/a&gt; (in the 5-prime direction) the &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/6314332.html&quot;&gt;centromere&lt;/a&gt; (beta-globin within the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11997516?dopt=Abstract&quot; title=&quot;CTCF sites at 5HS5 and 3HS1&quot;&gt;chromatin&lt;/a&gt; domain) which contains a ‘&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17688704&quot; title=&quot;Classical sickle beta-globin&quot;&gt;hotspot&lt;/a&gt;‘ (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7539330?dopt=Abstract&quot; title=&quot;regions of three genesby chance&quot;&gt;mutations&lt;/a&gt; causing diseases at &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8402619?dopt=Abstract&quot;&gt;HRAS1&lt;/a&gt;, D11S at one or more 11p&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2722195?dopt=Abstract&quot;&gt;15.5&lt;/a&gt; loci in the HBB region from D11S and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8518793?dopt=Abstract&quot; title=&quot;&quot;&gt;IGF2&lt;/a&gt;: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8858347?dopt=Abstract&quot; title=&quot;(HBB) and markers D11S&quot;&gt;INS&lt;/a&gt; are &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2892398?dopt=Abstract&quot; title=&quot;The INS and D11S12 systems&quot;&gt;systems&lt;/a&gt; found to be &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10652365?dopt=Abstract&quot; title=&quot;a CACC-less beta-globin transgene&quot;&gt;dependent&lt;/a&gt; on &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16858401?dopt=Abstract&quot; title=&quot;the Locus Control Region and HBB&quot;&gt;EKLF&lt;/a&gt;&amp;nbsp;) for recombination in the HBB gene region&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6196781&quot; title=&quot;&quot;&gt;3-prime&lt;/a&gt; to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22734587&quot;&gt;beta-globin&lt;/a&gt; gene (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22734501&quot;&gt;β-thal&lt;/a&gt;) mutations (led to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1639982&quot; title=&quot;diamino-phenyl-indole&quot;&gt;DAPI&lt;/a&gt; lentiviral vectors (LVs) particles &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16339671&quot; title=&quot;studies using LVs&quot;&gt;expression&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15292064&quot; title=&quot;human beta-globin cassette&quot;&gt;cassette&lt;/a&gt; detection: genetic diagnosis (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7745052&quot;&gt;PGD&lt;/a&gt;) Preimplantation. And targeted integration of the adeno-associated virus (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18496574&quot; title=&quot;used for gene transfer,&quot;&gt;AAV&lt;/a&gt;).) at 5-prime &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10556289&quot; title=&quot;aberrant 5 splice sites suppression of&quot;&gt;splice&lt;/a&gt; sites (A &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1984681?dopt=Abstract&quot;&gt;gamma&lt;/a&gt;-) globin (HBG1) are held to be responsible for human genetic disease of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1383089?dopt=Abstract&quot; title=&quot;embryonic and early fetal gene&quot;&gt;fetal&lt;/a&gt; ‘Aγ and Gγ’ hemoglobin (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2445400&quot; title=&quot;fetal genes (G gamma and A gamma)&quot;&gt;HPFH&lt;/a&gt;/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6202341&quot; title=&quot;hereditary persistence&quot;&gt;beta o-tha&lt;/a&gt; the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18245381&quot;&gt;BCL11A&lt;/a&gt; variant is associated with the same variable HbF) by (tagging with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/23272095&quot; title=&quot;fluorescent proteins&quot;&gt;GFP&lt;/a&gt;) a single initial deletion followed by spread of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7829533?dopt=Abstract&quot; title=&quot;CACCCbox mutations&quot;&gt;mutation&lt;/a&gt;, naturally &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8288615?dopt=Abstract&quot; title=&quot;naturally occurring point mutations&quot;&gt;occurring&lt;/a&gt; allele-(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20099768&quot; title=&quot;locus with two alleles denoted&quot;&gt;Hardy&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19903589&quot; title=&quot;5 and 3 haplotypes (Hps)&quot;&gt;Weinberg&lt;/a&gt; principle),&amp;nbsp; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16990440&quot; title=&quot;three polymorphisms&quot;&gt;locus&lt;/a&gt; with two alleles denoted, and a second abnormal allele of an HBB mutation (e.g.,&amp;nbsp; the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11812133&quot; title=&quot;related to pathogenesis&quot;&gt;sickle&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10791557&quot;&gt;cell&lt;/a&gt; haemoglobin gene &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11965279&quot;&gt;Hb S&lt;/a&gt;, a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12454462&quot; title=&quot;PDB: 1K1K&quot;&gt;naturally occurring&lt;/a&gt; mutant &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16175509&quot; title=&quot;originated 5,000 years ago&quot;&gt;Hb C&lt;/a&gt;, β-thalassemia), with subsequent crossovers between the 5-and 3-prime and gene conversion and the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10556289?dopt=Abstract&quot; title=&quot;mutations that create 5-3 intron 2&quot;&gt;creation&lt;/a&gt; of 2 others (e.g.,&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2456798&quot;&gt; Comparison&lt;/a&gt;‘s of the normal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/728996?dopt=Abstract&quot; title=&quot;5-delta--beta-3&quot;&gt;5-and 3&lt;/a&gt; ends, the processive &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3179447?dopt=Abstract&quot;&gt;region 3′&lt;/a&gt; to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/68958&quot; title=&quot;3-terminal UTR&quot;&gt;3′ UTR&lt;/a&gt; messenger &lt;a href=&quot;http://www.blogger.com/null&quot;&gt;mRNP&lt;/a&gt; complexes &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8806182&quot;&gt;ribonucleoprotein&lt;/a&gt; breakpoint via mutations or HS deletions (β-globin HS5 or 3′HS1) that contributes to the abnormal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15615768&quot;&gt;expression&lt;/a&gt;,
  6644. or as RNA stability, maturation and transcriptional termination) for
  6645. recombination (crossing-over or gene conversion) both in cis and in
  6646. trans intra- and interchromosomal interactions of point mutations
  6647. occurring in the vicinity of the beta-globin complex,&amp;nbsp; in cis to the
  6648. gene mutations, were physically intact. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19247486?dopt=Abstract&quot; title=&quot;Matrix attachment regions (MARs)&quot;&gt;SATB1&lt;/a&gt; takes part in affecting the HBB higher order chromatin structure &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12799453&quot; title=&quot;Nuclear matrix-associated regions&quot;&gt;Matrix&lt;/a&gt; attachment &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11997516&quot;&gt;regions&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19247486&quot; title=&quot;SATB1 to the MARs&quot;&gt;MARs&lt;/a&gt;) within the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/775375.html?nr=1&amp;amp;pmid=8918890&quot; title=&quot;HBB-AR hemaglobin activating region&quot;&gt;locus control region&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8118043&quot; title=&quot;interacts with more than one HBB&quot;&gt;LCR&lt;/a&gt; located at the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14645507&quot;&gt;5′ end&lt;/a&gt;, flanked by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16103151&quot; title=&quot;adeno-associated virus (AAV)&quot;&gt;AAV&lt;/a&gt;),&amp;nbsp; the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15979088&quot; title=&quot;locus control region&quot;&gt;HS2&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17056066&quot; title=&quot;chromatin structure&quot;&gt;3′HS1&lt;/a&gt; active &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15870261&quot; title=&quot;chromatin HS2 and HS3&quot;&gt;chromatin&lt;/a&gt; hub (ACH), remote &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9744863?dopt=Abstract&quot; title=&quot;DNase I hypersensitive sites (5 HS1-5)&quot;&gt;5-prime&lt;/a&gt; element genes (a member of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12555809?dopt=Abstract&quot; title=&quot;interactions between cis-elements&quot;&gt;HMGB-2&lt;/a&gt; high-mobility group protein 2 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21075288&quot; title=&quot;an Hmga2 gene&quot;&gt;family&lt;/a&gt;) in cis to the deletion a single initial deletion is the beta &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/3362016.html?nr=4&amp;amp;pmid=478302&quot;&gt;zero&lt;/a&gt; type of&amp;nbsp; a coexisting thalassemia component and if so, if it is α-thalassemia or Beta (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6153459?dopt=Abstract&quot; title=&quot;anaemia in newborns which develops&quot;&gt;gamma-beta&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15795925&quot; title=&quot;a serious health problem&quot;&gt;Thalassaemia&lt;/a&gt; and (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20301551&quot; title=&quot;associated with mutations in HBB&quot;&gt;SCD&lt;/a&gt;-Hemoglobin) Hb SS anemia, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15795541&quot; title=&quot;a complex multifactorial process&quot;&gt;sickle&lt;/a&gt; cell disease) and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16216127?dopt=Abstract&quot; title=&quot;prehistoric attribute predisposition&quot;&gt;malaria&lt;/a&gt;&amp;nbsp; has some &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18772456&quot; title=&quot;high cerebral velocities&quot;&gt;protective effect&lt;/a&gt; from increased risk of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16356170?dopt=Abstract&quot; title=&quot;where resources are limited&quot;&gt;G6PD&lt;/a&gt; deficiency, with beta-globin &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21075280&quot; title=&quot;alpha thalassemia-family&quot;&gt;co-inheritance&lt;/a&gt; a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1383089?dopt=Abstract&quot; title=&quot;epsilon-globin a embryonic gene&quot;&gt;fetal adult&lt;/a&gt; gene as a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10022837?dopt=Abstract&quot; title=&quot;fetal gamma- to adult beta-globin&quot;&gt;cofactor&lt;/a&gt; involving the first non-coding near the 5-prime end of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8650154?dopt=Abstract&quot;&gt;3 exons&lt;/a&gt;&amp;nbsp; plus a single &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6527389?dopt=Abstract&quot;&gt;pseudogene&lt;/a&gt; termed &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6599969?dopt=Abstract&quot; title=&quot;the lagomorph beta-globin gene&quot;&gt;psi beta 1&lt;/a&gt; ( &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3456593?dopt=Abstract&quot; title=&quot;beta-globin cluster reside within&quot;&gt;epsilon&lt;/a&gt;, beta and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18667698?dopt=Abstract&quot; title=&quot;potentially heritable modifier of a disease&quot;&gt;gamma&lt;/a&gt; are complementary to the structure of genes is &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19245215&quot; title=&quot;of site mutants&quot;&gt;coincidental&lt;/a&gt; of site mutants that are turned &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12920025&quot;&gt;on and off&lt;/a&gt; ( H3 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20068219&quot; title=&quot;H4R3&quot;&gt;acetylation&lt;/a&gt;-(H4/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19288145&quot; title=&quot;R(deoxy) and RR bands&quot;&gt;R3&lt;/a&gt;* in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8980683&quot;&gt;R&lt;/a&gt; state having T/R** low and high &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21703224&quot;&gt;O(2)&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19740759&quot;&gt;affinities&lt;/a&gt;)-K4 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20080971&quot; title=&quot;fast k(O2), and k(NO) PDB:2DN1&quot;&gt;demethylation&lt;/a&gt;) the mechanism is more complex as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2269427?dopt=Abstract&quot; title=&quot;&quot;&gt;development&lt;/a&gt; proceeds) the Dominant Control Region (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2357964?dopt=Abstract&quot; title=&quot;&quot;&gt;DCR&lt;/a&gt;) and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21978377&quot; title=&quot;HBB has three exons and two introns&quot;&gt;introns&lt;/a&gt;“‘ 1-5 both single &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/snp?LinkName=protein_snp&amp;amp;from_uid=4504349&quot; title=&quot;1 to 20 of 423&quot;&gt;nucleotide&lt;/a&gt;“‘ substitutions of the beta-globin gene to the deletion ‘&lt;a href=&quot;http://www.wikigenes.org/e/ref/e/14517543.html&quot; title=&quot;spatial cluster cis-regulatory&quot;&gt;in cis&lt;/a&gt;‘ a region designated LCRB, locus control region. (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3899525?dopt=Abstract&quot; title=&quot;&quot;&gt;INS&lt;/a&gt;) the insulin gene was also mapped to this same region.&lt;br /&gt;
  6649. &lt;br /&gt;
  6650. &lt;div align=&quot;center&quot;&gt;
  6651. &lt;br /&gt;&lt;/div&gt;
  6652. &lt;div align=&quot;center&quot;&gt;
  6653. &lt;div style=&quot;text-align: start;&quot;&gt;
  6654. &lt;br /&gt;&lt;/div&gt;
  6655. &lt;div style=&quot;text-align: start;&quot;&gt;
  6656. &lt;/div&gt;
  6657. &lt;div style=&quot;margin: 0px; text-align: start;&quot;&gt;
  6658. &lt;a href=&quot;https://plus.google.com/photos/100787464692550241934/albums/5921775298049485697/5921775386336616226?banner=pwa&amp;amp;pid=5921775386336616226&amp;amp;oid=100787464692550241934&quot;&gt;&lt;img alt=&quot;hbb&quot; border=&quot;0&quot; height=&quot;270&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEio6Qnmm8nWSHm3nFCO4TIHQUpo6bkxWKFNzlPE4ePMKMqCyKMl_EHJf16IFEHCGcFD9BFeSx6ioh4MFXel8xBsymkJ1oYY8QocZGm0af5JT3pywRbO1C_BKlK5iyd0qOsTb1Z4Mw/w493-h508-no/Redalpha-blubeta.png&quot; width=&quot;262&quot; /&gt;&lt;/a&gt;&lt;/div&gt;
  6659. &lt;div align=&quot;justify&quot;&gt;
  6660. &lt;div style=&quot;margin: 0px;&quot;&gt;
  6661. (1)&amp;nbsp; the &quot;hinge region&quot; of the alpha 1 beta 2 interface PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1567857&quot;&gt;1567857&lt;/a&gt;&amp;nbsp;were partitioned into components of ( PDB:1J7Y_colored in reds is Hb-alpha ) SNP PDB:1IRD HBA1 and 2 structure rearrangement,&amp;nbsp; the interface from the mutation site is site (B) about protein sequence 4L7Y-B alpha and D-beta:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197589/#s3title&quot;&gt;Results&lt;/a&gt;are for rs33930165 on Reference Sequence: NP_000509.1 [PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22028795&quot;&gt;22028795&lt;/a&gt;] attainment number&amp;nbsp;&lt;a class=&quot;tag_hotlink&quot; href=&quot;http://www.ncbi.nlm.nih.gov/protein/56749856&quot; id=&quot;__tag_235452173&quot;&gt;P68871&lt;/a&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;&amp;nbsp;verified by refinement of the a entire&amp;nbsp; molecule&amp;nbsp;&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;was confined to residues at the central cavity close to the 2,3-DPG found in the&amp;nbsp;&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/protein/NP_000509.1&quot;&gt;NP_000509.1&lt;/a&gt;&amp;nbsp;hemoglobin (PDB: 4L7Y) subunit beta.&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;&amp;nbsp;1J7Y_Reds Hb-alpha,_Blues Hb-beta. With The effect of mutagenesis on O(2), CO, &amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;and NO binding to mutants 1J7Y HBB.H116R_D test&amp;nbsp;&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;&lt;span style=&quot;color: red;&quot;&gt;Disease Gene&lt;/span&gt;:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?&amp;amp;db=omim&amp;amp;orig_db=omim&amp;amp;term=HBB%5BGN%5D&quot; target=&quot;_blank&quot;&gt;HBB&lt;/a&gt;&amp;nbsp; protein/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/protein/NP_000509.1&quot;&gt;NP_000509.1&lt;/a&gt;structure arrangement. The alpha (HBA) and beta (HBB) loci determine the structure resolution analysis reported here implies...&amp;nbsp;&amp;nbsp;&lt;/span&gt;the structure of genes is&lt;/div&gt;
  6662. &lt;div style=&quot;margin: 0px;&quot;&gt;
  6663. &lt;span class=&quot;tag_hotlink&quot;&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19245215&quot; title=&quot;of site mutants&quot;&gt;coincidental&lt;/a&gt;&amp;nbsp;of site mutants that are turned&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12920025&quot;&gt;on and off&lt;/a&gt;&amp;nbsp;( H3&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20068219&quot; title=&quot;H4R3&quot;&gt;acetylation&lt;/a&gt;-(H4/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19288145&quot; title=&quot;R(deoxy) and RR bands&quot;&gt;R3&lt;/a&gt;* in the&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8980683&quot;&gt;R&lt;/a&gt;&amp;nbsp;state having T/R** low and high&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21703224&quot;&gt;O(2)&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19740759&quot;&gt;affinities&lt;/a&gt;)-K4&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20080971&quot; title=&quot;fast k(O2), and k(NO) PDB:2DN1&quot;&gt;demethylation&lt;/a&gt;) the mechanism is&amp;nbsp; more complex as development proceeds) e.g.&amp;nbsp; not present in the final mature HBB gene product.&lt;/span&gt;&lt;/div&gt;
  6664. &lt;/div&gt;
  6665. &lt;div style=&quot;margin: 0px; text-align: start;&quot;&gt;
  6666. &lt;br /&gt;&lt;/div&gt;
  6667. &lt;div style=&quot;margin: 0px; text-align: start;&quot;&gt;
  6668. &lt;img alt=&quot;hbb&quot; height=&quot;190&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgDVT73wtOP-JUIKhvq72jqBgVFc9n4vkGIZnAOIqEaY9RE7dAfggI0_6lLc9RHc95XljKR33AXYfbglm1wzwzELvR113O4UlR79CNcmfERq81pqDm7rAEU8q4IYhzuA-mE7VPBIw/w547-h396-no/Capture1.PNG&quot; width=&quot;262&quot; /&gt;&lt;/div&gt;
  6669. &lt;div style=&quot;margin: 0px; text-align: start;&quot;&gt;
  6670. &lt;br /&gt;&lt;/div&gt;
  6671. &lt;div style=&quot;margin: 0px; text-align: start;&quot;&gt;
  6672. &lt;br /&gt;&lt;/div&gt;
  6673. &lt;div align=&quot;justify&quot;&gt;
  6674. &lt;div style=&quot;margin: 0px;&quot;&gt;
  6675. &lt;span class=&quot;tag_hotlink&quot;&gt;(2)&amp;nbsp; Behaviour of a natural haemoglobin and a mutant variant in the central cavity close to the 2,3-diphosphoglycerate pocket&amp;nbsp; 4L7Y-D a band migrating in the Hb F_ a solvation band-position-PDB: rasmol_php (DiseaseE6K_33930165_F_[solvent- is&amp;nbsp;&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;nonbonded spheres&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;&amp;nbsp;on 4L7Y-D Hb-beta Red fig. (1)) and its reactions with 2,3-DPG and inositol hexaphosphate-PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6526653&quot;&gt;6526653&lt;/a&gt;: accounts for the reduced oxygen affinity of haemoglobin;&amp;nbsp; by the oppositely charged side-chains residue that project into or are missing in the heme pocket, and result in a thalassemic and/or hemolytic -like phenotype the result of decreased alpha 1 beta 1 interactions.&lt;/span&gt;&lt;/div&gt;
  6676. &lt;div style=&quot;margin: 0px;&quot;&gt;
  6677. &lt;span class=&quot;tag_hotlink&quot;&gt;&lt;/span&gt;&lt;/div&gt;
  6678. &lt;/div&gt;
  6679. &lt;div style=&quot;margin: 0px; text-align: start;&quot;&gt;
  6680. &lt;span class=&quot;tag_hotlink&quot;&gt;&lt;/span&gt;&lt;a href=&quot;https://plus.google.com/photos/100787464692550241934/albums/5921775298049485697/5922957783427417346?banner=pwa&amp;amp;partnerid=gplp0&amp;amp;pid=5922957783427417346&amp;amp;oid=100787464692550241934&quot;&gt;&lt;img alt=&quot;hbb&quot; border=&quot;0&quot; height=&quot;191&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg3b3jl8f701XhoL2322X88SQ7-c0vCei2IhKCZy4ez81EDtm_23eiKRHyDpiF6hFfWgGwyVdFCoKxDA_29dZd_3kJWrpuc51u51sUAGwPV9qCcAS_We2UEFoHRHN7X1f9ukhnM_g/w663-h483-no/noe7b.jpg&quot; width=&quot;262&quot; /&gt;&lt;/a&gt;&lt;/div&gt;
  6681. &lt;div style=&quot;margin: 0px; text-align: start;&quot;&gt;
  6682. HBB Network visualized with Cytoscape. The inverse of the inverse not inferable from Figure (4) overlaps the hinge region for exon selection 3&#39;5&#39;duplications. pubmed/21269460 [#35]&lt;/div&gt;
  6683. &lt;div style=&quot;margin: 0px; text-align: start;&quot;&gt;
  6684. &lt;br /&gt;&lt;/div&gt;
  6685. &lt;div style=&quot;text-align: start;&quot;&gt;
  6686. &lt;/div&gt;
  6687. &lt;div style=&quot;text-align: start;&quot;&gt;
  6688. &lt;/div&gt;
  6689. &lt;div style=&quot;margin: 0px; text-align: start;&quot;&gt;
  6690. &lt;a href=&quot;https://plus.google.com/photos/100787464692550241934/albums/5921775298049485697/5921775456181947010?banner=pwa&amp;amp;pid=5921775456181947010&amp;amp;oid=100787464692550241934&quot;&gt;&lt;img alt=&quot;hbb&quot; border=&quot;0&quot; height=&quot;232&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgpbl2z_SgamQOje_D47gO-at1cYE-aCSF1wqr5VATYhXZnQLceHaBdSA4H_VYglid4niLZa5dmiYUu-AuRyELW9LsjWq7AQ1CI5kQ2_XOBoUmlGD8EE-bKECYQU5iUZFc_LfJqAw/w573-h508-no/intronexon2.png&quot; width=&quot;262&quot; /&gt;&lt;/a&gt;&lt;/div&gt;
  6691. &lt;div style=&quot;margin: 0px; text-align: start;&quot;&gt;
  6692. &lt;br /&gt;&lt;/div&gt;
  6693. &lt;div align=&quot;justify&quot;&gt;
  6694. &lt;div style=&quot;margin: 0px;&quot;&gt;
  6695. &lt;span class=&quot;tag_hotlink&quot;&gt;&amp;nbsp;(3) 4L7Y-B inhibits the rate of ligand binding HIS&#39;147 the native imidazole side chain is 4L7Y-D modification at each site is a function of the position of these 2 hemoglobin alpha and beta introns the electrostatic attraction or repulsion by the oppositely charged side-chains therefore the efficiencies of intron 1, PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6599969&quot;&gt;6599969&lt;/a&gt;&amp;nbsp;and intron 2, PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16184579&quot;&gt;16184579&lt;/a&gt;&amp;nbsp;are unaffected residue near the 3&#39; end (Blue color) (4L7Y_B/B/LEU&#39;3/CA) of the intron on a mechanism that measures the distance, the first intron might facilitate splicing (&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;aligned as B-D, B-D) of the second intron (Orange) 4L7Y and desease HBB locus gene in which intron 1 PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18266765&quot;&gt;18266765&lt;/a&gt;&amp;nbsp;accommodates the 5&#39; end (Orange). Introns are not present in the final HBB gene product mature RNA with SNP:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=33949930&quot;&gt;rs33949930&lt;/a&gt;, &amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;amplified from exon (Blue) 1 + 2 (PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8226093&quot;&gt;8226093&lt;/a&gt;) of the beta-globin gene:&amp;nbsp;&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;&lt;span class=&quot;undefined&quot;&gt;&lt;/span&gt;&lt;a class=&quot;undefined&quot; href=&quot;http://www.ncbi.nlm.nih.gov/nuccore/28380636?report=graph&amp;amp;noslider=1&amp;amp;tracks=[key:sequence_track,name:Sequence,display_name:Sequence,id:STD1,category:Sequence,annots:Sequence,ShowLabel:false][key:SNP_track,name:SNP,display_name:SNP,id:STD3,category:Variation,subcategory:dbSNP,annots:SNP,Layout:Adaptive][key:SNP_Bins_track,name:Clinical%20Variants,display_name:Clinical%20Channel,id:STD7,category:Variation,subcategory:dbSNP,annots:NA000001755.3][key:SNP_Bins_track,name:Cited%20Variants,display_name:Cited%20Variants,id:STD8,category:Variation,subcategory:dbSNP,annots:NA000001759.1][key:gene_model_track,name:Genes,display_name:Genes,id:STD9,category:Genes,annots:Unnamed,Options:ShowAll,SNPs:true,CDSProductFeats:false,ShowLabelsForAllFeatures:false,HighlightMode:2][key:alignment_track,name:Alignments,display_name:Alignments,id:STD10,category:Alignments,annots:Unnamed,Layout:Adaptive1000,StatDisplay:15,Color:Show%20Differences,sort_by:,LinkMatePairAligns:true,ShowAlnStat:false,AlignedSeqFeats:false,Label:true]&amp;amp;appname=ncbientreznuccore&amp;amp;mk=70599%7Crs33949930%7Cgreen%7C1&amp;amp;color=0&amp;amp;label=0&amp;amp;decor=0&amp;amp;spacing=0&amp;amp;v=70099:71099&amp;amp;c=800080&amp;amp;gflip=false&amp;amp;select=gi%7C28380636-000114a0-0001157e-011d-032a54d3-ffea8d58&quot; target=&quot;_blank&quot; title=&quot;NG_000007.3&quot;&gt;NG_000007.3&lt;/a&gt;&lt;span class=&quot;undefined&quot;&gt;&lt;/span&gt;&lt;span class=&quot;undefined&quot;&gt;,&amp;nbsp;&lt;/span&gt;(a neutral mutation [ SNP:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=33949930&quot;&gt;rs33949930&lt;/a&gt;&amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp; &amp;nbsp;Position 70599&amp;nbsp;&lt;a href=&quot;http://tinyurl.com/nhut5yf&quot;&gt;http://tinyurl.com/nhut5yf&lt;/a&gt;]). Present in SNP to nucleotide allele T.&lt;/span&gt;&lt;/div&gt;
  6696. &lt;/div&gt;
  6697. &lt;div style=&quot;margin: 0px; text-align: start;&quot;&gt;
  6698. &lt;a href=&quot;https://plus.google.com/photos/100787464692550241934/albums/5921775298049485697/5921786362640124706?banner=pwa&amp;amp;pid=5921786362640124706&amp;amp;oid=100787464692550241934&quot;&gt;&lt;img alt=&quot;hbb&quot; border=&quot;0&quot; height=&quot;179&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg_JAibflgw2wms-5KQoox5gJb7oTp0ua0Ax4vPJiD8cxQ_NW3-mtZ9qwIQpGApYyEAwizVYD0yDTobUS0wMCLGBkOAQbBrbyb_eg61eNp5HQ21ab1WmQVB2PxjHibLFBxr4aLtsg/w743-h508-no/3end.png&quot; width=&quot;262&quot; /&gt;&lt;/a&gt;&lt;/div&gt;
  6699. &lt;div align=&quot;justify&quot;&gt;
  6700. &lt;div style=&quot;margin: 0px;&quot;&gt;
  6701. &lt;span class=&quot;tag_hotlink&quot;&gt;(4)&amp;nbsp; Correlated inversely. The intron is linked both in the intron-exon sequence and nearer the (Blue) 3&#39; end (an adaptation to endurance PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16990440&quot;&gt;16990440&lt;/a&gt;&amp;nbsp;) of the intron upstream from the 3&#39; terminus to the 3&#39;-side of the beta-globin gene PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/478302&quot;&gt;478302&lt;/a&gt;&amp;nbsp;of the intron (Orange) on 4L7Y-B beta-globin gene should remain active together with all other&amp;nbsp;&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;(PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11559912&quot;&gt;11559912&lt;/a&gt;&amp;nbsp;alleles&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;) forms of the same HBB gene multiallelic loci&amp;nbsp; PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15315794&quot;&gt;15315794&lt;/a&gt;&amp;nbsp;involved in beta-thalassemia along with the unrecognized allelism found in&amp;nbsp;&amp;nbsp;&lt;a href=&quot;http://www.snps3d.org/modules.php?name=SnpAnalysis&amp;amp;locus_ac=3043&quot;&gt;PDB:1IRD&lt;/a&gt;&amp;nbsp;among a new neutral mutation.&amp;nbsp;&lt;a href=&quot;http://www.snps3d.org/modules.php?name=SnpAnalysis&amp;amp;locus_ac=3043&quot;&gt;V2E, A, G, L&lt;/a&gt;, SNP&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/snp/?term=33949930&quot;&gt;33949930&lt;/a&gt;&amp;nbsp;(hydrophobic interaction decreased;&amp;nbsp;&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;&lt;a href=&quot;http://www.snps3d.org/cgi-bin/rasmol_php?seq_ac=NP_000509&amp;amp;&amp;amp;snp=V2E&amp;amp;snp_chain=B&quot;&gt;&lt;img alt=&quot;hbb&quot; border=&quot;0&quot; src=&quot;http://www.snps3d.org/image/rasmol.jpg&quot; height=&quot;16&quot; width=&quot;16&quot; /&gt;&lt;/a&gt;&amp;nbsp;&lt;a href=&quot;http://www.snps3d.org/cgi-bin/jmol?seq_ac=NP_000509&amp;amp;&amp;amp;snp=V2E&amp;amp;snp_chain=B&amp;amp;&amp;amp;message=hydrophobic%20interaction%20decreased;&amp;amp;&amp;amp;locus_ac=3043&amp;amp;&amp;amp;symbol=HBB&quot;&gt;&lt;img alt=&quot;hbb&quot; border=&quot;0&quot; src=&quot;http://www.snps3d.org/image/java.gif&quot; height=&quot;16&quot; width=&quot;16&quot; /&gt;&lt;/a&gt;&amp;nbsp;)&amp;nbsp; the single nucleotide polymorphisms&amp;nbsp;&lt;a href=&quot;http://www.snps3d.org/modules.php?name=SnpAnalysis&amp;amp;locus_ac=3043&quot;&gt;NP_000509&lt;/a&gt;. The remaining 95% of the SNPs for prediction in which a variant could be detected, would have been sufficient in these cartoons, however may be&amp;nbsp;&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;misleading.&amp;nbsp; These results suggest that e.g.&lt;/span&gt;&lt;span class=&quot;tag_hotlink&quot;&gt;&amp;nbsp;the introns (PMID:&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11860449&quot;&gt;11860449&lt;/a&gt;) or the entire Hb-beta locus may be&amp;nbsp; missing in beta(0) or be impeded ( O(2)-affinities) in Hb SS anemia beta-thalassemia and if so, α-thalassemia or Beta (gamma-beta-Thalassaemia and (Sickle Cell SCD-Hemoglobin)&amp;nbsp; Hb SS anemia, sickle cell disease.&lt;/span&gt;&lt;/div&gt;
  6702. &lt;/div&gt;
  6703. &lt;div style=&quot;text-align: start;&quot;&gt;
  6704. &lt;br /&gt;&lt;/div&gt;
  6705. &lt;/div&gt;
  6706. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  6707. google_ad_client=&quot;pub-9610428118332343&quot;;
  6708. google_ad_host=&quot;&quot;;
  6709. google_ad_width=200;
  6710. google_ad_height=90;
  6711. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  6712. google_color_border=&quot;EEEECC&quot;;
  6713. google_color_bg=&quot;EEEECC&quot;;
  6714. google_color_link=&quot;445566&quot;;
  6715. google_color_url=&quot;445566&quot;;
  6716. google_color_text=&quot;333333&quot;;
  6717. //--&gt;&lt;/script&gt;
  6718. &lt;script type=&quot;text/javascript&quot;
  6719.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  6720. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2013/09/intra-and-interchromosomal-interactions_9.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEio6Qnmm8nWSHm3nFCO4TIHQUpo6bkxWKFNzlPE4ePMKMqCyKMl_EHJf16IFEHCGcFD9BFeSx6ioh4MFXel8xBsymkJ1oYY8QocZGm0af5JT3pywRbO1C_BKlK5iyd0qOsTb1Z4Mw/s72-w493-h508-c-no/Redalpha-blubeta.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-5133206788756694507</guid><pubDate>Sat, 08 Jun 2013 22:01:00 +0000</pubDate><atom:updated>2013-06-21T09:58:55.199-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">ZFPM1</category><title> A DNA-binding protein GATA1 with a  biological unit FOG1 Zinc finger Protein molecule  is &#39;synergistic&#39; to the region of the X chromosome which occurred at a exome splice site X-linked involving the GATA-type zinc finger domain.</title><description>&lt;div align=&quot;justify&quot;&gt;
  6721. &lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6722.          color: #333333; font-family: Georgia,&#39;Times New
  6723.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;The
  6724.          human &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1990287?dopt=Abstract&quot;&gt;ERYF1&lt;/a&gt;
  6725.          gene (summary) &lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px;
  6726.          line-height: 19px; color: #333333; font-family: Georgia,&#39;Times
  6727.          New Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/6525684.html?nr=2&amp;amp;pmid=2320113&quot;&gt;NF-E1&lt;/a&gt;
  6728.          DNA-binding protein &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18930124&quot;&gt;GATA1&lt;/a&gt;,
  6729.          locus &lt;a href=&quot;http://atlasgeneticsoncology.org/Genes/GATA1ID40689chXp11.html&quot;&gt;Xp11.23&lt;/a&gt;
  6730.          [&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene?db=gene&amp;amp;cmd=retrieve&amp;amp;list_uids=2623&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6731.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6732.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;§§&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6733.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6734.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;;&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/88555.html?ID=124833&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6735.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6736.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;†&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6737.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6738.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;] containing &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2300555&quot;&gt;2 &#39;finger&#39;&lt;/a&gt;
  6739.          motifs referred to as ERYF1 of an erythroid-specific gene. The
  6740.          cDNA for the human ERYF1 gene is almost identical to that of
  6741.          chicken and mouse &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2104960&quot;&gt;GATA1&lt;/a&gt;
  6742.          gene consisting of 2 zinc finger&#39; type motifs its activator
  6743.          domain contains the binding sites for protein GATA1 and the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10523648?dopt=Abstract&quot;&gt;CACCC&lt;/a&gt;
  6744.          (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10523648?dopt=Abstract&quot;&gt;HS2&lt;/a&gt;)^
  6745.  
  6746.  
  6747.  
  6748.  
  6749.  
  6750.  
  6751.  
  6752.  
  6753.  
  6754.          region. FOG is specific to this complex corresponding cDNA and
  6755.          interacts with element in the beta-globin&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7499351?dopt=Abstract&quot; title=&quot;human beta globin gene (beta IVS2)&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6756.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6757.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;IVS2&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6758.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6759.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;promoter
  6760.          from&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19447160?dopt=Abstract&quot; title=&quot;gamma-globin mRNA and hemoglobin&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px;
  6761.            line-height: 19px; font-family: Georgia,&#39;Times New
  6762.            Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;hemoglobin&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6763.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6764.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;protein
  6765.          subunit promoters (&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16151640?dopt=Abstract&quot; title=&quot;pro-B cell line, FL5.12. Alpha globin&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6766.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6767.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;alpha&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6768.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6769.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;-chain &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10846126.html?nr=3&amp;amp;pmid=16428815&quot;&gt;gene&lt;/a&gt;‡,
  6770.  
  6771.  
  6772.  
  6773.  
  6774.  
  6775.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19447160?dopt=Abstract&quot;&gt;gamma&lt;/a&gt;&lt;span style=&quot;font-size: small;&quot;&gt;,&lt;/span&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15358512?dopt=Abstract&quot;&gt;epsilon&lt;/a&gt;^
  6776.          and&amp;nbsp; (&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9553070?dopt=Abstract&quot; title=&quot;human embryonic (epsilon) globin gene&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6777.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6778.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;embryonic&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6779.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6780.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;), &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6781.          color: #333333; font-family: Georgia,&#39;Times New
  6782.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; a switch from &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2467208&quot;&gt;fetal to
  6783.            adult&lt;/a&gt; haemoglobin &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6784.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6785.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;-or- &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6786.          color: #333333; font-family: Georgia,&#39;Times New
  6787.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2017165?dopt=Abstract&quot;&gt;relative&lt;/a&gt;
  6788.          to the T to C substitution of fetal hemoglobin (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15613485&quot;&gt;HPFH&lt;/a&gt;),
  6789.  
  6790.  
  6791.  
  6792.  
  6793.          implications for fetal hemoglobin - &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6794.          color: #333333; font-family: Georgia,&#39;Times New
  6795.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8529108?dopt=Abstract&quot;&gt;HbF&lt;/a&gt;``)
  6796.  
  6797.  
  6798.  
  6799.          distinct for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16540647?dopt=Abstract&quot;&gt;erythroid&lt;/a&gt;
  6800.          (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11312018.html?nr=6&amp;amp;pmid=16540647&quot;&gt;INHBA&lt;/a&gt;)
  6801.          and megakaryocyte differentiation, in vertabrate though, the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19654328&quot;&gt;N- and C&lt;/a&gt;-terminal
  6802.  
  6803.  
  6804.  
  6805.  
  6806.  
  6807.  
  6808.  
  6809.  
  6810.          thirds of the human protein.&amp;nbsp;&lt;/span&gt;&lt;span data-mce-style=&quot;font-size:
  6811.          13px; line-height: 19px; color: #333333; font-family:
  6812.          Georgia,&#39;Times New Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; Friend of
  6813.          GATA-1, &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6814.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6815.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18665838?dopt=Abstract&quot;&gt;FOG1&lt;/a&gt;&lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6816.          color: #333333; font-family: Georgia,&#39;Times New
  6817.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;; ZFPM1, zinc finger protein region a&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14715908?dopt=Abstract&quot; title=&quot;chromatin confers coregulation&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px;
  6818.            line-height: 19px; font-family: Georgia,&#39;Times New
  6819.            Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;coregulator&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6820.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6821.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;of the
  6822.          GATA1 associations facilitates a&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12232599.html?nr=7&amp;amp;pmid=16980610&quot; title=&quot;expression of GATA-1 and GATA-2&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px;
  6823.            line-height: 19px; font-family: Georgia,&#39;Times New
  6824.            Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;chromatin&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6825.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6826.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp; locus
  6827.          control region&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6828.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6829.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;-&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6830.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6831.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17196618?dopt=Abstract&quot;&gt;LCR&lt;/a&gt;)&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6832.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6833.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; &lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6834.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6835.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;modifying &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19114560?dopt=Abstract&quot;&gt;proximity&lt;/a&gt;
  6836.          fetal to adult (&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px;
  6837.          line-height: 19px; color: #333333; font-family: Georgia,&#39;Times
  6838.          New Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19447160&quot;&gt;gamma&lt;/a&gt;)
  6839.        &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px;
  6840.          line-height: 19px; color: #333333; font-family: Georgia,&#39;Times
  6841.          New Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;to&lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6842.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6843.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18586828&quot;&gt;beta
  6844.            globin&lt;/a&gt;&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px;
  6845.          line-height: 19px; color: #333333; font-family: Georgia,&#39;Times
  6846.          New Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; including the erythroid (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12556498?dopt=Abstract&quot;&gt;EKLF
  6847.  
  6848.  
  6849.  
  6850.  
  6851.  
  6852.  
  6853.  
  6854.  
  6855.  
  6856.  
  6857.  
  6858.          &lt;/a&gt;&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6859.          color: #333333; font-family: Georgia,&#39;Times New
  6860.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;krüpple-like&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px;
  6861.          line-height: 19px; color: #333333; font-family: Georgia,&#39;Times
  6862.          New Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;) factor DNAse1^ &lt;/span&gt;&lt;span data-mce-style=&quot;font-size:
  6863.          13px; line-height: 19px; color: #333333; font-family:
  6864.          Georgia,&#39;Times New Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18586828?dopt=Abstract&quot;&gt;histone&lt;/a&gt;&amp;nbsp;&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6865.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6866.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21609963&quot;&gt;hypersensative&lt;/a&gt;&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6867.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6868.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; &lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6869.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6870.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;site &lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6871.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6872.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17196618?dopt=Abstract&quot;&gt;HS&lt;/a&gt;)^
  6873.  
  6874.  
  6875.  
  6876.  
  6877.  
  6878.        &lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6879.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6880.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;locus (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11867225&quot;&gt;LCR&lt;/a&gt;)
  6881.          GATA1 establishes, facilitates interactions&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6882.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6883.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; with
  6884.          immunoprecipitation, cross-regulatory roles &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12857954?dopt=Abstract&quot;&gt;reduced
  6885.  
  6886.  
  6887.  
  6888.  
  6889.  
  6890.  
  6891.  
  6892.  
  6893.  
  6894.  
  6895.  
  6896.            histone&lt;/a&gt;, acetylation and antagonism (EKLF-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12724402&quot;&gt;FlI-1&lt;/a&gt;)
  6897.          mechanisms. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11023493&quot;&gt;PU.1&lt;/a&gt;
  6898.          - of the Ets family is &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9230307&quot;&gt;synergistic&lt;/a&gt;&#39; to the major basic
  6899.          protein, (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12202480&quot;&gt;MBP&lt;/a&gt;)
  6900.          handles &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13586788.html?nr=5&amp;amp;pmid=19165316&quot;&gt;bistability&lt;/a&gt;
  6901.          in the erythroid-&#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19825991&quot;&gt;myeloid
  6902.            switch&lt;/a&gt; &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6903.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6904.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;« &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6905.          color: #333333; font-family: Georgia,&#39;Times New
  6906.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;directed by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16861236&quot;&gt;PU.1&lt;/a&gt;,&#39;
  6907.  
  6908.  
  6909.  
  6910.  
  6911.          influenced &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15784168?dopt=Abstract&quot;&gt;DNA&lt;/a&gt;
  6912.          binding and is&amp;nbsp; involved with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16428815?dopt=Abstract&quot;&gt;MZF-1&lt;/a&gt;
  6913.          (myeloid zinc finger 1), it interacts with the &#39;C-terminal
  6914.          zinc finger « (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16861236?dopt=Abstract&quot;&gt;CF&lt;/a&gt;)&#39; of GATA1. A &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12576332?dopt=Abstract&quot;&gt;bipotential&lt;/a&gt;
  6915.          function in multiple contexts (&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6916.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6917.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;a data-mce-href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12202480?dopt=Abstract&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12202480?dopt=Abstract&quot;&gt;erythroid&lt;/a&gt;
  6918.          versus&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6919.          color: #333333; font-family: Georgia,&#39;Times New
  6920.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; &lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6921.          color: #333333; font-family: Georgia,&#39;Times New
  6922.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17383723?dopt=Abstract&quot; title=&quot;important biologic characteristics of
  6923.            leukemic cells&quot;&gt;megakaryocytic&lt;/a&gt;
  6924.          myeloid cells, GATA1 switches myeloid cell fate into &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12045236?dopt=Abstract&quot;&gt;eosinophils&lt;/a&gt;&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6925.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6926.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;)° as two&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19654328?dopt=Abstract&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6927.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6928.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;multi-protein&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6929.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6930.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;complexes
  6931.          when &lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px;
  6932.          line-height: 19px; color: #333333; font-family: Georgia,&#39;Times
  6933.          New Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;segregated into two types (factor &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18780834?dopt=Abstract&quot;&gt;P-TEFb&lt;/a&gt;)
  6934.        &lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6935.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6936.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;one of the
  6937.          characteristics of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8410094.html?nr=7&amp;amp;pmid=10783395&quot;&gt;(TAL-1&lt;/a&gt;,
  6938.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19941826&quot;&gt;T-cell
  6939.            acute&lt;/a&gt;-) leukemic (SCL) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12239153&quot;&gt;stem&lt;/a&gt;
  6940.          cells is both&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px;
  6941.          line-height: 19px; color: #333333; font-family: Georgia,&#39;Times
  6942.          New Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; types in circulating blood, for&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8562972?dopt=Abstract&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6943.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6944.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;both&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6945.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6946.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;the
  6947.          downregulation of GATA-1 and with the upregulation of&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12432220?dopt=Abstract&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  6948.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6949.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;GATA-2&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6950.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6951.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; &lt;span style=&quot;font-size: small;&quot;&gt;(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15138998?dopt=Abstract&quot;&gt;3q21&lt;/a&gt;)°
  6952.  
  6953.  
  6954.  
  6955.  
  6956.  
  6957.  
  6958.  
  6959.  
  6960.  
  6961.  
  6962.            that &lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  6963.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  6964.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;span style=&quot;font-size: small;&quot;&gt;CD34␠
  6965.  
  6966.  
  6967.  
  6968.  
  6969.  
  6970.  
  6971.  
  6972.  
  6973.  
  6974.  
  6975.          &lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size:
  6976.          13px; line-height: 19px; color: #333333; font-family:
  6977.          Georgia,&#39;Times New Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;span style=&quot;font-size: small;&quot;&gt;has the t&lt;/span&gt;ranscription
  6978.  
  6979.  
  6980.  
  6981.  
  6982.  
  6983.  
  6984.  
  6985.  
  6986.  
  6987.  
  6988.          capacity &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8353273?dopt=Abstract&quot;&gt;observed&lt;/a&gt;
  6989.          in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12432220?dopt=Abstract&quot;&gt;immature&lt;/a&gt;
  6990.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9012505?dopt=Abstract&quot;&gt;hematopoietic
  6991.  
  6992.  
  6993.  
  6994.  
  6995.  
  6996.  
  6997.  
  6998.  
  6999.  
  7000.  
  7001.          &lt;/a&gt;progenitor &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16728561?dopt=Abstract&quot;&gt;stem&lt;/a&gt;
  7002.          cells, specific regions of each (Sequencing of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12483298?dopt=Abstract&quot;&gt;FOG1&lt;/a&gt;
  7003.          with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15659837?dopt=Abstract&quot;&gt;GATA1&lt;/a&gt;
  7004.          and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16980610?dopt=Abstract&quot;&gt;GATA2&lt;/a&gt;),
  7005.  
  7006.  
  7007.  
  7008.  
  7009.  
  7010.  
  7011.  
  7012.  
  7013.  
  7014.          requires&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10364157?dopt=Abstract&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7015.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7016.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;intact DNA&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7017.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7018.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;-binding
  7019.          domains.&amp;nbsp; The C-terminal zinc finger (CF)&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16861236?dopt=Abstract&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7020.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7021.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;basic tail&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7022.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7023.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;shares,
  7024.          in an&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12202480?dopt=Abstract&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7025.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7026.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;antagonistic&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7027.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7028.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;fashion &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16840187&quot;&gt;mutation&lt;/a&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16840187&quot;&gt;s&lt;/a&gt;&#39; in
  7029.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12649131&quot;&gt;exon&lt;/a&gt;
  7030.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15916804&quot;&gt;2&lt;/a&gt;‡
  7031.          (-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20064153&quot;&gt;GATA1s&lt;/a&gt;
  7032.          is a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14744791&quot;&gt;shorter&lt;/a&gt;
  7033.          GATA1 isoform (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12172547&quot;&gt;sf&lt;/a&gt;)
  7034.          found &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7035.          color: #333333; font-family: Georgia,&#39;Times New
  7036.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14512321&quot;&gt;DS&lt;/a&gt;
  7037.          (Down syndrome) a transient leukemia (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12586620&quot;&gt;TL&lt;/a&gt;)-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20679399&quot;&gt;AMKL&lt;/a&gt;)
  7038.          that lacks the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12649131&quot;&gt;transactivation&lt;/a&gt;&#39;&quot;
  7039.  
  7040.  
  7041.  
  7042.  
  7043.  
  7044.  
  7045.          domain, in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12432220?dopt=Abstract&quot;&gt;cis-acting&lt;/a&gt;&amp;nbsp;&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7046.          font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7047.          Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;GATA &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15265794&quot;&gt;element&lt;/a&gt;,
  7048.        &lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7049.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7050.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;identification
  7051.          requires intact long forms (lf) of NF-E1 DNA-binding domain.
  7052.          Two novel&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2320112?dopt=Abstract&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7053.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7054.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;zinc-finger&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7055.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7056.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;domains
  7057.          demonstrate that the&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.labome.com/review/gene/human/GATA-1-antibody-all-methods.html&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7058.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7059.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;NFE1&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7060.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7061.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;gene
  7062.          cDNA-binding protein is assigned the human locus located in
  7063.          Xp11.23, required for normal megakaryocytic and erythroid
  7064.          development. A mutation in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12483298&quot;&gt;FOG1&lt;/a&gt;-GATA1&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12483298?dopt=Abstract&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7065.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7066.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;N-terminal&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7067.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7068.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;zinc
  7069.          finger (N-finger of leukemic cell (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19924028&quot;&gt;Igs&lt;/a&gt;)-immunoglobulins)
  7070.  
  7071.  
  7072.  
  7073.  
  7074.  
  7075.          or lacking the&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12111622.html?nr=6&amp;amp;pmid=16628190&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7076.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7077.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;N-terminal&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7078.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7079.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;activation
  7080.  
  7081.  
  7082.  
  7083.  
  7084.  
  7085.  
  7086.  
  7087.  
  7088.  
  7089.  
  7090.          the binding of Fog1 and the N-finger in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14691578&quot;&gt;DNA face&lt;/a&gt;
  7091.          of Fog1, with non X-linked associations (16q&lt;/span&gt;&lt;a data-mce-href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8683991?dopt=Abstract&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8683991?dopt=Abstract&quot; title=&quot;presence of&amp;lt;br /&amp;gt;&amp;lt;br /&amp;gt;&amp;lt;br /&amp;gt;&amp;lt;br
  7092.          /&amp;gt; chromosome 16q22 abnormalities&quot;&gt;22&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7093.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7094.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12483298?dopt=Abstract&quot;&gt;24&lt;/a&gt;)
  7095.          if different clinical entities linking to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11809723&quot;&gt;X-linked&lt;/a&gt;
  7096.          (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11724781&quot;&gt;X is&lt;/a&gt; any &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10700180&quot;&gt;amino&lt;/a&gt; acid, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11675338&quot;&gt;substitution&lt;/a&gt; in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2300555&quot;&gt;DNA-binding&lt;/a&gt; &lt;span style=&quot;font-size: small;&quot;&gt;(Nf) &lt;/span&gt;region) thrombocytopenia in males-(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17209061?dopt=Abstract&quot;&gt;XLTT&lt;/a&gt;*&#39;-GATA1)
  7097.  
  7098.  
  7099.  
  7100.  
  7101.  
  7102.  
  7103.  
  7104.  
  7105.  
  7106.          with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15208642?dopt=Abstract&quot;&gt;anemia&lt;/a&gt;
  7107.          low platelet levels traces discernable steps as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17132730?dopt=Abstract&quot;&gt;embryos&lt;/a&gt;
  7108.          with a &lt;i&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17132730&quot;&gt;defect&lt;/a&gt;&lt;/i&gt;
  7109.          in forming erythroid burst-forming units &lt;i&gt;&lt;a href=&quot;http://faroucheombre.wordpress.com/2013/03/03/spectrin-alpha-erythrocytic-1-isoform-gata1-strand-b-cdna-containing-the-ef-hand-domain-of-p17678-gata3-and-a-heterodimer-assembly-complexed-with-transmembrane-scf-neural-cell-slc4a1-band-3-aspect/&quot;&gt;BFU-E&lt;/a&gt;&lt;/i&gt;
  7110.          ☞ (&lt;i&gt;summary - of all DNA that is transcribed which occurred
  7111.            at a &lt;/i&gt;&lt;i&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22706301&quot;&gt;exome
  7112.              splice&lt;/a&gt;&lt;/i&gt;&lt;i&gt; site&lt;/i&gt;), to Minimal residual disease &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15916804?dopt=Abstract&quot;&gt;MRD&lt;/a&gt;
  7113.          - (cancer, &quot;preleukemia&quot; - myeloproliferative disorder (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14636651&quot;&gt;TMD&lt;/a&gt;),
  7114.        &lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7115.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7116.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15390312?dopt=Abstract&quot;&gt;myeloid&lt;/a&gt;
  7117.          leukaemia-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9264003.html?nr=7&amp;amp;pmid=12417757&quot;&gt;AML&lt;/a&gt;,
  7118.          &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17579412?dopt=Abstract&quot;&gt;SCL&lt;/a&gt;°
  7119.          and megakaryocytic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16492768?dopt=Abstract&quot;&gt;AMKL&lt;/a&gt;)
  7120.          the GATA1-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22164220&quot;&gt;HS2&lt;/a&gt;-modified
  7121.  
  7122.  
  7123.  
  7124.  
  7125.  
  7126.  
  7127.  
  7128.  
  7129.  
  7130.          vector allowed remission in blood component and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18191920?dopt=Abstract&quot;&gt;heme&lt;/a&gt;
  7131.          (Protoporphyrinogen) at the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21041734?dopt=Abstract&quot;&gt;seventh&lt;/a&gt;
  7132.          GATA site in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18191920?dopt=Abstract&quot;&gt;exon
  7133.  
  7134.  
  7135.  
  7136.  
  7137.            1&lt;/a&gt;*&#39;/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15123623?dopt=Abstract&quot;&gt;intron-7&lt;/a&gt;°
  7138.          as a cofactor involving 6 non-coding exons and transactivation
  7139.          by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16225938&quot;&gt;USF1
  7140.            and GATA1&lt;/a&gt;. A DNA Cytosine mechanism ara-c (&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14744791?dopt=Abstract&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7141.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7142.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;Arabinofuranosylcytosine&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7143.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7144.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;) short (sf)
  7145.          and (lf) long forms is used to kill these&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15687366&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7146.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7147.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;megakaryocytic&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7148.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7149.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;cancer
  7150.          cells; clarifies that &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19411634?dopt=Abstract&quot;&gt;GATA-1&lt;/a&gt;
  7151.          controls genes that manipulate the cell cycle and apoptotic
  7152.          cell death underlying &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10742353.html?nr=1&amp;amp;pmid=16107690&quot;&gt;normal&lt;/a&gt;
  7153.          (PI3K) and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15208642?dopt=Abstract&quot;&gt;pathologic&lt;/a&gt;
  7154.          (PU.1) erythropoiesis - &#39;differentiation&#39; is &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7155.          color: #333333; font-family: Georgia,&#39;Times New
  7156.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;(FKBP12) &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7157.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7158.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;lacking &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17332341&quot;&gt;basal
  7159.            expression&lt;/a&gt;&#39;&quot; in contrast&lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7160.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7161.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10381501?dopt=Abstract&quot;&gt;Bcl&lt;/a&gt;
  7162.          when Bcl-X(L) is &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7163.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7164.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;cleaved by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17167422?dopt=Abstract&quot;&gt;caspases&lt;/a&gt;&lt;span style=&quot;font-size: small;&quot;&gt;.&lt;/span&gt; &lt;span style=&quot;font-size: small;&quot;&gt;A&lt;/span&gt;nti-apoptotic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17167422?dopt=Abstract&quot;&gt;Hsp70&lt;/a&gt;
  7165.          protects GATA-1 during the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8529108?dopt=Abstract&quot;&gt;switching&lt;/a&gt;ª
  7166.          of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20410505&quot;&gt;erythroleukemia&lt;/a&gt;␠
  7167.          cells that fail to complete &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10381501?dopt=Abstract&quot;&gt;maturation&lt;/a&gt;&lt;span style=&quot;font-size: small;&quot;&gt;, &lt;/span&gt;proteolysis undergoing cell death in both
  7168.          the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2320113?dopt=Abstract&quot;&gt;megakaryocytic&lt;/a&gt;
  7169.          and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17167422?dopt=Abstract&quot;&gt;erythroid&lt;/a&gt;
  7170.          cells, established that phospholipase C (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12031797?dopt=Abstract&quot;&gt;PLC&lt;/a&gt;)ª
  7171.  
  7172.  
  7173.  
  7174.  
  7175.  
  7176.  
  7177.  
  7178.  
  7179.  
  7180.  
  7181.          is involved in the signalling pathway&lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7182.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7183.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; &lt;/span&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7184.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7185.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;(PI3K)/&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10742353.html?nr=1&amp;amp;pmid=16107690&quot;&gt;Akt&lt;/a&gt;
  7186.          equally expressed &#39;as&#39; a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13012602.html?nr=8&amp;amp;pmid=18665838&quot;&gt;probable&lt;/a&gt;
  7187.          negative &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10438528?dopt=Abstract&quot;&gt;FOG&lt;/a&gt;
  7188.          regulator&lt;span style=&quot;font-size: small;&quot;&gt;, interacts with the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12724402?dopt=Abstract&quot;&gt;PU.1&lt;/a&gt;
  7189.            related &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12556498?dopt=Abstract&quot;&gt;Ets&lt;/a&gt;
  7190.            domain of&amp;nbsp; glycoprotein &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12359731&quot;&gt;(GP)(1)
  7191.              VI&lt;/a&gt;*&#39; by expressing thrombopoietin activation of
  7192.            platelets in megakaryocytic cell lines, expressing both &lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7193.          color: #333333; font-family: Georgia,&#39;Times New
  7194.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17383723?dopt=Abstract&quot;&gt;Fli-1&lt;/a&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7195.          color: #333333; font-family: Georgia,&#39;Times New
  7196.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;span style=&quot;font-size: small;&quot;&gt; and GATA-1.&lt;/span&gt; A weak loss of&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11418466?dopt=Abstract&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7197.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7198.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;aspartate&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7199.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7200.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&amp;nbsp;in the
  7201.          amino-N-terminal zinc finger (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19924028&quot;&gt;Nf&lt;/a&gt;) loop GATA1&#39;s&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11809723&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7202.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7203.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;three&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7204.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7205.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt; base
  7206.          substitution &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19633202&quot;&gt;mutations&lt;/a&gt;
  7207.          results in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19965638&quot;&gt;incomplete&lt;/a&gt;
  7208.          megakaryocyte/platelet maturation as assessed by the DNA
  7209.          demethylating agent&amp;nbsp;&lt;/span&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7689871?dopt=Abstract&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7210.            font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7211.            Charter&#39;,Times,serif;&quot; style=&quot;font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;5-azacytidine&lt;/span&gt;&lt;/a&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7212.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7213.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;, activity in
  7214.          the presence of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22110660&quot;&gt;ara-c&lt;/a&gt;
  7215.          which occurred at&lt;span style=&quot;font-size: small;&quot;&gt; &lt;span style=&quot;font-size: small;&quot;&gt;a&lt;/span&gt;&lt;/span&gt;
  7216.          &lt;i&gt;exome&lt;/i&gt; splice site&lt;span style=&quot;font-size: small;&quot;&gt;.&lt;/span&gt; GATA1 appears
  7217.          to interact with RNA-mediated basal expression against these
  7218.          pathways, associated protein or mammalian targets&lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7219.          color: #333333; font-family: Georgia,&#39;Times New
  7220.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;span style=&quot;font-size: small;&quot;&gt; &lt;/span&gt;clarified that the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10523648&quot;&gt;basal
  7221.            transcription&lt;/a&gt; apparatus with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12490288&quot;&gt;transcription
  7222.  
  7223.  
  7224.            factors&lt;/a&gt;`` appears to interact with an HS2 region mutated
  7225.          in its GATA motif &lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7226.          #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7227.          Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px; color:
  7228.              #333333; font-family: Georgia,&#39;Times New Roman&#39;,&#39;Bitstream
  7229.              Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20064153&quot;&gt;GATA1s&lt;/a&gt;
  7230.              a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14744791&quot;&gt;shorter&lt;/a&gt;
  7231.              GATA1 isoform. &lt;/span&gt;&lt;/span&gt;&amp;nbsp; &lt;/span&gt;&lt;/span&gt;&lt;/div&gt;
  7232. &lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7233.          color: #333333; font-family: Georgia,&#39;Times New
  7234.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt;&lt;/span&gt;
  7235.          &lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size:
  7236.          13px; line-height: 19px; color: #333333; font-family:
  7237.          Georgia,&#39;Times New Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7238.                color: #333333; font-family: Georgia,&#39;Times New
  7239.                Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; &lt;/span&gt;&lt;/span&gt;
  7240.  
  7241.  
  7242. &lt;br /&gt;
  7243. &lt;br /&gt;
  7244. &lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;2&quot; cellspacing=&quot;2&quot; style=&quot;width: 50%px;&quot;&gt;
  7245.  
  7246.  
  7247.  &lt;tbody&gt;
  7248. &lt;tr&gt;
  7249.      &lt;td align=&quot;center&quot; valign=&quot;middle&quot;&gt;&lt;span style=&quot;font-size: small;&quot;&gt;&lt;span data-mce-style=&quot;font-size: 13px; line-height: 19px;
  7250.          color: #333333; font-family: Georgia,&#39;Times New
  7251.          Roman&#39;,&#39;Bitstream Charter&#39;,Times,serif;&quot; style=&quot;color: #333333; font-family: Georgia, &#39;Times New Roman&#39;, &#39;Bitstream Charter&#39;, Times, serif; line-height: 19px;&quot;&gt;&lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/GATA1LocusXp112302#5886493570424066338&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;sequence [AT]GATA[AG] upper left&quot; border=&quot;0&quot; height=&quot;133&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjNLGrxGiob2X55EpjU3v2vy3VU76ltNQx_JA6Tjwk9CTThRHMNfYcGp326ogIPzjdwCmMKGUXZSmJi6e9KMdMDmzOLdXvgL9fQqulKnzmo16XgJdhWcezIP2_decFRqLEtUxTrag/s200/1yoj-a-3vd6.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/span&gt;&lt;/span&gt;&lt;/td&gt;
  7252.      &lt;td align=&quot;center&quot; valign=&quot;middle&quot;&gt;&lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/GATA1LocusXp112302#5886522945211393986&quot;&gt;&lt;img alt=&quot;4 Angstroms of PDB 1GAT in this 4 Angstrom PDB 3VD6 r&quot; border=&quot;0&quot; height=&quot;149&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjRU7yYwynnZAz5wWnV5tH1E1nKxQo5HsIzstXJ4tp0biW3MSYr_Fx_C-CogPjrhd0X9bWOEn_6ZLB11fcvA0ZWpNlx3juVW0Cnu1abdrk3GceBRmfRMTZFRtPDT7qobRN_Ec2Fig/s200/1gat-3vd6-1yoj-a.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/td&gt;
  7253.    &lt;/tr&gt;
  7254. &lt;tr&gt;
  7255.      &lt;td align=&quot;justify&quot; valign=&quot;top&quot;&gt;&lt;small&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt;Figure 1: PDB 1y0j-a&amp;nbsp; (MMDB ID: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?Dopt=s&amp;amp;uid=31470&quot;&gt;31470&lt;/a&gt;; Mus musculus A). superimpos&lt;wbr&gt;&lt;/wbr&gt;ed on -3vd6 4 Angstrons ogf DNA, &lt;a href=&quot;http://atlasgeneticsoncology.org/Genes/GATA1ID40689chXp11.html&quot;&gt;six&lt;/a&gt; finger Znf DNA potential&amp;nbsp;&lt;/span&gt;&lt;/small&gt;&lt;small&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt;(&#39;X is any amino acid, substitution&#39;)&lt;/span&gt;&lt;/small&gt;&lt;small&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt; to&amp;nbsp; co-ordinat&lt;wbr&gt;&lt;/wbr&gt;e &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11675338&quot;&gt;C2H2&lt;/a&gt;&lt;a href=&quot;http://www.blogger.com/null&quot;&gt; znf&lt;/a&gt;-1y0j-B (Protein chain B, &lt;/span&gt;&lt;/small&gt;&lt;small&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt;&lt;small&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt;MMDB ID: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?Dopt=s&amp;amp;uid=31470&quot;&gt;31470&lt;/a&gt;&lt;/span&gt;&lt;/small&gt;), and the original structure of &lt;a href=&quot;http://pir.georgetown.edu/cgi-bin/ipcSF?id=PIRSF003027&quot;&gt;DNA_GATA1&lt;/a&gt;_HUMA&lt;wbr&gt;&lt;/wbr&gt;N PDB: 1Y0J_unipr&lt;wbr&gt;&lt;/wbr&gt;ot/P15976 ProteinMod&lt;wbr&gt;&lt;/wbr&gt;elPortal P15976. / PDB: _3vd6; Names: GATA1 :ERYF1, GF1 with the consensus seqence [AT]GATA[A&lt;wbr&gt;&lt;/wbr&gt;G] upper left DNA fragment seen in &lt;a href=&quot;http://vixra.org/abs/1302.0078&quot;&gt;SPNA1&lt;/a&gt;&amp;nbsp; DNA binding&amp;nbsp; an essential determinan&lt;wbr&gt;&lt;/wbr&gt;t of specific GATA 1 Fig.2 binding, wraps around into the minor groove seen as the lower RNA representi&lt;wbr&gt;&lt;/wbr&gt;ng PDB 1GAT in this single PDB 3VD6 rendering with PDB: 1YOJ- element-A DNA-bindin&lt;wbr&gt;&lt;/wbr&gt;g protein GATA1 RNA Mus musculus eg. the red tail is the assumed Adjacent GATA DNA binding of PDB: 3DFV (Structure&lt;wbr&gt;&lt;/wbr&gt;|id=PIRSF0&lt;wbr&gt;&lt;/wbr&gt;03027)&lt;/span&gt;&lt;/small&gt;&lt;/td&gt;
  7256.      &lt;td align=&quot;justify&quot; valign=&quot;top&quot;&gt;&lt;small&gt;&lt;small&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt;&lt;/span&gt;&lt;big&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt;Figure 2: 4 Angstroms of PDB
  7257. 1GAT in this 4 Angstrom PDB 3VD6 rendering of 1YOJ-A RNA, modifyed to
  7258. complete Fig.1. both are manually defined selected to provide The two
  7259. zinc fingers functional&lt;wbr&gt;&lt;/wbr&gt;ity that contains &lt;a href=&quot;http://www.uniprot.org/uniprot/P17679#section_comments&quot;&gt;2 GATA-type&lt;/a&gt; zinc fingers
  7260. (See; Figure 3: FOG1_B Zinc finger Protein (MMDB ID: 31470) has an
  7261. absence of the PDB: 1YOJ- element- A DNA-bindin&lt;wbr&gt;&lt;/wbr&gt;g protein GATA1 RNA thereby The two (Znf) fingers are functional&lt;wbr&gt;&lt;/wbr&gt;ly distinct bridging two separate DNA fragments (Structure&lt;wbr&gt;&lt;/wbr&gt;|ids=&lt;a href=&quot;http://pir.georgetown.edu/cgi-bin/ipcSF?id=PIRSF003027&quot;&gt;PIRSF&lt;/a&gt;&lt;wbr&gt;&lt;/wbr&gt;&lt;a href=&quot;http://pir.georgetown.edu/cgi-bin/ipcSF?id=PIRSF003027&quot;&gt;003027&lt;/a&gt;).&lt;/span&gt;&lt;/big&gt;&lt;/small&gt;&lt;/small&gt;&lt;/td&gt;
  7262.    &lt;/tr&gt;
  7263. &lt;/tbody&gt;
  7264. &lt;/table&gt;
  7265. &lt;br /&gt;
  7266. &lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;2&quot; cellspacing=&quot;2&quot; style=&quot;width: 50%px;&quot;&gt;
  7267.  
  7268.  
  7269.  &lt;tbody&gt;
  7270. &lt;tr&gt;
  7271.      &lt;td align=&quot;center&quot; valign=&quot;middle&quot;&gt;&lt;div class=&quot;separator&quot; style=&quot;clear: both; text-align: center;&quot;&gt;
  7272. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/GATA1LocusXp112302#5886502378937130066&quot; style=&quot;clear: left; float: left; margin-bottom: 1em; margin-right: 1em;&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;gata1 biological unit ara-C (Arabinofuranosylcytosine) Cytarabine (CID_6253; SDF File (.sdf)) = ara-c (MMDB ID: 23600 PDB ID: 1P5Z)&quot; border=&quot;0&quot; height=&quot;190&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh9gvOyPZkNJF2JbqrRW1CMuj0CuTRj1SzJaUzRhK6_oolSLrydTpSFNM5KcnSEzr5BgV9riP3-R4RyJOKZ_RLHLH96PHdGpSsHFfskZ9R8mwU6mWaX5Vi5uPjw8o0u4ULvaphX-g/s200/1y0ja-b-cid-2fap-a.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/div&gt;
  7273. &lt;/td&gt;
  7274.      &lt;td align=&quot;center&quot; bgcolor=&quot;#663366&quot; valign=&quot;middle&quot;&gt;&lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/GATA1LocusXp112302#5884993449543750914&quot;&gt;&lt;img alt=&quot;Swiss PDB-viewer SPDBV&quot; border=&quot;0&quot; height=&quot;144&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhrODiH26c2oIHXY6YEYtOykqyI7w-vFWPI-q70Zr1msPjoP9ZZsj2BEJxL3UFywtFFooFUkniM6e-xfhskGm4n4YQbmoSAypoRlRNw0Coh3iyPACISBvSw8MK9NSzundcve0iW6A/s200/1yojimg2.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/td&gt;
  7275.    &lt;/tr&gt;
  7276. &lt;tr&gt;
  7277.      &lt;td align=&quot;justify&quot; valign=&quot;top&quot;&gt;&lt;small&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt;Figure 3: This incorporat&lt;wbr&gt;&lt;/wbr&gt;es PDB 1YOJ_A_B the Sructural basis of GATA1_A erythroid trascripti&lt;wbr&gt;&lt;/wbr&gt;on factor and FOG1_B Zinc finger Protein (MMDB ID: 31470; Mus musculus A- Drosophila melanogast&lt;wbr&gt;&lt;/wbr&gt;er-B) interactio&lt;wbr&gt;&lt;/wbr&gt;ns with Human components of&amp;nbsp; Complexed With a molecue biological unit ara-C (Arabinofu&lt;wbr&gt;&lt;/wbr&gt;ranosylcyt&lt;wbr&gt;&lt;/wbr&gt;osine)
  7278. Cytarabine (CID_&lt;a href=&quot;http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=6253&quot;&gt;6253&lt;/a&gt;; SDF File (.sdf)) = ara-c (MMDB ID: 23600 PDB ID:
  7279. 1P5Z) short (sf) and (lf) long forms&amp;nbsp; 2 &#39;finger&#39; motifs of GATA 1 (lf)
  7280. and FOG (sf) with&amp;nbsp; (FKBP12) basal expression PDB 2FAP_compo&lt;wbr&gt;&lt;/wbr&gt;nent A represente&lt;wbr&gt;&lt;/wbr&gt;d as the ligand surface partially framing the FOG heterodime&lt;wbr&gt;&lt;/wbr&gt;r prevents formation of DNA component PDB: 1GAT-cDNA when lacking basal expression&lt;wbr&gt;&lt;/wbr&gt;. This apparatus appears to interact with an HS2 region mutated in its GATA motif.&lt;/span&gt;&lt;/small&gt;&lt;/td&gt;
  7281.      &lt;td valign=&quot;top&quot;&gt;&lt;div align=&quot;center&quot;&gt;
  7282. &lt;small&gt;Zinc fingers as protein recognition motifs: structural basis for the GATA-1/Friend of GATA interaction&lt;/small&gt;&lt;big&gt;&lt;br /&gt;
  7283.  
  7284.          &lt;br /&gt;
  7285.  
  7286.          &lt;/big&gt;&lt;small&gt;Rendered with Swiss PDB-viewer SPDBV&lt;/small&gt;&lt;big&gt;&lt;br /&gt;
  7287.  
  7288.          &lt;/big&gt;&lt;small&gt;about a horizontal axis of the Structures Image in the plane of the page&lt;/small&gt;&lt;big&gt;&lt;br /&gt;
  7289.  
  7290.          &lt;/big&gt;&lt;small&gt;http://www.rcsb.org/pdb/explore/explore.do?pdbId=1Y0J&lt;/small&gt;&lt;big&gt;&lt;br /&gt;
  7291.  
  7292.          &lt;/big&gt;&lt;small&gt;Refernce:&lt;/small&gt;&lt;big&gt;&lt;br /&gt;
  7293.  
  7294.          &lt;/big&gt;&lt;small&gt;Mol Cell Biol. 2005 Feb;25(4):1215-27.&lt;/small&gt;&lt;big&gt;&lt;br /&gt;
  7295.  
  7296.          &lt;/big&gt;&lt;small&gt;GATA1 function, a paradigm for transcription factors in hematopoiesis.&lt;/small&gt;&lt;big&gt;&lt;br /&gt;
  7297.  
  7298.          &lt;/big&gt;&lt;small&gt;PMID:&lt;/small&gt;&lt;big&gt;&lt;br /&gt;
  7299.  
  7300.          &lt;/big&gt;&lt;small&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp; 15684376&lt;/small&gt;&lt;big&gt;&lt;br /&gt;
  7301.  
  7302.          &lt;/big&gt;&lt;small&gt;Swiss-pdb viewer software (http://www.expasy.org/spdbv/)&lt;/small&gt;&lt;/div&gt;
  7303. &lt;br /&gt;&lt;/td&gt;
  7304.    &lt;/tr&gt;
  7305. &lt;/tbody&gt;
  7306. &lt;/table&gt;
  7307. &lt;br /&gt;
  7308. &lt;br /&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7309. google_ad_client=&quot;pub-9610428118332343&quot;;
  7310. google_ad_host=&quot;&quot;;
  7311. google_ad_width=200;
  7312. google_ad_height=90;
  7313. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7314. google_color_border=&quot;EEEECC&quot;;
  7315. google_color_bg=&quot;EEEECC&quot;;
  7316. google_color_link=&quot;445566&quot;;
  7317. google_color_url=&quot;445566&quot;;
  7318. google_color_text=&quot;333333&quot;;
  7319. //--&gt;&lt;/script&gt;
  7320. &lt;script type=&quot;text/javascript&quot;
  7321.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7322. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2013/06/a-dna-binding-protein-gata1-with.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjNLGrxGiob2X55EpjU3v2vy3VU76ltNQx_JA6Tjwk9CTThRHMNfYcGp326ogIPzjdwCmMKGUXZSmJi6e9KMdMDmzOLdXvgL9fQqulKnzmo16XgJdhWcezIP2_decFRqLEtUxTrag/s72-c/1yoj-a-3vd6.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-352364237483230827</guid><pubDate>Sun, 03 Mar 2013 20:10:00 +0000</pubDate><atom:updated>2013-03-03T10:10:23.125-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">phosphatidylinositol</category><category domain="http://www.blogger.com/atom/ns#">slc4a1</category><title>Spectrin alpha, erythrocytic 1 isoform GATA1 strand B cDNA containing the EF hand domain of P17678- GATA3 and a heterodimer assembly complexed with transmembrane SCF neural cell (Slc4a1) band 3 aspect of the alpha complex analogue Spna1.</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7323. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/SPNA1ProteinP17687?authkey=Gv1sRgCNSY7_bgz7G14gE#5850930310069706898&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;SPNA1 PDB:1OWA Protein PDB: 1HYN Band 3, and GATA1 DNA strand B PDB:1GAT&quot; border=&quot;0&quot; height=&quot;176&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgFWK6Yqc4EkMqBubEVczpnj14fX3tPQMNLlfwoHEZWdfFkEP8Ous1C8e5rMSLaMXDX7G3gZq_vp7K7nS79i3AkvfHKQy9dpVgIyGi3h02tOJTVoo4z1N9AKtd-QsUYPajtKXHB0w/s576/1owa-dne-b-p17678.png&quot; title=&quot;SPNA1 PDB:1OWA Protein PDB: 1HYN Band 3, and GATA1 DNA strand B PDB:1GAT&quot; width=&quot;200&quot; /&gt;&lt;/a&gt; Spectrin alpha, erythrocytic 1 [ Mus musculus ] [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/20739&quot;&gt;§§&lt;/a&gt;;
  7324.      &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/124833.html;jsessionid=9607AE25786909D83E357E4F6CCCD2F3.tc1?ID=124836&quot;&gt;†&lt;/a&gt;,
  7325.      ‡] anchored to the cytoplasmic face of the plasma membrane via
  7326. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7267299.html?nr=2&amp;amp;pmid=1385865&quot; title=&quot;erythroid ankyrin, alpha-spectrin, and beta-spectrin&quot;&gt;      ankyrin&lt;/a&gt;, which binds to &lt;a href=&quot;http://faroucheombre.wordpress.com/2013/02/12/spnb2-protein-family-architecture-perspective-and-differences-in-complex-form-of-exonintron-usage/&quot; title=&quot;a nonerythroid spectrin analogue alpha Spna-1 see Fig. 1&quot;&gt;beta-spectrin&lt;/a&gt; and is anchored to the
  7327.      cytoplasmic face affecting the conversion of spectrin &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11154235&quot; title=&quot;spectrin dimer- to-tetramer conversion&quot;&gt;dimers&lt;/a&gt; to
  7328.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12393645&quot; title=&quot;Tetramers of alpha-spectrin heterodimers&quot;&gt;      tetramers&lt;/a&gt; erythroid alpha- or &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1772088.html?nr=6&amp;amp;pmid=10037687&quot; title=&quot;two binding sites for GATA-1 and one site for CACCC-related proteins&quot;&gt;beta-spectrin&lt;/a&gt; - &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10233879?dopt=Abstract&quot; title=&quot;viral enhancer in the U3 region of the 3&#39; LTR propagated to the 5&#39; LTR&quot;&gt;Retrotransposon&lt;/a&gt; long terminal repeat 3&#39; LTR &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7527167.html?nr=7&amp;amp;pmid=1571559&quot; title=&quot;alpha 2 and alpha 1 are equal in the embryo and subsequently shift&quot;&gt;alpha 1&lt;/a&gt; and the 5&#39; LTR &lt;a href=&quot;http://www.rcsb.org/pdb/explore.do?structureId=2fot&quot; title=&quot;human alphaII-spectrin&quot;&gt;alpha 2&lt;/a&gt; gene sequence &lt;a href=&quot;http://www.rcsb.org/pdb/explore.do?structureId=1gat&quot; title=&quot;erythroid transcription factor GATA-1 and its cognate DNA site&quot;&gt;GATA&lt;/a&gt; factor,&amp;nbsp; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2885153?dopt=Abstract&quot; title=&quot;a c-DNA clone of the mouse alpha-spectrin&quot;&gt;cDNA&lt;/a&gt; contributes &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1403319.html?nr=6&amp;amp;pmid=9514155&quot; title=&quot;a promoter 8 kb upstream to the erythroid exon I of mouse GATA-1 mRNA&quot;&gt;one strand&lt;/a&gt; a single gene that encodes the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3000887&quot; title=&quot;characterized as the site of the molecular defect&quot;&gt;alpha-subunit&lt;/a&gt; limiting the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8195289&quot; title=&quot;lacking in the (hbd) cells irregular shape and fragility in culture&quot;&gt;lateral&lt;/a&gt; mobility of overall membrane glycolytic enzymes (GE) or membrane &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8195289&quot; title=&quot;lateral mobility of integral membrane glycoproteins&quot;&gt;glycoproteins&lt;/a&gt; available to significantly modulate hemoglobin (Hb) in erythroid cells, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10910904?dopt=Abstract&quot; title=&quot;GATA factor complementary DNAs (cDNAs)&quot;&gt;mediates&lt;/a&gt; the
  7329.      binding of the whole &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1385865&quot; title=&quot;alpha-spectrin, beta-spectrin, and ankyrin&quot;&gt;complex&lt;/a&gt; to a transmembrane
  7330.      protein&amp;nbsp;ubiquitous neural &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7085630.html?nr=10&amp;amp;pmid=2055499&quot; title=&quot;functions are anion transport, ankyrin binding, and apoptosis&quot;&gt;band 3&lt;/a&gt;, (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/6965435.html?nr=2&amp;amp;pmid=2011587&quot; title=&quot;performs the same functions as those of erythroid band 3&quot;&gt;Slc4a1&lt;/a&gt;) performs the same functions as that of erythroid glycolytic multienzyme (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18698006&quot; title=&quot;on the inner surface of human erythrocyte membranes&quot;&gt;GE&lt;/a&gt;) complexes on &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/6965435.html?nr=2&amp;amp;pmid=2011587&quot; title=&quot;Structural similarity of brain and erythroid band 3&quot;&gt;band
  7331.        3&lt;/a&gt; via m&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6234993&quot; title=&quot;six mutations occurring at three distinct loci (nb, ja, sph)&quot;&gt;RNA&lt;/a&gt;s for (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16728274?dopt=Abstract&quot; title=&quot;EKLF-responsive regions&quot;&gt;Ank1&lt;/a&gt;) erythroid ankyrin and the function of various isoforms. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10772878&quot; title=&quot;RBCs with exposed PS phosphatidylserine does not correlate with thrombotic risk&quot;&gt;Band 3&lt;/a&gt; deficiency is used to
  7332.      characterize the alpha-chain and the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20585040&quot; title=&quot;spectrin-actin-4.1R complex&quot;&gt;Actin&lt;/a&gt; binding in proteins containing the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20585040&quot; title=&quot;Spectrin and protein 4.1R crosslink F-actin called the EF domain&quot;&gt;EF hand&lt;/a&gt; domain and the
  7333.      non-erythroid analogue &lt;a href=&quot;http://lnwme.blogspot.com/2013/02/spnb2-protein-family-architecture.html&quot; title=&quot;non-erythroid spectrin analogue to alpha Spna-1&quot;&gt;Spnb2&lt;/a&gt;
  7334.      beta-spectrin (erythroid &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3186715?dopt=Abstract&quot; title=&quot;the erythroid beta-spectrin gene. The brain alpha-spectrin (alpha-fodrin) gene&quot;&gt;spectrin-like fodrin&lt;/a&gt;
  7335.      protein) subunits, cellular differentiation in erythroid alpha-spectrin mRNA &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9154532.html?nr=2&amp;amp;pmid=11711537&quot; title=&quot;target of an erythroid-enriched endoribonuclease (ErEN) 3-utr activity&quot;&gt;alpha-globin&lt;/a&gt; region &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10637233?dopt=Abstract&quot; title=&quot;(3-UTR) from an erythroid-enriched, sequence-specific&quot;&gt;3&#39;-UTR&lt;/a&gt; aspect of the alpha complex. And the retention of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13267317.html?nr=7&amp;amp;pmid=17493269&quot; title=&quot;for both competent and active genes during mitosis&quot;&gt;DNase I&lt;/a&gt;-sensitive active sites within the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10275380.html?nr=8&amp;amp;pmid=14970235&quot; title=&quot;three functional globin genes (5 UTR-zeta2-alpha2-alpha1-3 UTR)&quot;&gt;human alpha&lt;/a&gt;-globin† (SCF) complex information on M-phase in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13267317.html?nr=7&amp;amp;pmid=17493269&quot; title=&quot;mitotic chromosomes remained associated with its Spna1 binding sites&quot;&gt;mitotic&lt;/a&gt;
  7336.      chromosomes cell nucleus which divides genetically into two identical cells through &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/656625?dopt=Abstract&quot; title=&quot;erythroid cells underwent two rounds of cell division&quot;&gt;cell division&lt;/a&gt; during &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10744187.html?nr=10&amp;amp;pmid=15621811&quot; title=&quot;AML1/ETO promotes the maintenance of physiologic differentiation&quot;&gt;Cellular differentiation&lt;/a&gt; in Embryonic Stem (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11420675?dopt=Abstract&quot; title=&quot;described for primitive hematopoietic progenitors&quot;&gt;ES&lt;/a&gt;) cells in fact, all erythroid (RBC) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2249770&quot; title=&quot;NF-E1, a DNA-binding protein consensus motif WGATAR&quot;&gt;cell-specific&lt;/a&gt; genes have a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8126430.html?nr=3&amp;amp;pmid=8164666&quot; title=&quot;n erythroid, megakaryocyte, and mast cell lineages&quot;&gt;WGATAR&lt;/a&gt; sequence to &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10621565.html?nr=4&amp;amp;pmid=15659837&quot; title=&quot;GATA-1 mutations in the zinc fingers can cause deregulation&quot;&gt;DNA&lt;/a&gt; at the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11012179?dopt=Abstract&quot; title=&quot;GATA-1 is a central regulator in both the erythroid and megakaryocytes&quot;&gt;consensus&lt;/a&gt; motifs. Erythroid iron assimilation, intestinal iron
  7337.      transport and erythroid &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2462936?dopt=Abstract&quot; title=&quot;cell types that manifest a special requirement for iron&quot;&gt;iron utilization&lt;/a&gt; are the mechanisms
  7338.      necessary for (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7085630.html?nr=10&amp;amp;pmid=2055499&quot; title=&quot;homeostasis is a general physiologic process&quot;&gt;homeostasis&lt;/a&gt;) normal erythroid cells in Hemoglobin, or &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/425659.html?nr=7&amp;amp;pmid=7492791&quot; title=&quot;the immediate precursor of a normal erythrocyte assoc. w. spherocytosis&quot;&gt;normoblastosis&lt;/a&gt; compared to
  7339.      iron deficiency anemia and linked to induction loci (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3186715?dopt=Abstract&quot; title=&quot;the inherited hemolytic anemias of mouse and man&quot;&gt;spherocytosis&lt;/a&gt; and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1247258.html?nr=9&amp;amp;pmid=9373273&quot; title=&quot;suggests kidney failure rather than the fibrotic heart lesions as the major cause of death&quot;&gt;jaundice&lt;/a&gt;) induced erythroid &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11913117.html?nr=4&amp;amp;pmid=14569985&quot; title=&quot;those induced with Friend virus&quot;&gt;burst&lt;/a&gt; formation (BFU-E) of a mouse Hemoglobin deficit
  7340.      (hbd) &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/5050452.html?nr=5&amp;amp;pmid=2995992&quot; title=&quot;strain of Friend virus (FV-P) causes a multistage erythroleukemia&quot;&gt;erythroleukemia&lt;/a&gt;.&amp;nbsp; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13222687.html?nr=2&amp;amp;pmid=17412320&quot; title=&quot;regulate the choice between erythroid and myelomonocytic fates&quot;&gt;PU.1&lt;/a&gt;
  7341.      bears a resemblance to&amp;nbsp; hemopoietic progenitors CFU-E/&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7690964.html?nr=1&amp;amp;pmid=8462658&quot; title=&quot;granulocyte-macrophage progenitors [CFU-GM&quot;&gt;CFU-GM&lt;/a&gt;, and an &#39;RNA element&#39; found
  7342. during hemopoietic stem cell factor (SCF) development inhibits the erythroid program
  7343. regulating the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10205175?dopt=Abstract&quot; title=&quot;cell lines representing the fetal/adult erythroid stage&quot;&gt;switch&lt;/a&gt;-of-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7008862?dopt=Abstract&quot; title=&quot;research on embryonic hemoglobins in humans&quot;&gt;fetal&lt;/a&gt; to &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13267317.html?nr=7&amp;amp;pmid=17493269&quot; title=&quot;both competent and active genes during mitosis&quot;&gt;adult&lt;/a&gt;† hemoglobin by binding to &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7165213.html?nr=2&amp;amp;pmid=1650452&quot; title=&quot;suggested the following scheme of erythroid differentiation&quot;&gt;GATA-1&lt;/a&gt; motifs and the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1772088.html?nr=6&amp;amp;pmid=10037687&quot; title=&quot;suggesting that additional regulatory elements are required&quot;&gt;CACCC&lt;/a&gt;-binding motif were &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/696234.html?nr=4&amp;amp;pmid=8806693&quot; title=&quot;both of which are crucial for promoter activity in erythroid cells&quot;&gt;essential&lt;/a&gt; for activity, and inhibit the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8663555.html?nr=6&amp;amp;pmid=11001896&quot; title=&quot;GATA-1 and PU.1 were found to associate through DNA binding domain&quot;&gt;DNA-binding&lt;/a&gt; activities of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7722440?dopt=Abstract&quot; title=&quot;GATA-1 necessary for in vivo erythroid expression only&quot;&gt;each other&lt;/a&gt;^, in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8570210?dopt=Abstract&quot; title=&quot;expression of GATA-1 or the Epo receptor(EpoR)&quot;&gt;Epo&lt;/a&gt; the erythroid &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6611199?dopt=Abstract&quot; title=&quot;an erythroid colony-forming system stimulated by erythropoietin (1 unit/ml)&quot;&gt;burst-forming&lt;/a&gt; system (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/282663.html?nr=9&amp;amp;pmid=7601257&quot; title=&quot;restricted in its expression to the relatively mature cells&quot;&gt;BFU-E&lt;/a&gt;)&#39; that recruit increased &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1174706?dopt=Abstract&quot; title=&quot;model system for the study of erythroid cells&quot;&gt;proliferation&lt;/a&gt; of early erythroid cells, which &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10956520.html?nr=3&amp;amp;pmid=15801171&quot; title=&quot;fixation and storage required for such space biology experiments&quot;&gt;lead&lt;/a&gt; to &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1059142?dopt=Abstract&quot; title=&quot;Erythroid colonies could be produced without EPO&quot;&gt;erythropoietin-independent&lt;/a&gt;&#39; erythropoiesis. Permanent &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6944438?dopt=Abstract&quot; title=&quot;CFU-E reproducible production and isolation of Friend virus-induced erythroid cell lines&quot;&gt;cell lines&lt;/a&gt; can be &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/5353004.html?nr=3&amp;amp;pmid=3455754&quot; title=&quot;a reproducible model system this function continuously since 1981&quot;&gt;established&lt;/a&gt;. And unlike the suggested following scheme of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10621565.html?nr=4&amp;amp;pmid=15659837&quot; title=&quot;functional network GATA, PU.1, and CBP&quot;&gt;CBP&lt;/a&gt; also
  7344.      coimmunoprecipitate from spectrin alpha, erythrocytic 1. The
  7345.      erythroid specific&amp;nbsp; D-Aminolevulinic acid (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/5393529.html?nr=1&amp;amp;pmid=3080960&quot; title=&quot;different features in hepatic and erythropoietic porphyrias&quot;&gt;ALA&lt;/a&gt;) synthase gene
  7346.      specifies an erythroid-specific mitochondrially located
  7347.      biosynthesis of the porphyrin  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1214110?dopt=Abstract&quot; title=&quot;haem (British English) or heme&quot;&gt;heme&lt;/a&gt; cofactor, the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7905160.html?nr=4&amp;amp;pmid=8078893&quot; title=&quot;loss of NF-e2 contributes to erythroleukemia progression&quot;&gt;NF-E2&lt;/a&gt; gene is essential for globin transcription, alpha and the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/22971.html?nr=3&amp;amp;pmid=2263468&quot; title=&quot;fragment spanning erythroid specific  Spna1&quot;&gt;region of&lt;/a&gt; the human &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7499351?dopt=Abstract&quot; title=&quot;utilized binding sites for the erythroid regulatory factor GATA-1&quot;&gt;Beta
  7348.        globin&lt;/a&gt; (beta IVS2) are more common forms of the protein hemoglobin, in most
  7349.      red blood cells (RBC) derived from haematopoietic stem cells (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8810389.html?nr=13&amp;amp;pmid=11301110&quot; title=&quot;differentiation of hematopoietic cells&quot;&gt;SCF&lt;/a&gt;). There are &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9524500.html?nr=8&amp;amp;pmid=12149209&quot; title=&quot;Two alternatively spliced SCF which differ&quot;&gt;two&lt;/a&gt;† forms, the latter newly formed
  7350.      erythrocytes, known as &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12876532.html?nr=6&amp;amp;pmid=18623629&quot; title=&quot;induction of autophagy in erythroid cells&quot;&gt;reticulocytes&lt;/a&gt;
  7351.      these induce mitochondrial autophagy, cell degradation of
  7352.      cellular components. Early erythroid progenitors [BFU-Es]
  7353.      stage express in blood volume &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/444660?dopt=Abstract&quot; title=&quot;three distinct modal populations of CFU-e&quot;&gt;some erythropoietin&lt;/a&gt; receptor (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11243939.html?nr=16&amp;amp;pmid=16089085&quot; title=&quot;esponse to rhEPO during recovery from blood-loss anemia&quot;&gt;Epo&lt;/a&gt;R)&amp;nbsp; in the
  7354.      presence of only erythropoietin (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8810389.html?nr=13&amp;amp;pmid=11301110&quot; title=&quot;erythropoietin-stimulated erythroid colony growth&quot;&gt;Epo&lt;/a&gt;)
  7355.      induces &#39;&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/2412117.html?nr=4&amp;amp;pmid=1167207&quot; title=&quot;associated with a diminution of the normal marrow-peripheral blood barrie&quot;&gt;increased&lt;/a&gt;&#39; signals for erythroid differentiation.&amp;nbsp; When &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/710816.html?nr=4&amp;amp;pmid=8810316&quot; title=&quot;related to erythroid like-ANK-1 factor, EKLF&quot;&gt;epsilon-globin&lt;/a&gt; is no longer expressed &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9646181?dopt=Abstract&quot; title=&quot;Hematopoiesis is the process by which&quot;&gt;Hematopoietic&lt;/a&gt; embryo stem cells (HSCs) can than be identified as
  7356.      [BFU-Es] murine erythroid &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6679874?dopt=Abstract&quot; title=&quot;Erythropoietin-responsive progenitor cells (CFU-E)&quot;&gt;progenitors&lt;/a&gt; in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7536513?dopt=Abstract&quot; title=&quot;myeloid progenitors on these cells were also allowed&quot;&gt;CFU-E&lt;/a&gt; Myeloid
  7357.      &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/6476568.html?nr=3&amp;amp;pmid=2543869&quot; title=&quot;ability to abrogate the growth factor requirements of hematopoietic progenitor cells&quot;&gt;stage&lt;/a&gt;, an assay derivative of the term &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7330842.html?nr=12&amp;amp;pmid=1552741&quot; title=&quot;immunologically compatible as to allow for transplantation&quot;&gt;syngeneic&lt;/a&gt; cell-lines^ in the hematopoietic stem cells
  7358.      colonies and lineages these functions perform to predict the mechanism that modulates &lt;a href=&quot;http://en.wikipedia.org/wiki/Hematopoietic_stem_cell#Nomenclature_of_hematopoietic_colonies_and_lineages&quot; title=&quot;Nomenclature of hematopoietic colonies and lineages&quot;&gt;erythrocyte&lt;/a&gt; alpha-spectrin and the function of various isoforms that comprise this gene however, supports up or downstream of this site the study of numerous molecular regulating mechanisms.&lt;/div&gt;
  7359. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7360. google_ad_client=&quot;pub-9610428118332343&quot;;
  7361. google_ad_host=&quot;&quot;;
  7362. google_ad_width=200;
  7363. google_ad_height=90;
  7364. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7365. google_color_border=&quot;EEEECC&quot;;
  7366. google_color_bg=&quot;EEEECC&quot;;
  7367. google_color_link=&quot;445566&quot;;
  7368. google_color_url=&quot;445566&quot;;
  7369. google_color_text=&quot;333333&quot;;
  7370. //--&gt;&lt;/script&gt;
  7371. &lt;script type=&quot;text/javascript&quot;
  7372.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7373. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2013/03/spectrin-alpha-erythrocytic-1-isoform.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgFWK6Yqc4EkMqBubEVczpnj14fX3tPQMNLlfwoHEZWdfFkEP8Ous1C8e5rMSLaMXDX7G3gZq_vp7K7nS79i3AkvfHKQy9dpVgIyGi3h02tOJTVoo4z1N9AKtd-QsUYPajtKXHB0w/s72-c/1owa-dne-b-p17678.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-676971319108803222</guid><pubDate>Tue, 12 Feb 2013 19:41:00 +0000</pubDate><atom:updated>2013-02-12T10:42:57.451-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">beta2</category><category domain="http://www.blogger.com/atom/ns#">phosphatidylinositol</category><category domain="http://www.blogger.com/atom/ns#">SH3</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>Spnb2 protein family architecture perspective and differences in complex form of exon/intron usage </title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7374. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/Spnb2?authkey=Gv1sRgCPi91ZzE8o_EKw#5844145206071853586&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;Figure 3: Spnb2 instances of intron/exon usage&quot; border=&quot;0&quot; height=&quot;196&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiymo9KojJo8twPZUTpeSu7P-ybYvbMwpo8E0THUV5tUJRTJpe6IV8qLe04xUT2Y2KGSLTzBViqeE24B3Q0ibiAwsC1nwEvjSLe9rgTxcohEbEUtjcawn2ibgYtBPVyPopg8t1iZA/s470/1mph-1btn-1btn.pdb2.png&quot; title=&quot;Figure 3: Spnb2 instances of intron/exon usage&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;Spectrin isoforms are &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/9593709.html&quot; title=&quot;erythroid and nonerythroid cells&quot;&gt;found in&lt;/a&gt; erythroid and nonerythroid cells. Spectrin is a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6389784?dopt=Abstract&quot; title=&quot;an immunoreactive and structural analogue&quot;&gt;component&lt;/a&gt; (known as the postsynaptic density (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16452087&quot; title=&quot;respond to neurotransmitter released from presynaptic axon terminals&quot;&gt;PSD&lt;/a&gt;)) for the maintenance of cell&amp;nbsp; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21566095&quot; title=&quot;the main fibrous component of which is spectrin&quot;&gt;cytoskeleton&lt;/a&gt; shape&amp;nbsp; the main fibrous component of which is spectrin of the erythrocyte membrane controlling &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22541060&quot; title=&quot;the interaction with Smad proteins and β-2 Spectrin&quot;&gt;Smad3&lt;/a&gt;/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15566516&quot; title=&quot;Smad2 and Smad3 insufficiency leads to a loss of bile ducts&quot;&gt;4&lt;/a&gt; subcellular localization in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15610403&quot; title=&quot;(TGF)-beta signal transduction, and Smad4&quot;&gt;TGFβ&lt;/a&gt;/Smad signalling resulting in nuclear &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16884701&quot; title=&quot;neuroepithelial stem cell phenotype&quot;&gt;translocation&lt;/a&gt;&amp;nbsp; of activated &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15610403&quot; title=&quot;roles of Smads 2 and 3 in transforming growth factor-beta&quot;&gt;Smad4&lt;/a&gt;. Nonerythroid brain spectrin (&lt;a href=&quot;http://www.citeulike.org/user/dvdvcr63/article/11789116&quot; title=&quot;the official name for mouse is Spnb2&quot;&gt;Spnb-2&lt;/a&gt; Beta-II spectrin), &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16288220&quot; title=&quot;(ELF), a beta-Spectrin originally identified in endodermal stem/progenitor cells&quot;&gt;Elf&lt;/a&gt;, embryonic liver beta-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9927192&quot; title=&quot;beta-spectrin elf (embryonic liver beta-fodrin)&quot;&gt;fodrin&lt;/a&gt;, are a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16650383&quot; title=&quot;disrupts TGF-beta signaling through Smad3 and Smad4&quot;&gt;stem cell&lt;/a&gt; adaptor protein, [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/20742&quot; title=&quot;Sptbn1 spectrin beta, non-erythrocytic 1 [ Mus musculus ]&quot;&gt;§§&lt;/a&gt;;
  7375. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/124836.html?ID=92693&quot;&gt;†&lt;/a&gt;, &lt;a href=&quot;http://www.uniprot.org/uniprot/Q62261#section_x-ref&quot;&gt;‡&lt;/a&gt;] )&amp;nbsp; or beta- &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8219239?dopt=Abstract&quot; title=&quot;DISCUSSION Abstract Full Text&quot;&gt;fodrin&lt;/a&gt; (gene band &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8406479?dopt=Abstract&quot; title=&quot;identity with that of erythroid beta-spectrin&quot;&gt;2p21&lt;/a&gt;, SPTAN1- &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9551868&quot; title=&quot;fodrin (betaSpIIsigmaI) Elf1&quot;&gt;betaSpIIsigmaI&lt;/a&gt;) produces the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9927192&quot; title=&quot;(betaSpIIsigma1) at the nucleotide and amino acid level&quot;&gt;amino&lt;/a&gt;-terminal
  7376. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9115173&quot; title=&quot;composed of 106-amino-acid segments&quot;&gt;fragment&lt;/a&gt; of the erythroid, beta subunit-fodrin, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6383455?dopt=Abstract&quot; title=&quot;erythrocyte spectrin does not affect the expression of Brain spectrin-like protein&quot;&gt;spectrin-like&lt;/a&gt; protein, is a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6383455?dopt=Abstract&quot; title=&quot;erythrocyte membranes could be detected&quot;&gt;nonerythroid&lt;/a&gt; spectrin analogue alpha Spna-1 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8406479?dopt=Abstract&quot; title=&quot;beta-fodrin, the nonerythroid form of beta-spectrin&quot;&gt;related&lt;/a&gt; to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3862089&quot; title=&quot;A cDNA clone described for human erythroid alpha- and beta-spectrin&quot;&gt;human&lt;/a&gt; erythrocytic 1 (h&lt;a href=&quot;http://www.citeulike.org/user/dvdvcr63/article/11789116&quot; title=&quot;human Spectrin, beta, nonerythrocytic 1 (SPTBN1)&quot;&gt;SPTBN1&lt;/a&gt;).
  7377. Beta-fodrin was&amp;nbsp; detected primarily at the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18796539&quot; title=&quot;betaII spectrin is restricted to a dense apical network&quot;&gt;apical&lt;/a&gt; membrane of epithelia,
  7378. Spnb-2 binds only to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3308110?dopt=Abstract&quot; title=&quot;molecular form of the three neural cell adhesion molecules&quot;&gt;N-CAM180&lt;/a&gt; with reduced lateral mobility, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17620337&quot; title=&quot;Ankyrin-G and beta-2-spectrin co-localize with E-cadherin in preimplantation&quot;&gt;E-cadherin&lt;/a&gt;-beta-catenin complexes is required to form the first cytoplasmic lateral membrane. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9927192&quot; title=&quot;have cloned three isoforms embryonic liver beta-fodrin&quot;&gt;Three&lt;/a&gt; isoforms of brain spectrin contains &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8479293?dopt=Abstract&quot; title=&quot;this non-erythroid beta spectrin comprises&quot;&gt;three&lt;/a&gt; structural domains, a cellular and
  7379. dendritic isoform, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1467942&quot; title=&quot;formation of cell-cell contacts, formation of dendritic processes and postsynaptic contacts&quot;&gt;240/235&lt;/a&gt;- erythroid (RBCs) &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7020802.html?nr=7&amp;amp;pmid=1742606&quot; title=&quot;235 kDa brain beta-spectrin subunit&quot;&gt;beta-spectrin&lt;/a&gt; cDNA- &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8479293&quot; title=&quot;nucleotide sequence of complementary DNA (SPNB2) clones&quot;&gt;Complementary&lt;/a&gt; DNA synthesized from a messenger &lt;a href=&quot;http://lnwme.blogspot.com/2012/12/human-tgf-beta-type-ii-receptor.html&quot; title=&quot;(ancestral C-509T-allele and G-875A variant in TGFBR2)&quot;&gt;mRNA&lt;/a&gt;*,&amp;nbsp; contains a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8208297&quot; title=&quot;the PH domain of the cytoskeletal protein spectrin&quot;&gt;PH domain&lt;/a&gt;&amp;nbsp; that &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9211987&quot; title=&quot;genes that are rapidly up- or down-regulated&quot;&gt;interact&lt;/a&gt; extensively with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7588597&quot; title=&quot;bind specifically to pleckstrin homology (PH) domains&quot;&gt;Phosphoinositide&lt;/a&gt;s (PtdIns) of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15566516&quot; title=&quot;Ankyrin-B is a spectrin-binding protein required for...&quot;&gt;inositol&lt;/a&gt; 1,4,5-trisphosphate and receptor where the synapse &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15572359&quot; title=&quot;a small number of kinases phosphorylate many proteins&quot;&gt;phosphoproteome&lt;/a&gt; is functionally organized) binds with a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7020802.html?nr=7&amp;amp;pmid=1742606&quot; title=&quot;f a nonerythroid beta-spectrin subunit&quot;&gt;nonerythroid&lt;/a&gt; 9 Kb mRNA which encodes neuronal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1467942&quot; title=&quot;brain spectrin (240/235E)  The 9 kb transcript&quot;&gt;beta SpIIa&lt;/a&gt; occurs also in neonatal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17074766&quot; title=&quot;lateral membrane biogenesis&quot;&gt;cardiomyocytes&lt;/a&gt; with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15262991&quot; title=&quot;required for localization of inositol 1,4,5-trisphosphate receptor&quot;&gt;ankyrin-B&lt;/a&gt; and ELF&amp;nbsp; (Spnb-2), a new isoform of&amp;nbsp; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12149647&quot; title=&quot;ELF, a new isoform of beta-G-spectrin&quot;&gt;beta-G-spectrin&lt;/a&gt;&amp;nbsp; or any &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22159418/&quot; title=&quot;is crucial in vertebrates for cell spreading, tissue patterning and organ development&quot;&gt;spectrin-ankyrin&lt;/a&gt; to cross-react with human erythrocyte beta subunit &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2420811&quot; title=&quot;diversity in human erythrocyte and brain beta spectrin&quot;&gt;spectrin-ankyrin&lt;/a&gt; scaffold in restoring similarity of structure to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17074766&quot; title=&quot;ankyrin-G and beta(2)-spectrin are functional partners&quot;&gt;lateral membrane&lt;/a&gt; biogenesis. (&lt;a href=&quot;http://www.blogger.com/www.ihop-net.org/UniPub/iHOP/pm/6545754.html?nr=2&amp;amp;pmid=2124223&quot; title=&quot;brain spectrin and erythrocyte Erp1 spectrin&quot;&gt;Spnb2&lt;/a&gt;) represents a nonerythroid beta-spectrin subunit &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6383455&quot; title=&quot;sph, spectrin alpha 1&quot;&gt;alphaI&lt;/a&gt;-(SH3) domain (human chromosome &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/9593709.html&quot; title=&quot;the candidate spectrin Src homology 3 (SH3) domain&quot;&gt;10p11.2&lt;/a&gt; -- p12.) 235-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1467942?dopt=Abstract&quot; title=&quot;involved in differentiated functions of the neuron&quot;&gt;E&lt;/a&gt; and A,&amp;nbsp; cellular and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/4551421.html?nr=4&amp;amp;pmid=6389784&quot; title=&quot;little detectable spectrin antigen&quot;&gt;axonal&lt;/a&gt; neuron
  7380.  &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22632975&quot; title=&quot;αII and βII-spectrin axonal cytoskeleton&quot;&gt;isoform&lt;/a&gt;, but not dendrites; and an isoform specific for astrocytes. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12955571.html?nr=1&amp;amp;pmid=18704924&quot; title=&quot;inhibition of ELF raised retinoblastoma protein (pRb) levels nearly fourfold&quot;&gt;ELF&lt;/a&gt;, is a &lt;a href=&quot;http://lnwme.blogspot.com/2012/11/transforming-growth-factor-beta-1.html&quot; title=&quot;activation of Type I and binding to the type II&quot;&gt;TGF-beta1&lt;/a&gt; adaptor and signaling molecule, and transform cells similar to &lt;a href=&quot;http://lnwme.blogspot.com/2012/12/human-tgf-beta-type-ii-receptor.html&quot; title=&quot;bind and transform cells similar to RB protein&quot;&gt;RB protein&lt;/a&gt;*. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/6389784?dopt=Abstract&quot; title=&quot;cross-reacts alpha and beta subunits Elf3&quot;&gt;Erythrocyte&lt;/a&gt; spectrin &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9927192?dopt=Abstract&quot; title=&quot;overall similarity to mouse beta-spectrin (betaSpIIsigma1)&quot;&gt;Elf -3&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15899814&quot; title=&quot;ELF, a beta-spectrin from stem/progenitor cells&quot;&gt;Spnb-2&lt;/a&gt;) and apical to luminal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18263735?dopt=Abstract&quot; title=&quot;two to four cells per 30-50,000 cells express stem cell proteins&quot;&gt;stem cell&lt;/a&gt; peripheral blood &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11298995?dopt=Abstract&quot; title=&quot;phosphorylcholine [PC] T-cell suppressor&quot;&gt;T cell&lt;/a&gt;
  7381. differentiation protein successfully manipulate mouse brain
  7382. beta-G-spectrin with two known genes encoding the actin-cross-linking protein &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/5275165.html?nr=5&amp;amp;pmid=2420811&quot; title=&quot;None reacted with brain spectrin&quot;&gt;alpha&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9115173&quot; title=&quot;Spectrin is a tetramer of two antiparallel alphabeta-dimers&quot;&gt;chain&lt;/a&gt;, and the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11564759&quot; title=&quot;the spectrin-protein 4.1 interaction&quot;&gt;Actin&lt;/a&gt; binding &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8776664&quot; title=&quot;beta-spectrin-actin interaction&quot;&gt;N-terminal&lt;/a&gt; domain of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12149647?dopt=Abstract&quot; title=&quot;five genes encoding the beta-chain&quot;&gt;beta&lt;/a&gt;-chain a form of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12149647?dopt=Abstract&quot; title=&quot;ELF, a new isoform of beta-G-spectrin&quot;&gt;exon/intron&lt;/a&gt; usage of two antiparallel dimers. Spectrin contains an Src homology 3 (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9593709?dopt=Abstract&quot; title=&quot;Src homology 3 alphaII/betaII spectrin colocalize&quot;&gt;SH3&lt;/a&gt;) domain and share multiple exons by correlation to a known amino acid sequence of human brain &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8406479?dopt=Abstract&quot; title=&quot;band 2p21. beta-Fodrin SPTBN1&quot;&gt;beta-fodrin&lt;/a&gt; (h&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene?db=gene&amp;amp;cmd=retrieve&amp;amp;dopt=default&amp;amp;rn=1&amp;amp;list_uids=6711&quot; title=&quot;composed of two antiparallel dimers of alpha- and beta- subunits&quot;&gt;SPTBN1&lt;/a&gt;, gene ID 6711)
  7383. .    &lt;img align=&quot;middle&quot; alt=&quot;a&quot; height=&quot;22&quot; src=&quot;http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/templates/gif/species/transparent/mou_temp.gif&quot; width=&quot;39&quot; /&gt;&lt;/div&gt;
  7384. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7385. google_ad_client=&quot;pub-9610428118332343&quot;;
  7386. google_ad_host=&quot;&quot;;
  7387. google_ad_width=200;
  7388. google_ad_height=90;
  7389. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7390. google_color_border=&quot;EEEECC&quot;;
  7391. google_color_bg=&quot;EEEECC&quot;;
  7392. google_color_link=&quot;445566&quot;;
  7393. google_color_url=&quot;445566&quot;;
  7394. google_color_text=&quot;333333&quot;;
  7395. //--&gt;&lt;/script&gt;
  7396. &lt;script type=&quot;text/javascript&quot;
  7397.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7398. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2013/02/spnb2-protein-family-architecture.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiymo9KojJo8twPZUTpeSu7P-ybYvbMwpo8E0THUV5tUJRTJpe6IV8qLe04xUT2Y2KGSLTzBViqeE24B3Q0ibiAwsC1nwEvjSLe9rgTxcohEbEUtjcawn2ibgYtBPVyPopg8t1iZA/s72-c/1mph-1btn-1btn.pdb2.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-8702080115563159321</guid><pubDate>Mon, 31 Dec 2012 03:06:00 +0000</pubDate><atom:updated>2014-07-03T08:38:34.455-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">base excision repair (BER)</category><category domain="http://www.blogger.com/atom/ns#">beta2</category><category domain="http://www.blogger.com/atom/ns#">Cervico-vaginal foetal fibronectin MMP1-2</category><category domain="http://www.blogger.com/atom/ns#">dynein</category><category domain="http://www.blogger.com/atom/ns#">ECM extracellular matrix</category><category domain="http://www.blogger.com/atom/ns#">epigallocatechin</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>Human TGF-beta Type II Receptor</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7399. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/TGFBR2#5827921702810138274&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;human TbetaR2 ectodomain--TGF-beta3 complex with ELF-3DNA&quot; border=&quot;0&quot; height=&quot;167&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiAbimzPBmuqiQxjGQJpvFXZ9DFPzd1PHOKUKsAxfUC2IZZOkMnJF5I4chC0Whh9PE8jVFZhWCBhe4V7H-vUh8v7JgZipSkOrKr_ThycdixYppMeTuG0Yd3PN-rtGokF_QEVGRCnA/s640/influblk3.png&quot; title=&quot;human TbetaR2 ectodomain--TGF-beta3 complex with ELF-3DNA&quot; width=&quot;240&quot; /&gt;&lt;/a&gt;TGFBR type II receptors (TGFBR2) are &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8683458.html?nr=3&amp;amp;pmid=11212236&quot; title=&quot;Transmembrane signaling by TGF-beta occurs via a complex of the serine [?]/threonine kinases&quot;&gt;transmembrane&lt;/a&gt; tyrosine kinases
  7400.    or associated with&amp;nbsp;&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1735634.html?nr=6&amp;amp;pmid=9926943&quot; title=&quot;identified human cyclin B2 as a direct physical partner of TGFbeta RII&quot;&gt;cytoplasmic&lt;/a&gt; tyrosine kinases** related to
  7401.    resistance to &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1016428.html?nr=4&amp;amp;pmid=9158007&quot; title=&quot;specific anti-TbetaRII antibodies confirm these observations&quot;&gt;TGF-beta&lt;/a&gt;
  7402.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/923659.html?nr=3&amp;amp;pmid=9041203&quot; title=&quot;cellular TGFbeta responsiveness often correlates with TGFB2&quot;&gt;inhibition&lt;/a&gt;
  7403.    of cell proliferation and trap TGF-beta I from access to &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12372879.html?nr=2&amp;amp;pmid=17117417&quot; title=&quot;reconstitution of wild-type TGFBR2 expression&quot;&gt;wild&lt;/a&gt;-type receptors, the growth-inhibitory and proapoptotic activities of the cytokine, human chromosome &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8020936&quot; title=&quot;TGFBR2 maps to human chromosome band 3p22&quot;&gt;3p22&lt;/a&gt;-p21: [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/7048&quot;&gt;§§&lt;/a&gt;; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/92693.html?ID=92691&quot;&gt;†&lt;/a&gt;, &lt;a href=&quot;http://www.uniprot.org/uniprot/P37173&quot; title=&quot;Interacts with TCTEX1D4 a dynein&quot;&gt;‡&lt;/a&gt;]. A &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16530041&quot; title=&quot;link between TGF-beta signaling and arterial hypertension&quot;&gt;cysteine&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1310899&quot; title=&quot;type II receptor and expressed in E. coli can phosphorylate itself&quot;&gt;rich&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17680270&quot; title=&quot;genotypes (-509CT/TT) of TGFB1compared with -509CC wild-type homozygote&quot;&gt;wildtype&lt;/a&gt;º &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14751062.html?nr=1&amp;amp;pmid=18095113&quot; title=&quot;sequencing of exon 4 of the transforming growth factor-beta receptor type II gene&quot;&gt;SNP&lt;/a&gt;-(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22431140&quot; title=&quot;the T (ancestral allele)&quot;&gt;ancestral&lt;/a&gt; C-509T-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18095113&quot; title=&quot;based on analysis of peripheral blood cell&quot;&gt;allele&lt;/a&gt; and G-875A variant in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17187359&quot; title=&quot;TGF-beta1 and its receptor TGF-betaRII have been correlated&quot;&gt;TGFBR2&lt;/a&gt;) transition (exon 4) not an &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9163705?dopt=Abstract&quot; title=&quot;There were no mutations in exons 1, 2, 4, 5, 6 and 7.&quot;&gt;active mutation&lt;/a&gt; in the
  7404.    (constitutional) cDNA &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/800602.html?nr=2&amp;amp;pmid=8947046&quot; title=&quot;extracellular matrix formation&quot;&gt;extracellular&lt;/a&gt; domain &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7959019&quot; title=&quot;belong to the transmembrane (TM) receptor serine/threonine kinase family&quot;&gt;transmembrane&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12515396&quot; title=&quot;synthesis and turnover of a variety of ECM components delivery of adenoviral vector&quot;&gt;ECM&lt;/a&gt;)
  7405.    receptors &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/9926943.html&quot; title=&quot;inactivation of cyclin B/Cdc2 kinase the TGFbeta RII-cyclin B2-Cdc2 complex&quot;&gt;cyclin&lt;/a&gt;-dependent kinases (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16108056&quot; title=&quot;(BAT-RII) GF-beta can regulate the expression of a variety of cyclins&quot;&gt;cdks&lt;/a&gt;)º also &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9926943&quot; title=&quot;Cyclin B1 had the same capacity to bind TGFbeta RII&quot;&gt;binds&lt;/a&gt;º to TGFBR2. &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/15520171.html&quot; title=&quot;ACVR2 gene is frequently mutated in microsatellite-unstable colon cancers&quot;&gt;ACVR2&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9872992?dopt=Abstract&quot; title=&quot;in addition to TGF-beta1 and -beta3, endoglin interacts with activin-A&quot;&gt;activin&lt;/a&gt;)
  7406.    a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/800602.html?nr=2&amp;amp;pmid=8947046&quot; title=&quot;Activin receptor Activin type&quot;&gt;GS
  7407.      domain&lt;/a&gt;** member of the type II&amp;nbsp; receptor family&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9393382.html?nr=4&amp;amp;pmid=11850637&quot; title=&quot;ecTbetaR1 and ecTbetaR2 bind at adjacent positions on the ligand surface and directly contact each other via protein--protein interactions pdb ID: 1KTZ&quot;&gt;
  7408.      ligand&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12729750&quot; title=&quot;binding to three types of cell surface receptors, the type I, II and III TGF-beta&quot;&gt;binding&lt;/a&gt; domain and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13050548.html?nr=1&amp;amp;pmid=18941508&quot; title=&quot;exon 3 of TGFBR2 and exon 10 of ACVR2 MMR as TGFBR2 and ACVR2.M1 (dim, representing heteroduplexes) and M2 (bright, representing full mutants)&quot;&gt;TGFBR type II&lt;/a&gt;* receptor, and mutations in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17985359&quot; title=&quot;t a polyadenine tract in exon 3 of TGFBR2, called BAT-RII&quot;&gt;exon 3&lt;/a&gt; the polyadenine tract (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16108056?dopt=Abstract&quot; title=&quot;Colon cancers with mutant BAT-RII&quot;&gt;BAT-RII&lt;/a&gt;, replication error-RER(+) in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12825850&quot; title=&quot;within coding regions of exon 4 (1/72 samples)&quot;&gt;exons 4 &lt;/a&gt;phenotype, and 10-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16380996&quot; title=&quot;TGFBR2 and ACVR2, encoding TGFbeta superfamily receptors&quot;&gt;ACRV2&lt;/a&gt;* have &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12121646&quot; title=&quot;the TBRII is significantly longer than in ActRII&quot;&gt;premature&lt;/a&gt; termination codons (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13237213.html?nr=7&amp;amp;pmid=17456004&quot; title=&quot;PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD) system&quot;&gt;PTCs&lt;/a&gt;)-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20067791&quot; title=&quot;(TGFbetaR2) mRNA harboring a PTC&quot;&gt;mRNA&lt;/a&gt;s can be regulated by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22684895/&quot; title=&quot;miR-590-5p downregulated the expression of TGF-beta RII by targeting the 3&#39;UTR of mRNA&quot;&gt;miRNA&lt;/a&gt;s (endogenous non-coding &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21666718&quot; title=&quot;The miRNA expression profile described in this study&quot;&gt;RNAs&lt;/a&gt;) this &lt;a href=&quot;http://en.wikipedia.org/wiki/Survivin#As_a_drug_target&quot; title=&quot;in normal cells, survivin promoter is not active, and, thus, the siRNA will not be expressed under an inactive survivin promoter&quot;&gt;is a use&lt;/a&gt; for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21757750&quot; title=&quot;high survivin expression with epigenetically silenced TGFβRII might potentially benefit from the use o&quot;&gt;inhibitors&lt;/a&gt; that can target,&amp;nbsp; PTC siRNA the effect could silence proteins using any C-terminal such as the gene promotor 5&#39;UTR, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22072622&quot; title=&quot;microRNA-21 (miR-21)&quot;&gt;mainly&lt;/a&gt; in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22684895&quot; title=&quot;MicroRNA-590-5p&quot;&gt;3&#39;UTR&lt;/a&gt; of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21666718&quot; title=&quot;3&#39;UTR of transforming growth factor-β receptor II&quot;&gt;mRNA&lt;/a&gt;) »» alter the
  7409.    response &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9157330.html?nr=8&amp;amp;pmid=11741970&quot; title=&quot;relative to activin a farnesylated protein(s) exerts a repressive effect on T beta R-II&quot;&gt;relative
  7410.      to&lt;/a&gt; TGF-beta (a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8860653.html?nr=1&amp;amp;pmid=11444526&quot; title=&quot;biological effects of TGF-beta are mediated by the TGF-beta receptor complex, a multimer composed of&quot;&gt;multimer&lt;/a&gt;)
  7411.    that &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15993480?dopt=Abstract&quot; title=&quot;Disabling of TGF-beta signaling is thought to be involved in development of a variety of tumors&quot;&gt;inhibits&lt;/a&gt; epithelial cell growth, however &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14063188.html?nr=1&amp;amp;pmid=19161338&quot; title=&quot;TGF-beta2 gain-of-function variants&quot;&gt;TGF-beta2&lt;/a&gt; differs in that it &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12939140&quot; title=&quot;PDB: 1PLOseveral residues that comprise the TGFbeta binding surface&quot;&gt;bind&lt;/a&gt;s the TGF-betaR-II isoform restricted to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16824508&quot; title=&quot;Tgfbr2 regulates the developing axial skeleton&quot;&gt;cells&lt;/a&gt; of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8676814.html?nr=1&amp;amp;pmid=11157754&quot; title=&quot;TbetaRII-B is restricted to cells originating from tissues such as bone where the isoform TGF-beta2 has a predominant role&quot;&gt;bone&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11381720.html?nr=10&amp;amp;pmid=16388503&quot; title=&quot;cancer cells mediate growth inhibition and differentiation of bone marrow endothelial cells&quot;&gt;marrow&lt;/a&gt; (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11987396.html?nr=9&amp;amp;pmid=17003501&quot; title=&quot;e cross talk between endothelial cells (ECs) and vascular smooth muscle cells  in-vivo preoperative VSMCs&quot;&gt;EC&lt;/a&gt; &#39;vectors&#39;) endothelial cells; induction of growth inhibition «« (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13244315.html?nr=3&amp;amp;pmid=17146441&quot; title=&quot;during metabolic synthesis-G to S transition 3,5,7,2,4-pentahydroxyflavone (Morin) inhibits TGF-beta binding to TbetaR-II&quot;&gt;Morin (flavonol)&lt;/a&gt;, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22571197&quot; title=&quot;an enzyme which hydrolyzes mannose&quot;&gt;mannosidase&lt;/a&gt; and an molecular &lt;a href=&quot;http://en.wikipedia.org/wiki/Bortezomib#Pharmacology&quot; title=&quot;catalytic threonine residue whose activity is blocked by the presence of bortezomib&quot;&gt;Bortezomib&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9169454&quot; title=&quot;not only on serine and threonine also tyrosine&quot;&gt;PTK&lt;/a&gt;/&lt;a href=&quot;http://en.wikipedia.org/wiki/Protein_Tyrosine_Kinase&quot; title=&quot;attach phosphate groups to other amino acids (serine and threonine)&quot;&gt;STK&lt;/a&gt; characterisation of &lt;a href=&quot;http://lnwme.blogspot.com/2012/11/transforming-growth-factor-beta-1.html&quot; title=&quot;specificity of T beta R-I for the critical C-terminal serines of Smad2&quot;&gt;TβRI&lt;/a&gt; suggest a novel mechanism an &lt;a href=&quot;http://www.sciencedirect.com/science/article/pii/S0167488912000572&quot; title=&quot;Chondrocytes were treated with an etoposide Bortezomib counteracts in TGFB proteins&quot;&gt;etoposide&lt;/a&gt; Epigallocatechin &lt;a href=&quot;http://en.wikipedia.org/wiki/Bortezomib#Drug_interactions&quot; title=&quot;found to reduce the effectiveness of bortezomib&quot;&gt;E.gallate&lt;/a&gt; provided by a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12215842?dopt=Abstract&quot; title=&quot;TGFB1 C-509T and TGFBR2 G-875Aconsisted of (A)10 in the TGF beta RII, (G)8 in the BAX&quot;&gt;(G)8&lt;/a&gt;, by reaction provides an unusual, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21737283&quot; title=&quot;TGF-β1-509   cytosine/thymine (C/T) genotypes&quot;&gt;C/T&lt;/a&gt; allele &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15522964&quot; title=&quot;PKC-zeta caused an aggregation of endoglin or TbetaRII on cell surface&quot;&gt;PKC&lt;/a&gt; interaction (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9169454&quot; title=&quot;a role for tyrosine autophosphorylation in TGF-beta receptor signaling&quot;&gt;autophosphorylation&lt;/a&gt;)** that is better able than &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9155023&quot; title=&quot;a hyperactive receptor that is   better able than wild-type at autophosphorylation&quot;&gt;wild-type&lt;/a&gt;º to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9155023&quot; title=&quot;TbetaRI activation and subsequent cell cycle arrest&quot;&gt;induce&lt;/a&gt; a the &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/TGFBR2#5827921668350827858&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;Influenza virus to maintain 3d cohesion of delivery (EGCG) binds with the anti-cancer drug Bortezomib=PMID:17634290&quot; border=&quot;0&quot; height=&quot;145&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgMlKzYi4GTzxHerTIZh6WnAzqGW8B5yTtYVO8CbcWA081OzOu1lUBJ74Q6lshzh-4Nht-OGDL8pN5FV87T2qMuBPmZ__G_e-i2HvT1RWHhRH3T0uKqSOd0oCfFiaUIjk7BsIgLmQ/s640/influblk.png&quot; title=&quot;Influenza virus to maintain 3d cohesion of delivery (EGCG) binds with the anti-cancer drug Bortezomib=PMID:17634290&quot; width=&quot;294&quot; /&gt;&lt;/a&gt;dual kinase cytoplasmic domain specificity soluble &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8106553&quot; title=&quot;(TGFBR3), is a cell-surface chondroitin sulfate / heparan sulfate proteoglycan&quot;&gt;betaglycan&lt;/a&gt; the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11323414&quot; title=&quot;the phosphorylation of the cytoplasmic domain of the type III receptor by the type II receptor&quot;&gt;type III&lt;/a&gt; receptor acts as potent &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1735634.html?nr=6&amp;amp;pmid=9926943&quot; title=&quot;Utilizing the cytoplasmic tail of tgfbr2&quot;&gt;type II&lt;/a&gt;º inhibitor)
  7412.    and the loss of &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/7878020.html&quot; title=&quot;TGF-beta RI transphosphorylated by the coexpressed TGF-beta RII&quot;&gt;trans&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8683458.html?nr=3&amp;amp;pmid=11212236&quot; title=&quot;in replication error-positive mutations either loss or activation of trans-phosphorylation in type 1 receptor&quot;&gt;phosphorylation&lt;/a&gt;
  7413.    or constitutive activation of &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/11212236.html&quot; title=&quot;TGF-beta type 1 receptor or constitutive activation of trans-phosphorylation&quot;&gt;TGF-beta1&lt;/a&gt;
  7414.    mediated (homozygous and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1386356.html?nr=10&amp;amp;pmid=9496536&quot; title=&quot;T beta R-I and T beta R-II differed&quot;&gt;heterozygous&lt;/a&gt;
  7415.    polymorphism (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13050548.html?nr=9&amp;amp;pmid=18941508&quot; title=&quot;How these mutations occur in real time&quot;&gt;heteroduplexes&lt;/a&gt;)» functionally related tentative (MMP) involvement of «&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20197483?dopt=Abstract&quot; title=&quot;the mutant fraction, replication fidelity in mononucleotide, dinucleotide, and tetranucleotide repeats&quot;&gt;three&lt;/a&gt; major systems as the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10763082.html?nr=3&amp;amp;pmid=15861007&quot; title=&quot;Mutation spectrum of FBN1 and TGFBR2 in relation to phenotype&quot;&gt;Marfan syndrome type II&lt;/a&gt; gene) growth control or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8388126&quot; title=&quot;growth inhibition and hypophosphorylation&quot;&gt;hypophosphorylation&lt;/a&gt;.&amp;nbsp; The functional inactivation of the Germline (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10255669.html?nr=1&amp;amp;pmid=15146427&quot; title=&quot;Adenoviral vectors were generated for TGFbetaRI (AdTGFbetaRI), TGFbetaRII (AdTGFbetaRII), and kinase-deficient TGFbetaRII (AdDeltakRII)&quot;&gt;Adenoviral&lt;/a&gt;
  7416.    -mediated &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15942678&quot; title=&quot;[soluble type II TGF-beta receptor (sTGF-betaIIR)]&quot;&gt;soluble&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10186659.html?nr=5&amp;amp;pmid=14568254&quot; title=&quot;prevents hepatofibrogenesis in vivo&quot;&gt;vectors&lt;/a&gt; bind and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12915548&quot; title=&quot;nitially placing the cell in a tumor-like state&quot;&gt;transform cells&lt;/a&gt; similar to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17546056?dopt=Abstract&quot; title=&quot;ELF and TBRII decreases cyclin D1 as well as hyperphosphorylated-  retinoblastoma (hyperphosphorylated-pRb&quot;&gt;RB&lt;/a&gt; protein
  7417.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19737884?dopt=Abstract&quot; title=&quot;resistant to transforming growth factor-beta (TGF-beta) because they do not express the TGF-beta type II receptor&quot;&gt;retinoblastoma&lt;/a&gt;)-gene &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12077447&quot; title=&quot;TBRII(27-136) yielded large single crystals from hanging drops using the vapor-diffusion procedure&quot;&gt;product&lt;/a&gt; (a dominant negatively acting mutant &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11777969&quot; title=&quot;successfully blocked the autocrine TGF-beta-negative regulatory loop&quot;&gt;TbetaRIIDN&lt;/a&gt;) regulated by TGFBR type II receptors polyadenine &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/2154283.html?nr=6&amp;amp;pmid=10699890&quot; title=&quot;hese genes regulate cell growth or repair DNA mismatches&quot;&gt;(A)(10)&lt;/a&gt; tract&amp;nbsp; can result in
  7418.    microsatellite instability (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10854944?dopt=Abstract&quot; title=&quot;Frameshift mutations in the transforming growth factor beta receptor   type II (TGF-betaRII)&quot;&gt;MSI&lt;/a&gt;) of the microsatellite mutator phenotype (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1786623.html?nr=5&amp;amp;pmid=10190568&quot; title=&quot;single repeat sequences in these genes provide one major route for carcinogenesis&quot;&gt;MMP&lt;/a&gt;) as RER(+), for
  7419.    &#39;replication errors&#39; exhibiting, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20565851?dopt=Abstract&quot; title=&quot;MSI phenotype include somatic mutations in the transforming growth factor beta receptor typeII&quot;&gt;somatic&lt;/a&gt; type I receptor hereditary
  7420.    mutations &lt;a href=&quot;http://www.nature.com/ng/journal/v23/n2/full/ng1099_222.html#B6&quot; title=&quot;Ewing sarcoma and other ETS transcription factors which bind DNA&quot;&gt;ETS&lt;/a&gt; transcription factors (&lt;a href=&quot;http://www.wikigenes.org/e/ref/e/12825850.html&quot; title=&quot;There was no relationship between TGFBR2 expression in the epithelium&quot;&gt;Ewing &lt;/a&gt;sarcoma
  7421.    EWS and related peripheral &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10508522&quot; title=&quot;other ETS transcription factors (which bind DNA&quot;&gt;primitive&lt;/a&gt; tumors, mononucleotide (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11384384.html?nr=10&amp;amp;pmid=16380996&quot; title=&quot;70% harbored TGFBR2, 63% BAX and only 4.5% ACVR2 mutations&quot;&gt;MSI-H&lt;/a&gt; microsatellite&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18339844&quot; title=&quot;missense mutations of the(TGFBR2) are associated with at least two different phenotypes&quot;&gt; instability&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21949851&quot; title=&quot;data dose not support those mutations as prognostic biomarkers (beyond MSI) in colorectal carcinoma&quot;&gt;high&lt;/a&gt;) hereditary &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11384384.html?nr=7&amp;amp;pmid=16380996&quot; title=&quot;tumor volume were associated with mutant ACVR2, but not TGFBR2 or BAX mutations&quot;&gt;TGFBR2&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21949851&quot; title=&quot;TGFBR2 and BAX mononucleotide mutations were detected in 74% (117/159) and 30% (48/158) of MSI-high tumors&quot;&gt;BAX&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12215842?dopt=Abstract&quot; title=&quot;SNP (ancestral T/C-allele) G to A transition in DNA sequences of mono-, di-, and trinucleotide repeats&quot;&gt;G&lt;/a&gt;)8 mononucleotide mutation guanine/adenine (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21737283&quot; title=&quot;the frequencies of the G allele of IL-17A-197 G/A and TGFR-β2-875 A/G&quot;&gt;G/A&lt;/a&gt;) with cytosine/thymine &#39;C/T&#39; colon tumors) a putative tumor suppressor
  7422.    gene mutations, epithelial-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8944762.html?nr=8&amp;amp;pmid=11514049&quot; title=&quot;TGFBR2 shown to often be a mesenchymal cell-derived growth factor&quot;&gt;mesenchymal&lt;/a&gt; transition (EMT). &lt;a href=&quot;http://www.connotea.org/article/0ad85a5ae1fcd6f9046bb873987e7f59&quot; title=&quot;(CAT)-construct expressing ETS related with 2 comments&quot;&gt;ETS&lt;/a&gt;
  7423.    supression requires functional TGFBR2, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12372879.html?nr=2&amp;amp;pmid=17117417&quot; title=&quot;a mutated transmembrane domain and loss of kinase domai&quot;&gt;truncated&lt;/a&gt; type II receptors
  7424.    dominant-negative mutants that selectively &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14311383.html?nr=1&amp;amp;pmid=18199825&quot; title=&quot;this pathway is blocked in Kaposi sarcoma herpesvirus (KSHV)-infected primary effusion lymphoma&quot;&gt;block&lt;/a&gt; type II
  7425.    receptor signaling to TGF-beta induction (cell &lt;span class=&quot;tltbox&quot;&gt;&lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/TGFBR2#5828711176523072754&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;ESE ELF3 (ESE1/ESX), ets transcription factor binds to the TGF-beta RII promoter. Autophosphorylation&quot; border=&quot;0&quot; height=&quot;137&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjIUskciI4FYBVOKzLf1C5TVIWcKmygEJcrfEub0cgipGZ3hvRVtDH4fP24-tm-6Yq-MmW1BwY2DQeLUp1WWTl2Wcf7YMBtGe-DgK_Y3SQrDd3XfP87Bgi799My1PidWWcx-lVOTA/s576/borin2.png&quot; title=&quot;ESE ELF3 (ESE1/ESX), ets transcription factor binds to the TGF-beta RII promoter. Autophosphorylation&quot; width=&quot;276&quot; /&gt;&lt;/a&gt;&lt;/span&gt;proliferation and
  7426.    differentiation and type I receptors &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8388126&quot; title=&quot;regulates cell proliferation and differentiation and extracellular matrix production.&quot;&gt;ECM&lt;/a&gt; production) by inducing the
  7427.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1016428.html?nr=4&amp;amp;pmid=9158007&quot; title=&quot;inducing cancer cells to escape the growth-inhibitory effect of TGF-beta&quot;&gt;escape&lt;/a&gt;
  7428.    of cells from TGF-beta-mediated growth control in the TGFBR2 gene characterized by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10772416?dopt=Abstract&quot; title=&quot;germline mutations associated with a HNPCC syndrome&quot;&gt;germline&lt;/a&gt; plus &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19503063&quot; title=&quot;mutated genes were ACVR2 (92%),TAF1B (84%), ASTE1/HT001 (80%) and TGFBR2 (77%)&quot;&gt;induces&lt;/a&gt; secondary &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10561005.html?nr=5&amp;amp;pmid=15350299&quot; title=&quot;carry a limited panel of RER, including a framesift at the (A)(10) tract of TGFBR2&quot;&gt;somatic&lt;/a&gt; mutations. Once the presence of TGFBR2 mutator mechanisms for &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13966185.html?nr=6&amp;amp;pmid=19503063&quot; title=&quot;the appearance of potentially immunogenic neopeptides associated with tumor progression (TNM stage, wall invasion and tumor diameter)&quot;&gt;germline&lt;/a&gt;
  7429.    mutations are generated, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12536702.html?nr=2&amp;amp;pmid=17546056&quot; title=&quot;hepatocarcinogenesis cyclin-dependent kinase&quot;&gt;links&lt;/a&gt; (soluble &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10186659.html?nr=5&amp;amp;pmid=14568254&quot; title=&quot;prevents hepatofibrogenesis in vivo&quot;&gt;vectors&lt;/a&gt;) have a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20079749&quot; title=&quot;(mTbetaR-II(DNA)). Elf3 contacts&quot;&gt;Elf3&lt;/a&gt; &#39;C-terminal&#39; DNA-binding ETS-related domain &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/10644990.html&quot; title=&quot;The epithelium-specific transcription factor,ELF3, binds to the TGF-beta RII promoter&quot;&gt;retroviral&lt;/a&gt;
  7430.    (CAT)-&lt;a href=&quot;http://www.wikigenes.org/e/ref/e/14582709.html&quot; title=&quot;Chloramphenicol acetyltransferase a bacterial enzyme prevents chloramphenicol from binding to ribosomes&quot;&gt;construct&lt;/a&gt; expressing microsatellite instability (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10601582.html?nr=2&amp;amp;pmid=16108056&quot; title=&quot;(MSI) and carry frameshift mutations in a polyadenine tract (BAT-RII) in TGFBR2&quot;&gt;MSI&lt;/a&gt;)
  7431. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11381716.html?nr=6&amp;amp;pmid=16388502&quot; title=&quot;t frameshift mutations in mononucleotide repeats&quot;&gt;    related to&lt;/a&gt; DNA-mismatch repair (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13050548.html?nr=9&amp;amp;pmid=18941508&quot; title=&quot;TGFbeta family receptors is abrogated in DNA Mismatch repair (MMR)&quot;&gt;MMR&lt;/a&gt; proficient and deficiencies) sequences of « &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15470689.html?nr=8&amp;amp;pmid=20701609&quot; title=&quot;of a panel of 157 miRNAs Of these eight down-expressed miRNAs, three remained down-regulation in a validation&quot;&gt;Three&lt;/a&gt;&#39;&#39;&#39; specific small interfering RNAs (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21725601&quot; title=&quot;designed for targeting human TGFβRII&quot;&gt;siRNAs&lt;/a&gt;)&#39;&#39;&#39; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12215842?dopt=Abstract&quot; title=&quot;These repeats consisted of (A)10 in the TGF beta RI&quot;&gt;mono-, di-, and tri-&lt;/a&gt;nucleotide repeat hypermutable sequences targets many mRNAs mainly in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22684895&quot; title=&quot;One miRNA targets many mRNAs, which can be regulated by many miRNA&quot;&gt;3&#39;UTR&lt;/a&gt;&#39;&#39;&#39; of mRNA at the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?term=11709717&quot; title=&quot;the poly(A)(10) tract compared to other regions of the TGFBR2 gene&quot;&gt;poly(&lt;/a&gt;A)(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20197483?dopt=Abstract&quot; title=&quot;5-ASA Mesalazine increases replication fidelity in mononucleotide, dinucleotide, and tetranucleotide repeats&quot;&gt;10&lt;/a&gt;) tract MMR (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9091478.html?nr=4&amp;amp;pmid=11709717&quot; title=&quot;hypermutable sequences Repetitive tracts within the coding regions of TGFBR2 and BAX&quot;&gt;MRC-1&lt;/a&gt;) deficiency, results in intestinal epithelial defects of genes &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12661003?dopt=Abstract&quot; title=&quot;mutated in MSI(+) cancer (TGFBR2, IGF2R, BAX).&quot;&gt;known to be&lt;/a&gt; mutated, &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/11507078.html&quot; title=&quot;Deoxycytidine , a component of deoxyribonucleic acid.can be phosphorylated by deoxycytidine kinase&quot;&gt;deoxycytidine&lt;/a&gt;
  7432.    (DCK) restores TGF-beta type II receptor (MMR &#39;initiated&#39; Apc mutation) in many cancer cell lines.&lt;/div&gt;
  7433. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7434. google_ad_client=&quot;pub-9610428118332343&quot;;
  7435. google_ad_host=&quot;&quot;;
  7436. google_ad_width=200;
  7437. google_ad_height=90;
  7438. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7439. google_color_border=&quot;EEEECC&quot;;
  7440. google_color_bg=&quot;EEEECC&quot;;
  7441. google_color_link=&quot;445566&quot;;
  7442. google_color_url=&quot;445566&quot;;
  7443. google_color_text=&quot;333333&quot;;
  7444. //--&gt;&lt;/script&gt;
  7445. &lt;script type=&quot;text/javascript&quot;
  7446.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7447. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2012/12/human-tgf-beta-type-ii-receptor.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiAbimzPBmuqiQxjGQJpvFXZ9DFPzd1PHOKUKsAxfUC2IZZOkMnJF5I4chC0Whh9PE8jVFZhWCBhe4V7H-vUh8v7JgZipSkOrKr_ThycdixYppMeTuG0Yd3PN-rtGokF_QEVGRCnA/s72-c/influblk3.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-398267044476254369</guid><pubDate>Thu, 08 Nov 2012 21:07:00 +0000</pubDate><atom:updated>2013-01-01T11:18:37.014-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">FK506</category><category domain="http://www.blogger.com/atom/ns#">phosphatidylinositol</category><category domain="http://www.blogger.com/atom/ns#">TGFB</category><title>Transforming growth factor beta 1</title><description>&lt;div style=&quot;text-align: right;&quot;&gt;
  7448. &lt;/div&gt;
  7449. &lt;div style=&quot;text-align: justify;&quot;&gt;
  7450. &lt;table cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; class=&quot;tr-caption-container&quot; style=&quot;float: right; margin-left: 1em; text-align: right;&quot;&gt;&lt;tbody&gt;
  7451. &lt;tr&gt;&lt;td style=&quot;text-align: center;&quot;&gt;&lt;a data-mce-href=&quot;https://picasaweb.google.com/100787464692550241934/TGFBR?authkey=Gv1sRgCOi39aOe8MujKg#5813747125641898962&quot; href=&quot;https://picasaweb.google.com/100787464692550241934/TGFBR?authkey=Gv1sRgCOi39aOe8MujKg#5813747125641898962&quot; style=&quot;clear: right; margin-bottom: 1em; margin-left: auto; margin-right: auto;&quot;&gt;&lt;img align=&quot;left&quot; alt=&quot;&quot; border=&quot;0&quot; data-mce-src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhsm1e2Wrt4JuAsy4oYRiWTKIgQYpUioE0iwLOw7_FxFhvPYNUW3Zbz8weIzasUsXID0M0a4LQqsFFfR_iy4QfFdwNHs7AGI7_aGPRrp6XAT9wdwfQHP0CFwmNDYKNwv1NIaTrrtA/s320/+2+TGFBR1+molecules+ternary.png&quot; height=&quot;310&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhsm1e2Wrt4JuAsy4oYRiWTKIgQYpUioE0iwLOw7_FxFhvPYNUW3Zbz8weIzasUsXID0M0a4LQqsFFfR_iy4QfFdwNHs7AGI7_aGPRrp6XAT9wdwfQHP0CFwmNDYKNwv1NIaTrrtA/s320/+2+TGFBR1+molecules+ternary.png&quot; width=&quot;320&quot; /&gt;&lt;/a&gt;&lt;/td&gt;&lt;/tr&gt;
  7452. &lt;tr&gt;&lt;td class=&quot;tr-caption&quot; style=&quot;text-align: center;&quot;&gt;synthetic ideas receptor complex of 2 TGFBR1 molecules&lt;/td&gt;&lt;/tr&gt;
  7453. &lt;/tbody&gt;&lt;/table&gt;
  7454. TGFBR1 are transmembrane tyrosine kinases or associated with
  7455.    cytoplasmic tyrosine kinase &lt;a href=&quot;http://www.uniprot.org/citations/18333754&quot; title=&quot;TGF-beta a multifunctional regulator of chondrocyte proliferation, differentiation, and extracellular matrix production&quot;&gt;TGF-β&lt;/a&gt;&#39;s » specificity with type II receptors &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22617150&quot; title=&quot;onceptually a simple and linear signaling pathway&quot;&gt;activating&lt;/a&gt; type I receptors, has the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21821041&quot; title=&quot;a signaling superfamily with more than 30 members they signal through a highly restricted subset of receptors known as TGF-β type I receptor (TβR-I) and TGF-β type II&quot;&gt;pre-helix&lt;/a&gt; extension and its role in binding are present on the plasma membrane (cytoplasmic domain) both as monomers and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9472030&quot; title=&quot;TbetaRII in the absence of ligand is a homodimer on the cell surface&quot;&gt;homo-&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19147499&quot; title=&quot;TbetaRI.TbetaRII hetero-oligomerization&quot;&gt;hetero-oligomers&lt;/a&gt; chromosome 9q22.33. 6 : [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/7046&quot;&gt;§§&lt;/a&gt;; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/92691.html?ID=86233&quot;&gt;†&lt;/a&gt;, &lt;a href=&quot;http://www.uniprot.org/uniprot/P36897&quot;&gt;‡&lt;/a&gt;]. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9892009&quot; title=&quot;Activins and other members of the transforming growth factor-beta-like superfamily&quot;&gt;Activin&lt;/a&gt; receptor-like kinase 5 (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9562209.html?nr=5&amp;amp;pmid=12384983&quot; title=&quot;differences in transcriptional regulation patterns between ALK-1 and ALK-5&quot;&gt;ALK-5&lt;/a&gt;)
  7456.    is a TGF-beta &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9233797&quot; title=&quot;the association of TbetaR-I with TbetaR-II&quot;&gt;type I&lt;/a&gt; receptor, activation of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9417915?dopt=Abstract&quot; title=&quot;i.e. he TGFBR1 gene that encodes the C-terminal portion of the serine-threonine kinase domain&quot;&gt;Type I&lt;/a&gt; and
  7457. binding to the    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/490491.html?nr=4&amp;amp;pmid=8576253&quot; title=&quot;type I and type II receptors form distinct subgroups in the serine/threonine kinase receptor family&quot;&gt;type II&lt;/a&gt; receptors (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15702480?dopt=Abstract&quot; title=&quot;the auxiliary TGF-beta receptor endoglin interact with ALK-1 (a type I TGF-beta receptor)&quot;&gt;as well&lt;/a&gt; as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19736306?dopt=Abstract&quot; title=&quot;Endoglin has been found to be part of the TGF-beta1 receptor complex&quot;&gt;Endoglin&lt;/a&gt;, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18974388?dopt=Abstract&quot; title=&quot;2 different isoforms (L, long; S, short) of endoglin&quot;&gt;ENG&lt;/a&gt; (p.&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13740536.html?nr=10&amp;amp;pmid=19299629&quot; title=&quot;Novel variants (mutations) identified in ENG (p.A60E) and TGFBR3 (p.W112R)&quot;&gt;A60E&lt;/a&gt;) may increase &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15702480&quot; title=&quot;endoglin potentiates TGF-beta/ALK1 signaling&quot;&gt;susceptibility&lt;/a&gt; to various types of &lt;a href=&quot;http://www.uniprot.org/citations/15382067&quot; title=&quot;TGF-beta signaling is frequently perturbed in many human cancers&quot;&gt;cancer&lt;/a&gt;, or augmented (&lt;a href=&quot;http://www.uniprot.org/citations/15661740&quot; title=&quot;early endosome antigen 1 ((EEA-1) Phosphatidylinositol 3-phosphate) non-lipid raft-associated pools results in augmented TGF-beta1 Smad signaling&quot;&gt;PtdIns3P&lt;/a&gt;) phosphorylation in (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17452325&quot; title=&quot;Smads in a non-canonical Smad signaling pathway&quot;&gt;non-Smad&lt;/a&gt; signalling pathways) integrated ( &lt;a href=&quot;http://www.uniprot.org/citations/16314481&quot;&gt;syndecan 4&lt;/a&gt;) procontractile AJ interactions « in disease states.) are &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20101143&quot; title=&quot;Type II distinction between bronchioloalveolar carcinoma and other adenocarcinomas&quot;&gt;detected&lt;/a&gt; and blocked by a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11356828&quot; title=&quot;X-linked inhibitor of apoptosis protein (XIAP) is a potent suppressor of apoptotic cell death&quot;&gt;anti&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9435577&quot; title=&quot;treatment of cells with TGF-beta 1 mediate apoptosis, cell cycle analysis and DNA ladder studies&quot;&gt;apoptotic&lt;/a&gt; TGFbeta1-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15961557&quot; title=&quot;dopamine and the dopamine agonist bromocriptine stimulated TGFbeta1 secretion and TGFbeta1 mRNA expression&quot;&gt;neutralizing antibody&lt;/a&gt; (To understand the expressions of TGFBR1,) at the cell surface transducing the TGF-beta &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19736306&quot; title=&quot;endoglin is phosphorylated on cytosolic domain threonine residues by the TGF-beta type I receptors&quot;&gt;signal&lt;/a&gt; to the cytoplasm (where the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9759503&quot; title=&quot;cell-specific manner, the multifunctional nature of TGF-beta&quot;&gt;SMAD proteins&lt;/a&gt;, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17146441&quot; title=&quot;Smad2 and expression of a TGF-beta target gene Smad7&quot;&gt;phosphorylate&lt;/a&gt; where they interact with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17452325&quot; title=&quot;primary intracellular mediators of TGF-beta signaling Smad2&quot;&gt;DNA&lt;/a&gt; and move into the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9525694&quot; title=&quot;TGF-beta signalling involves a direct pathway from the cell surface receptors to the nucleus&quot;&gt;nucleus&lt;/a&gt;) involved in
  7458.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20301312&quot; title=&quot;TGFBR1 and TGFBR2, the only two genes known to be associated with LDS&quot;&gt;type II &lt;/a&gt;cell-matrix interactions, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18243111&quot; title=&quot;TGF-beta3 in complex with the extracellular domains of both pairs of receptors&quot;&gt;ALK1 &lt;/a&gt;and &lt;a href=&quot;http://www.uniprot.org/citations/19506300&quot; title=&quot;disruption of either pathway leads to disease&quot;&gt;ALK5&lt;/a&gt;** adherens junction (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12000714&quot; title=&quot;TGF-beta 1 led to loss of cell-cell contact and disassembly of both adherens and tight junctional&quot;&gt;AJ&lt;/a&gt;)
  7459.      complex (more basal than TJs) display &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18333754&quot; title=&quot;identified ALK1 as a second type I TGF-beta receptor&quot;&gt;opposing&lt;/a&gt; functions... &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7630736.html?nr=6&amp;amp;pmid=8242743&quot; title=&quot;TGF beta involves the formation of a heteromeric complex of two different serine/threonine kinase receptors&quot;&gt;Both&lt;/a&gt; are: transmembrane
  7460.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9856985&quot; title=&quot;(TbetaR-I) and type II (TbetaR-II) serine-threonine kinase receptors&quot;&gt;serine&lt;/a&gt; / &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9417915&quot; title=&quot;Both are transmembrane serine-threonine receptor kinases&quot;&gt;threonine&lt;/a&gt; kinase also known as activin-like kinase (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20571025&quot; title=&quot;serine/threonine receptor, specifically the TGF-beta type I receptor&quot;&gt;ALK&lt;/a&gt;) V*, epithelial-to-&lt;a href=&quot;http://www.uniprot.org/citations/20086175&quot; title=&quot;TGFbeta-Smad signaling provides an &amp;quot;epigenetic memory&amp;quot; to maintain silencing of critical genes&quot;&gt;mesenchymal&lt;/a&gt;
  7461.    transition (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19375841?dopt=Abstract&quot; title=&quot;findings suggest that co-cultivation with hPMSCs leads to epithelial to mesenchymal transition (EMT)&quot;&gt;EMT&lt;/a&gt;) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20086175&quot; title=&quot;a hyperactive TGFbeta-TGFbetaR-Smad2 signaling axis needed to maintain epigenetic silencing of critical EMT genes&quot;&gt;responses&lt;/a&gt;, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?term=17724140&quot; title=&quot;BMP7 expression in prostate cancer cell lines&quot;&gt;BMP7&lt;/a&gt; can &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15270668?dopt=Abstract&quot; title=&quot;common variants of the TGF-beta pathway ligand and receptors that alter TGF-beta signaling modify cancer risk&quot;&gt;counteract&lt;/a&gt; with down-regulation of &quot;&#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15761153&quot; title=&quot;Occludin regulates TGFbeta type I receptor localization for efficient TGFbeta-dependent dissolution of tight junctions&quot;&gt;occludin&lt;/a&gt; for efficient
  7462.    TGF-beta-dependent &#39;dissolution&#39; (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13775624.html?nr=1&amp;amp;pmid=19255252&quot; title=&quot;(Smurf2), a HECT type E3 ubiquitin ligase, is an important regulator of the TGF-beta signaling pathway&quot;&gt;E3&lt;/a&gt;-proteasome-mediated &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9172401.html?nr=3&amp;amp;pmid=12151385&quot; title=&quot;, it failed to induce the ubiquitination and degradation of TbetaR-I&quot;&gt;TbetaR-I&lt;/a&gt;〃 associated type II degradation and &lt;a href=&quot;http://www.uniprot.org/citations/20663871&quot; title=&quot;Smad7 (MH2) has two modes of interaction with type I receptors&quot;&gt;Smad7&lt;/a&gt; inhibition)&amp;nbsp; during follicular
  7463.    development (where Smad expression is &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10077159&quot; title=&quot;expression by estrogens and androgens&quot;&gt;not regulated&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21791611&quot; title=&quot;TSC-22 forms a teranary~ complex with TRB-1 and TBR-II&quot;&gt;TSC-22&lt;/a&gt; is dependent on ~ can be attributed to &lt;a href=&quot;http://www.proteinmodelportal.org/query/uniprot/P17813&quot; title=&quot;No experimental structures found&quot;&gt;Endoglin&lt;/a&gt;) from the plasma membranes &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13820995.html?nr=9&amp;amp;pmid=19319146&quot; title=&quot;tight junction (TJ) protein expression leading to changes in BBB functional integrity&quot;&gt;tight
  7464.      junctions&lt;/a&gt; (TJ) &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13820995.html?nr=9&amp;amp;pmid=19319146&quot; title=&quot;TJ proteins (i.e., claudin-5, occludin, zonula occluden (ZO-1))&quot;&gt;protein&lt;/a&gt;*&quot;&#39; expression conducive to spermatozoa &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21957188&quot; title=&quot;the distribution pattern of tight junction proteins occludin&quot;&gt;maturation and storage&lt;/a&gt;. (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8700038.html?nr=1&amp;amp;pmid=11102446&quot; title=&quot;through the cooperation of the type I and II serine/threonine kinase receptors&quot;&gt;TGF-beta&lt;/a&gt;) signaling proceeds from the cell membrane to the nucleus, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14210235.html?nr=5&amp;amp;pmid=19998449&quot; title=&quot;; TGFBR1: 9A/6A and IVS7G+24A; FURIN: C-229T worse survival for FURIN C-229T heterozygotes (hazard ratio: 1.63, 95%CI: 1.08-2.46)&quot;&gt;AAV&lt;/a&gt; (&lt;a href=&quot;http://www.uniprot.org/citations/19494318&quot; title=&quot;Adenovirus overexpressing constitutive active ALK5 transfection to TGFB a protective factor for cartilage&quot;&gt;adenovirus&lt;/a&gt;)**-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20368424&quot; title=&quot;(TGFBR1) polymorphisms, particularly a coding CGC insertion (rs11466445, TGFBR1*6A/9A) in exon 1,&quot;&gt;TGF-beta1&lt;/a&gt;^ gene transfer integration &lt;a href=&quot;http://lnwme.blogspot.com/2010/02/agc1-novel-neoepitopes-n-and-c.html&quot; title=&quot;AAV-site 1, (adeno-associated virus integration site 1)&quot;&gt;site 1&lt;/a&gt; (allele-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20052600&quot; title=&quot;the protective effect of the C allele&quot;&gt;specific&lt;/a&gt; (C &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19916025&quot; title=&quot;the 45 bp nucleotide deletions in exon 1 of the receptor... A deletion in the polyadenine tract of exon 3 of TGF-beta RII&quot;&gt;to;&lt;/a&gt; T) expression^ (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19509225&quot; title=&quot;germline ASE results in a lowered expression of one of the TGFBR1 alleles&quot;&gt;germline&lt;/a&gt;** allele-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19538729&quot; title=&quot;disequilibrium of the TGFBR1*6A allele with mutations that cause allele-specific expression&quot;&gt;specific&lt;/a&gt; expression &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19672284&quot; title=&quot;Genotyping of allele of one SNP in TGFBR1 and two SNPs in TGFBR2&quot;&gt;ASE&lt;/a&gt;)) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21127043&quot; title=&quot;Adenoviral overexpression of GATA6 in turn enhanced angiogenic function&quot;&gt;including&lt;/a&gt; growth differentiation factor-&lt;a href=&quot;http://lnwme.blogspot.com/2012/06/follistatin-natural-antagonist-of.html&quot; title=&quot;Follistatin correlated with Smads (of intron 1‡) and GDF9 to varied degrees&quot;&gt;9&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15483083?dopt=Abstract&quot; title=&quot;indicated a key role for this signaling mediator in ovarian folliculogenesis&quot;&gt;GDF9&lt;/a&gt; both at the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19363708&quot; title=&quot;the mRNA and protein expression levels of TGF-beta1, TGF-beta ReceptorI (TbetaRI ()), TGF-beta ReceptorII (TbetaRII ()), Smad2 (), Smad4 (//) and Smad7&quot;&gt;protein&lt;/a&gt; and &lt;a href=&quot;http://www.uniprot.org/citations/20427239&quot; title=&quot;TGFbetaR1 mRNA transcripts were identified in granulosa cells and oocytes&quot;&gt;mRNA&lt;/a&gt; expression levels of TGF-beta1specificity) are regulated by members of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20427239&quot; title=&quot;TGFBR and mRNA levels suggests that GDF9 may have functions in human preantral follicles&quot;&gt;TGF-beta&lt;/a&gt;, and activin*. TGF-beta binds to these receptor&#39;s 17alpha-hydroxylase/&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13947384.html?nr=1&amp;amp;pmid=19701832&quot; title=&quot;It is found in the zona reticularis of the adrenal medulla&quot;&gt;17,20&lt;/a&gt; lyase activity, ALK5 (TbetaRII) &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12836590.html?nr=11&amp;amp;pmid=18333754&quot; title=&quot;results show that ALK1 inhibits, whereas ALK5 potentiates&quot;&gt;inhibitors&lt;/a&gt;* coexpression is mediated by the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19639490&quot; title=&quot;ALK5 in activating the NGF (Nerve growth factor) system in PSC (pancreatic stellate cells)&quot;&gt;ALK5&lt;/a&gt; receptor; TGF-beta induces &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10992847.html?nr=7&amp;amp;pmid=15546867&quot; title=&quot;analyzed the receptors through which TGF-beta1 controls expression of BGN&quot;&gt;BGN&lt;/a&gt; [biglycan] &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20571025?dopt=Abstract&quot; title=&quot;growth factors modify the structure of the glycosaminoglycan (GAG) chains on biglycan leading to enhanced LDL binding&quot;&gt;expression&lt;/a&gt; through (the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9574692.html?nr=6&amp;amp;pmid=12202987&quot; title=&quot;(TGF-beta1) is a multifunctional cytokine, (TGFBR2), SMAD2 gene (SMAD2), SMAD3 gene (SMAD3), SMAD4 gene (SMAD4), and SMAD7 gene (SMAD7), all of which compose the TGF-beta1 signaling pathway.&quot;&gt;Smad&lt;/a&gt;-activating &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12151385&quot; title=&quot;the C2 domain of Smurf1 and is essential for the inhibitory effect of Smad7 in the transforming growth factor-beta&quot;&gt;function of&lt;/a&gt;〃)... &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12446693&quot; title=&quot;TGF-beta type I receptors (also termed ALK5s) functional ALK5 protein. Mutation in the L45 loop region did not affect the binding of inhibitory Smads&quot;&gt;ALK5&lt;/a&gt;〃• that &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13821174.html?nr=7&amp;amp;pmid=19494318&quot; title=&quot;. Adenovirus overexpressing constitutive active ALK5 transfection&quot;&gt;varies&lt;/a&gt;** between &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/16163416.html?nr=6&amp;amp;pmid=21624477&quot; title=&quot;normal and osteoarthritis (OA) human cartilages (CAs) damage in post-injury OA results primarily from biomechanical, cell biologic and mediator changes that promote a fibroblastic phenotype in joint cells&quot;&gt;tissues&lt;/a&gt;.
  7465.    There is a conserved &lt;a href=&quot;http://peds.oxfordjournals.org/content/12/2/155.abstract&quot; title=&quot;not all residues could be tolerated at this nearly invariant aspartate in kinase subdomain IX&quot;&gt;aspartic
  7466.      acid&lt;/a&gt; residue, which is &lt;a href=&quot;http://www.ebi.ac.uk/interpro/IEntry?ac=IPR008271#PUB00005145&quot; title=&quot;In the central part of the catalytic domain there is a conserved aspartic acid residue&quot;&gt;important&lt;/a&gt;
  7467.    for the catalytic &lt;a href=&quot;http://prosite.expasy.org/PDOC00100#ref6&quot; title=&quot;IntEnz Enzyme Nomenclature EC 2.7.11.7 (EC 2.7.11.30 receptor protein serine/threonine kinase)PROSITE:PDOC00100 myosin-heavy-chain kinase&quot;&gt;activity&lt;/a&gt; (&lt;a href=&quot;http://www.ebi.ac.uk/intenz/query?cmd=SearchEC&amp;amp;ec=2.7.11&quot; title=&quot;EC 2.7.11.7 myosin-heavy-chain kinase EC 2.7.11.30 receptor protein serine/threonine kinase&quot;&gt;Note:&lt;/a&gt;
  7468.    the suggested &lt;a href=&quot;http://www.uniprot.org/citations/15247277&quot; title=&quot;indicating a novel cross-talk between serine/threonine kinase receptors and G-protein coupled receptors&quot;&gt;PTK&lt;/a&gt;~&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9435577&quot; title=&quot;enhanced PI 3-kinase activity associated with the type I TGF-beta receptor&quot;&gt;probability&lt;/a&gt;, with &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7630736.html?nr=1&amp;amp;pmid=8242743&quot; title=&quot;the formation of a heteromeric complex of two different serine/threonine kinase receptors&quot;&gt;two&lt;/a&gt;
  7469.    protein kinase signatures the type I and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1390568.html?nr=12&amp;amp;pmid=9525694&quot; title=&quot;the type II receptor transphosphorylates and activates the type I receptor kinase&quot;&gt;type
  7470.      II&lt;/a&gt; receptors, is close to 100%,) of the enzyme. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9233797&quot; title=&quot;(TGFbeta) signaling requires phosphorylation of the type I receptor TbetaR-I by TbetaR-II&quot;&gt;TGFB1&lt;/a&gt;
  7471.    regulates cell cycle progression; involves its binding to TGFBR2 and
  7472.    activation of TGFBR1. The formation of the receptor complex composed
  7473.    of 2 TGFBR1 and 2 TGFBR2 molecules results in the phosphorylation
  7474.    and the activation. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15063558.html?nr=6&amp;amp;pmid=20101206&quot; title=&quot;Such soluble matrix components, including collagens, fibronectin and laminin in TGF-beta type I receptor recruitment to the ligand&quot;&gt;Ligand&lt;/a&gt; binding may be a natural ligand
  7475.    Immunophilins &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11583628&quot; title=&quot;FKBP12 by switching the GS region from a binding site for an inhibitor into a binding surface for substrate&quot;&gt;FKBP12&lt;/a&gt;␠ (where &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9346894&quot; title=&quot;actions of the drug FK506 in whose presence FKBP12&quot;&gt;FKBP12&lt;/a&gt; predominated in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8530343&quot; title=&quot;T beta R-I specifically interacts with farnesyl-protein transferase (FT alpha) in the yeast two-hybrid system&quot;&gt;yeast&lt;/a&gt; specifically with » &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9215638?dopt=Abstract&quot; title=&quot;formation of Smad2/Smad4 complexes and mutations in Smad7 that interfere with receptor binding disrupt its inhibitory activity&quot;&gt;mutationally&lt;/a&gt;₮ activated &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7518616&quot; title=&quot;the immunophilin FKBP-12, a target of the macrolides FK506&quot;&gt;TbetaR-I&lt;/a&gt; , (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1412444.html?nr=8&amp;amp;pmid=9545258&quot; title=&quot;employing the triple mutation L193A,P194A,T204D in a yeast two-hybrid system&quot;&gt;TRAP-1&lt;/a&gt;) can distinguish &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19214138?dopt=Abstract&quot; title=&quot;Cells were particularly prone toward radiation toxicity when carrying, in addition to (TGFBR1) *6A, the variant allele of rs11568785&quot;&gt;*the receptor&lt;/a&gt; from wild-type receptor) in response to transient (Variant alleles with the deletion of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19390964&quot; title=&quot;A polymorphic 9-bp deletion in exon 1 of TGFBR1 (TGFBR1*6A)&quot;&gt;exon-1&lt;/a&gt; designated 6A) expression of TGFBR-(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18316594&quot; title=&quot;TGFBR1*6A is a common hypomorphic variant of the type 1 TGFB&quot;&gt;type&lt;/a&gt;)-1&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10801739.html?nr=7&amp;amp;pmid=15833881&quot; title=&quot;variants of the TGFBR1*6A allele and for the TGFB1 T29C and *TT&quot;&gt;*6A&lt;/a&gt; (rs&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13490089.html?nr=4&amp;amp;pmid=19004027&quot; title=&quot;the TGFBR1*6A allele (rs11466445)&quot;&gt;11466445&lt;/a&gt;)
  7476.    there are&amp;nbsp; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9801021.html?nr=3&amp;amp;pmid=12446693&quot; title=&quot;generated TGF-beta type I receptors (also termed ALK5s) with mutations in the L45 loop of the kinase domain, termed ALK5(D266A) and ALK5(3A)&quot;&gt;distinct&lt;/a&gt; (binding of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12082094&quot; title=&quot;molecular markers characteristic of pre- and hypertrophic chondrocytes, such as...&quot;&gt;X&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12446693&quot; title=&quot;mutation in the L45 loop region did not affect the binding of inhibitory Smads but did abrogate...&quot;&gt;linked&lt;/a&gt;〃• inhibitor) receptor-initiated intracellular pathways that are found to occur also« which bind &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10025408&quot; title=&quot;in complex with the FK506-binding protein FKBP12 in the cytoplasmic portion of the TGFBR1 receptor&quot;&gt;FK506&lt;/a&gt;␠ (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12900981.html?nr=5&amp;amp;pmid=18684975&quot; title=&quot;generate, activate latent TGFbeta&quot;&gt;Tacrolimus&lt;/a&gt;) immunosuppressive drugs - (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19494318&quot; title=&quot;ALK1 Smad1/5/8, ALK5 Smad2/3 markers: an increased Id-1 (inhibitor of DNA binding-1)/PAI-1 (plasminogen activator inhibitor-1) ratio expression in human cartilage&quot;&gt;PAI1&lt;/a&gt;; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10498890&quot; title=&quot;response to TGF-beta1, without altering TGF-beta1 - mediated induction of PAI-I&quot;&gt;plasminogen&lt;/a&gt;
  7477.    activator inhibitor-1), by the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22610405/&quot; title=&quot;HA-promoted angiogenesis, which involved RHAMM-TGFβRI signaling&quot;&gt;levels&lt;/a&gt; of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22100658&quot; title=&quot;radiotherapy can increase cardiovascular disease (CVD) risk examined the effects of two polymorphisms, TGFβ1 29C&amp;gt;T and PAI-1 5G&amp;gt;4G, on CVD incidence&quot;&gt;activated &lt;/a&gt;receptors
  7478.    required to maintain active intracellular messengers SMADs
  7479.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21172820&quot; title=&quot;TGFβ receptor (TβR) activates R-Smad-dependent pathways, such as Smad2/3&quot;&gt;SMAD2&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17099224&quot; title=&quot;TGF-beta RNA-binding protein with multiple splicing (RBPMS), a member of the RNA-binding protein family, physically interacts with Smad2, Smad3 and Smad4 both in vitro and in vivo&quot;&gt;SMAD4&lt;/a&gt;) RNA-binding protein with multiple splicing (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17099224&quot; title=&quot;TGF-beta RNA-binding protein with multiple splicing (RBPMS), a member of the RNA-binding protein family, physically interacts with Smad2, Smad3 and Smad4 both in vitro and in vivo&quot;&gt;RBPMS&lt;/a&gt;) complex, however &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17099224?dopt=Abstract&quot; title=&quot;RNA-binding protein with multiple splicing (RBPMS) physically interacts with Smad2, Smad3 and Smad4 both in vitro and in vivo&quot;&gt;Smad3&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21068203&quot; title=&quot;Variation in TGFβ1, TGFβR1, and Smad3 seemed to influence survival after diagnosis of colon and rectal cancer&quot;&gt;partners&lt;/a&gt; subsequently translocated binds &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14718519?dopt=Abstract&quot; title=&quot;TbetaRI mediated by Smad7 is an effective mechanism for governing negative feedback in TGFbeta signaling&quot;&gt;Smad7&lt;/a&gt;₮ to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20663871&quot; title=&quot;Smad7 has two modes of interaction with type I receptors&quot;&gt;type I&lt;/a&gt; receptor (TGFbeta RI (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18830930&quot; title=&quot;xpression patterns of TGFB () signaling protein&quot;&gt;ALK5&lt;/a&gt;)) that the effect is dependent on TGFB-induced transcription (rapidly activate &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12974945&quot; title=&quot;Systematic analysis of the TGF-beta / Smad signalling pathway&quot;&gt;TGFbeta/Smad&lt;/a&gt; signaling) in the cytoplasm shuttle into the nucleus through &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14729511&quot; title=&quot;may be an important mechanism in the vessel wall for controlling TGF-beta responses in endothelial cells&quot;&gt;Smad&lt;/a&gt; proteins as primary intracellular mediators.&lt;/div&gt;
  7480. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7481. google_ad_client=&quot;pub-9610428118332343&quot;;
  7482. google_ad_host=&quot;&quot;;
  7483. google_ad_width=200;
  7484. google_ad_height=90;
  7485. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7486. google_color_border=&quot;EEEECC&quot;;
  7487. google_color_bg=&quot;EEEECC&quot;;
  7488. google_color_link=&quot;445566&quot;;
  7489. google_color_url=&quot;445566&quot;;
  7490. google_color_text=&quot;333333&quot;;
  7491. //--&gt;&lt;/script&gt;
  7492. &lt;script type=&quot;text/javascript&quot;
  7493.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7494. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2012/11/transforming-growth-factor-beta-1.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhsm1e2Wrt4JuAsy4oYRiWTKIgQYpUioE0iwLOw7_FxFhvPYNUW3Zbz8weIzasUsXID0M0a4LQqsFFfR_iy4QfFdwNHs7AGI7_aGPRrp6XAT9wdwfQHP0CFwmNDYKNwv1NIaTrrtA/s72-c/+2+TGFBR1+molecules+ternary.png" height="72" width="72"/><thr:total>1</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-7746751100782321896</guid><pubDate>Thu, 16 Aug 2012 22:36:00 +0000</pubDate><atom:updated>2012-08-16T12:54:30.834-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">BMP</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>CRYSTAL STRUCTURE OF ACTIVIN RECEPTOR TYPE II KINASE DOMAIN FROM HOMO SAPIENS</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7495. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/ACVR2B#5777392506621428962&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;TITLE CRYSTAL STRUCTURE OF ACTIVIN RECEPTOR TYPE II KINASE DOMAIN TITLE 2 FROM HUMAN&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgoksqAmXpkvx8dCfYWm4Cd49gjRqoGTFQ-DTIFp459h7i-ibKiOtCjXN768M2Y7Bvd471O8ISm_AmcsuM0meh2GueofmGOQ1JHowoEbWNmnPuMPRS1SHYa6eatmRsAXgTx4BOoRQ/s512/2QLU-organic2.png&quot; style=&quot;border: 0px solid; height: 236px; width: 200px;&quot; title=&quot;TITLE CRYSTAL STRUCTURE OF ACTIVIN RECEPTOR TYPE II KINASE DOMAIN TITLE 2 FROM HUMAN&quot; /&gt;&lt;/a&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17893364&quot; title=&quot;The crystal structure reveals...&quot;&gt;ACVR2B&lt;/a&gt; of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15304227&quot; title=&quot;achieved by binding to two ActRII chains that immobilize activin in a type I binding-competent orientation&quot;&gt;type I&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8049070&quot; title=&quot;isoforms IIB2 and IIB4 were the major mRNA species expressed in both female and male gonads and extragonal reproductive tissues&quot;&gt;IB&lt;/a&gt; the major mRNA species found during &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7916681&quot; title=&quot;isolated ActRIIB cDNA clones revealed that ActRIIB2 was the major isoform found in rat testis&quot;&gt;reproductive&lt;/a&gt; development, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15123686&quot; title=&quot;mutants able to bind ActRII but unable to bind ALK4 and which would be, therefore, candidate type II activin receptor antagonists&quot;&gt;type II&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21353874&quot; title=&quot;Actvin and myostatin bind to activin type II receptors (ActRIIA and ActRIIB) http://www.ncbi.nlm.nih.gov/sites/homologene/863&quot;&gt;IIA&lt;/a&gt; structurally &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16135664&quot; title=&quot;expression (P&amp;lt;0.05) of ActRIIA and betaglycan mRNA were found in the hen pituitary gland&quot;&gt;related&lt;/a&gt; activin receptors Locus:
  7496.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9621519&quot; title=&quot;a 1.2-Mb fragment of human genomic DNA on 3p22-p21.3, we found the gene encoding activin receptor type IIB&quot;&gt;3p22.2&lt;/a&gt; : [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/93&quot;&gt;§§&lt;/a&gt;; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/86233.html?ID=95565&quot;&gt;†&lt;/a&gt;] and activates its &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19699739&quot; title=&quot;cloned and characterized from grass carp sequence identity (80-96%) to its counterparts in human&quot;&gt;serine/threonine&lt;/a&gt; kinase type-2 receptor
  7497.    then phosphorylates and activates (required for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12660162&quot; title=&quot;The crystal structure of the complex is consistent with recruitment of two type I receptors into a close packed arrangement at the cell surface&quot;&gt;extracellular&lt;/a&gt; ligand binding the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16330774&quot; title=&quot;a soluble form of the activin type IIB receptor (ACVR2B), which can cause dramatic increases in muscle mass&quot;&gt;myostatin&lt;/a&gt;* signaling pathway), &#39;the&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16039645&quot; title=&quot;in the dorsal neural tube (In the developing vertebrate) interact with the Activin receptors, which signal via a different set of SMAD proteins than BMPs&quot;&gt; type&lt;/a&gt;-1&#39; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21503889&quot; title=&quot;BMP-1 has been characterized previously, the role of type II BMP receptors in osteoblasts is to be well clarified&quot;&gt;BMPs&lt;/a&gt;)&amp;nbsp; via a different set of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12414726&quot; title=&quot;signal in patterning the axial vertebrae, and that Gdf11 binds to both ActRIIA and ActRIIB, and induces phosphorylation of Smad2&quot;&gt;SMAD&lt;/a&gt; proteins. &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21538804&quot; title=&quot;BMP signaling is dependent upon activation of Type I BMP receptor&quot;&gt;BMPR-II&lt;/a&gt;&#39; may be compensated by BMP utilization of Acvr2a and Acvr2b including (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10772805&quot; title=&quot;(BMPR-II) is a type II serine/threonine kinase receptor&quot;&gt;ALK&lt;/a&gt;) activin receptor-like kinase. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15629804&quot; title=&quot;BMP-signaling system, consisting of BMP2, BMP4, type II and I receptors, is present in bovine antral follicles&quot;&gt;BMP&lt;/a&gt;-activated &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15542835&quot; title=&quot;the activities of its interacting proteins&quot;&gt;Smads&lt;/a&gt;, a &lt;a href=&quot;http://www.uniprot.org/uniprot/Q13705&quot; title=&quot;Function:... on serine residues of the C-terminal tail&quot;&gt;SMAD&lt;/a&gt; proteins
  7498. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17849440&quot; title=&quot;A more severe phenotype was also found in ActRIIB+/- Smad2+/- mice&quot;&gt;    receptor&lt;/a&gt;, in the &lt;a href=&quot;http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=2h64&quot; title=&quot;Exchange of only one or two residues  results in BMP-2 variants&quot;&gt;embryonic&lt;/a&gt;
  7499.    development (Müllerian ducts (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/sites/homologene/863&quot; title=&quot;H.sapiens&quot;&gt;Left-right&lt;/a&gt; axis &lt;a href=&quot;http://www.uniprot.org/uniprot/Q13705&quot; title=&quot;(ACVR1, ACVR1B or ACVR1c) Defects in ACVR2B are the cause of visceral heterotaxy&quot;&gt;malformations&lt;/a&gt;)) and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12770730&quot; title=&quot;the ovary contains type I and II receptors and Smads&quot;&gt;developmental&lt;/a&gt; condition
  7500.    (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10424026.html?nr=10&amp;amp;pmid=15096953&quot; title=&quot;Genes currently implicated in human heterotaxy include ZIC3, LEFTYA, CRYPTIC, and ACVR2B. Roles for NKX2.5&quot;&gt;heterotaxy&lt;/a&gt;) by heterozygous &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9916847&quot; title=&quot;ACVR2B mutations are present only rarely among human LR axis malformation cases&quot;&gt;mutation&lt;/a&gt; in the ACVR2B gene&#39;s conserved
  7501.    &lt;a href=&quot;http://www.ebi.ac.uk/citexplore/citationDetails.do?dataSource=MED&amp;amp;externalId=17893364&quot; title=&quot;human ActRIIB kinase domain in complex with adenine establishes the conserved bilobal architecture consistent with all other catalytic kinase domains&quot;&gt;bilobal&lt;/a&gt;
  7502.    architecture &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12112458&quot; title=&quot;nodal signals through the activin type II receptors to specify the left-sidedness by means of a threshold mechanism&quot;&gt;moiety&lt;/a&gt; (which is orally active in two &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/ACVR2B#5777371230893962530&quot; title=&quot;(ActR-IB activation can be mimicked by T206D mutation of Thr-206 to aspartic acid))&quot;&gt;in-vivo models&lt;/a&gt;) due to an interaction by adenine in the fully
  7503.    active form of (&lt;a href=&quot;http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=2QLU&quot; title=&quot;ABSTRACT Crystal structure of activin receptor type IIB kinase domain&quot;&gt;ActRIIB&lt;/a&gt;)&amp;nbsp; critical for proper &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12191236.html?nr=6&amp;amp;pmid=16930017&quot; title=&quot;EGF-CFC, ACVR2B, and LEFTYA are all members of a transforming growth factor-beta signal transduction pathway&quot;&gt;left-right&lt;/a&gt; development at later &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14738881&quot; title=&quot;proliferation in the human ovary during the crucial period of development leading up to primordial follicle formation&quot;&gt;gestations&lt;/a&gt; well into adulthood. TGF-beta type II receptor &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/654800.html?nr=7&amp;amp;pmid=8702914&quot; title=&quot;the binding was most efficient to BMPR-IB compared with the other type I receptors&quot;&gt;GDF-5&lt;/a&gt; [Growth/differentiation factor-5] bound to different sets distinct from the effects of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20466801&quot; title=&quot;(ACE-031) increases muscle mass independent of fiber-type expression&quot;&gt;ACE-031&lt;/a&gt;* (a soluble form of activin type IIB receptor (ActR-IB activation can be mimicked by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8622651&quot; title=&quot;mutation of Thr-206 to aspartic acid&quot;&gt;T206D&lt;/a&gt; mutation of Thr-206 to &#39;&lt;a href=&quot;http://lnwme.blogspot.com/search?q=aspartic&quot; title=&quot;Showing posts sorted by relevance for query aspartic&quot;&gt;aspartic&lt;/a&gt; acid&#39;)), either activin receptor-like kinase 4 (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9748228&quot; title=&quot;activin bound exclusively to ALK4 (ActRIB)&quot;&gt;ALK4&lt;/a&gt;), and interacts with a&amp;nbsp; relationship between &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12385827&quot; title=&quot;he effect of betaglycan and InhBP/p120 on both inhibin A and inhibin B binding to the activin receptors ActRIIA and ActRIIB2&quot;&gt;inhibin&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11266516&quot; title=&quot;inhibin-binding protein, InhBP (p120), associates strongly with the type IB activin receptor (Alk4) in a ligand-responsive manner&quot;&gt;activin&lt;/a&gt; which is essential modulator for the &#39;modifiers&#39; interaction. Activin-A and a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19903896&quot; title=&quot;ALK1 is a member of the transforming growth factor-beta type I family of receptors&quot;&gt;ALK1&lt;/a&gt; pathway increases apoptosis in lymphatic vessels, myostatin [&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10041322.html?nr=8&amp;amp;pmid=14517293&quot; title=&quot;BMP7-induced heteromeric receptor complex formation is blocked by competition for the common type II receptor, ActRIIB&quot;&gt;MSTN&lt;/a&gt;] , also referred as growth and differentiation&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10391213&quot; title=&quot;myostatin (encoded by the gene Mstn, formerly Gdf8) has an important role in establishing this skeletal pattern. During early mouse embryogenesis&quot;&gt; factor 8&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21353874&quot; title=&quot;identifiable in part by common features of Thr265 as a gatekeeper residue and back pocket supported by Phe247&quot;&gt;GDF-8&lt;/a&gt;)&amp;nbsp; like that of its &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15342483&quot; title=&quot;Gdf11 and Bmp4 are essential for outgrowth and positioning of the ureteric bud, the inducer of metanephric mesenchyme&quot;&gt;homolog&lt;/a&gt;&amp;nbsp;(&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12546816&quot; title=&quot;suggesting that similar strategies&quot;&gt;GDF11&lt;/a&gt;) inhibited Osteogenic &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10504300&quot; title=&quot;binding of BMP-6 to type I and type II receptors was similar to that of OP-1/BMP-7&quot;&gt;protein-1&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7790373?dopt=Abstract&quot; title=&quot;binding of OP-1 to the complex of ActR-I and ActR-II&quot;&gt;OP-1&lt;/a&gt;) also known as &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12935386.html?nr=5&amp;amp;pmid=18436533&quot; title=&quot;Type II receptor utilization differed significantly between BMP-2/4 and BMP-6/7&quot;&gt;BMP&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18436533&quot; title=&quot;ACVR2A was more critical to signaling by BMP-6/7 than BMP-2/4&quot;&gt;6&lt;/a&gt;/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18621057&quot; title=&quot;BMP-7 is secreted as a stable complex&quot;&gt;7&lt;/a&gt; via&amp;nbsp; ActR &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9872992?dopt=Abstract&quot; title=&quot;regardless of which type I receptor partner is coexpressed&quot;&gt;type II&lt;/a&gt; receptors.&lt;/div&gt;
  7504. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7505. google_ad_client=&quot;pub-9610428118332343&quot;;
  7506. google_ad_host=&quot;&quot;;
  7507. google_ad_width=200;
  7508. google_ad_height=90;
  7509. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7510. google_color_border=&quot;EEEECC&quot;;
  7511. google_color_bg=&quot;EEEECC&quot;;
  7512. google_color_link=&quot;445566&quot;;
  7513. google_color_url=&quot;445566&quot;;
  7514. google_color_text=&quot;333333&quot;;
  7515. //--&gt;&lt;/script&gt;
  7516. &lt;script type=&quot;text/javascript&quot;
  7517.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7518. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2012/08/crystal-structure-of-activin-receptor.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgoksqAmXpkvx8dCfYWm4Cd49gjRqoGTFQ-DTIFp459h7i-ibKiOtCjXN768M2Y7Bvd471O8ISm_AmcsuM0meh2GueofmGOQ1JHowoEbWNmnPuMPRS1SHYa6eatmRsAXgTx4BOoRQ/s72-c/2QLU-organic2.png" height="72" width="72"/><thr:total>1</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-2306835499854908790</guid><pubDate>Sun, 15 Jul 2012 22:40:00 +0000</pubDate><atom:updated>2012-07-15T12:40:56.322-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">BMP</category><category domain="http://www.blogger.com/atom/ns#">phosphatidylinositol</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>FLRG (follistatin-related gene; 3)</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7519. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/FSTL3#5765525103308409634&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;figure 1 Follistatin/Osteonectin-like EGF domain&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjDmOAzmcwEgEXdRsNLVLmel2aJ8AOlR2O1L20w7Ty-FY_NXDNV8i6bTQkT-UUBtxs-pJGgdYmZTYZ0MfEyAzSt35Iqlh9LdAJ39BaqtwScc2fSOCEHLAz_idCA1LoeNwA29Oy7oA/s800/3b4v-2kcx-surface-1.png.png&quot; style=&quot;border: 0px solid; border: 0px solid; height: 121px; width: 200px;&quot; title=&quot;figure 1 Follistatin/Osteonectin-like EGF domain&quot; /&gt;&lt;/a&gt;Follistatin/&lt;a href=&quot;http://pfam.sanger.ac.uk/family/PF09289&quot; title=&quot;From pusedogene: Follistatin/Osteonectin-like EGF domain&quot;&gt;Osteonectin&lt;/a&gt;-like &lt;a href=&quot;http://www.uniprot.org/citations/15574124&quot; title=&quot;These proteins are involved in the regulation of various biological effects mediated by their binding to TGF-beta (transforming growth factor-beta) superfamily members, activin A and bone morphogenetic proteins&quot;&gt;EGF&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12618130&quot; title=&quot;A soluble protein containing the follistatin and the EGF domains&quot;&gt;domain&lt;/a&gt;, the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10545653.html?nr=4&amp;amp;pmid=14739256&quot; title=&quot;FSTL3 is most highly expressed in the placenta and testis, whereas FST is highest in the ovary and kidney,&quot;&gt;FSTL3&lt;/a&gt; gene chromosome 19p13: [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/10272&quot;&gt;§§&lt;/a&gt;; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/95393.html?ID=95565&quot;&gt;†&lt;/a&gt;,  &lt;a href=&quot;http://www.uniprot.org/uniprot/O95633&quot;&gt;␠&lt;/a&gt;]. FLRG (follistatin-related gene; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12039070&quot; title=&quot;the FLRG () gene is missing one exon that codes a third FS domain found in FS&quot;&gt;3&lt;/a&gt;) found to be stored in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14692692&quot; title=&quot;FLRG () protein possesses dualproperties in secretory pathways&quot;&gt;secretory granules&lt;/a&gt; of the cells, encodes contains 2 &lt;a href=&quot;http://www.uniprot.org/citations/17878677&quot; title=&quot;(FLRG) encodes a secretory glycoprotein that has characteristic cysteine-rich follistatin domains&quot;&gt;cysteine&lt;/a&gt;-rich secretory proteins functioning as a secreted glycoprotein once &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12697670&quot; title=&quot;the ability of FS288 and FSTL-3 to bind and neutralize activin B relative to activin A&quot;&gt;bound&lt;/a&gt; to 2 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22052913/&quot; title=&quot;he N-terminal domain (ND) of Fstl3 interacts uniquely with myostatin as compared with activin A&quot;&gt;potential&lt;/a&gt; N-glycosylation sites an &lt;a href=&quot;http://www.uniprot.org/citations/11459787&quot; title=&quot;highly homologous in both primary sequence and exon/intron domain structure to the activin-binding protein, follistatin&quot;&gt;exon/intron&lt;/a&gt; domain structure both the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9203494.html?nr=5&amp;amp;pmid=11948405&quot; title=&quot;these two proteins participate in a negative feedback loop which regulates the activin function&quot;&gt;activin&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15451561&quot; title=&quot;ActRIIs. ARIP2 interacts with both ActRIIs and RalBP1 (Ral binding protein 1) through different domains&quot;&gt;domain&lt;/a&gt; its &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9173089.html?nr=9&amp;amp;pmid=12194980&quot; title=&quot;circulating myostatin is bound to at least two major proteins&quot;&gt;propeptide&lt;/a&gt; (&lt;a href=&quot;http://lnwme.blogspot.com/2012/05/myostatin-as-part-of-latent-complex-in.html&quot; title=&quot;large extracellular multidomain proteins a 12.5-kD propeptide&quot;&gt;WFIKKN2&lt;/a&gt;) of the C terminus and FSTL3 &lt;a href=&quot;http://www.uniprot.org/citations/12531697&quot; title=&quot;Follistatin and FLRG proteins downmodulate the effects of activin A and BMP2 on erythroid maturation&quot;&gt;inhibited&lt;/a&gt; &lt;a href=&quot;http://www.uniprot.org/citations/16627583&quot; title=&quot;myostatin was more potent than bone morphogenetic proteins (BMPs) 6 and 7, and BMPs 2 and 4 were inactive in binding to FST isoforms&quot;&gt;BMP2&lt;/a&gt;, it is related to the &lt;a href=&quot;http://lnwme.blogspot.com/2012/06/follistatin-natural-antagonist-of.html&quot; title=&quot;angiogenin is endocytosed and translocated to the nucleus and forms a tight 1:1* complex free inhibitor (follistatin) to bound inhibitor is approximately &#39;3:1 with RNH1 (ribonuclease/angiogenin inhibitor 1)&quot;&gt;class 1-1&lt;/a&gt; complex free inhibitor follistatin modules functioning as a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16737827&quot; title=&quot;Apparent sizes of the protein were 14 and 28 kDa&quot;&gt;27 kD&lt;/a&gt; secreted glycoprotein involved in the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12556736.html?nr=1&amp;amp;pmid=17868029&quot; title=&quot;FLRG is involved in the regulation of various biological processes through its binding to members of the TGFbeta (transforming growth factor beta) superfamily&quot;&gt;TGFbeta&lt;/a&gt;-inducible &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13184121.html?nr=4&amp;amp;pmid=17395406&quot; title=&quot;FLRG is involved in the regulation of various biological effects through its binding to members of the transforming growth factor beta (TGFbeta) superfamily such as activin A and myostatin&quot;&gt;expression&lt;/a&gt; of the FLRG &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17924133&quot; title=&quot;controlling nutrition intake is important when studying gene expression responses&quot;&gt;gene&lt;/a&gt;, or by transfection with &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8855885.html?nr=9&amp;amp;pmid=11571638&quot; title=&quot;specific interaction of Smad3 and Smad4 proteins with the Smad-binding element consensus motif&quot;&gt;Smad&lt;/a&gt; protein effects on &lt;a href=&quot;http://www.uniprot.org/citations/16336961&quot; title=&quot;these results highlight a new mechanism by which FLRG and follistatin regulate human hematopoiesis&quot;&gt;hematopoiesis&lt;/a&gt; during &lt;a href=&quot;http://www.uniprot.org/citations/15451575&quot; title=&quot;the process by which red blood cells (erythrocytes) are produced sometimes also haematopoiesis or hemopoiesis) is the formation of blood cellular components&quot;&gt;erythropoiesis&lt;/a&gt;, promoting the primary &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18664625&quot; title=&quot;to induce megakaryopoiesis, whereas the inverse is not occurring&quot;&gt;mechanism&lt;/a&gt; of action to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15471966&quot; title=&quot;The FS homolog, FSTL3 (), also binds activin (), but lacks any HBS and cannot associate with cell surfaces&quot;&gt;bioneutralize&lt;/a&gt;º &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21160961&quot; title=&quot;Activins are secreted proteins belonging to the TGF-β family of signaling molecules&quot;&gt;activin&lt;/a&gt; for both follistatin (FS) and FS-&lt;a href=&quot;http://www.uniprot.org/citations/16338475&quot; title=&quot;Follistatin-like 3 are known critical regulators of fetal growth and differentiation&quot;&gt;like 3&lt;/a&gt; (FSTL-3) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11948405&quot; title=&quot;Follistatin binds to activin A with high affinity, and prevents activin binding to its own receptors&quot;&gt;modulation&lt;/a&gt; of &lt;a href=&quot;http://www.uniprot.org/citations/18768470&quot; title=&quot;biochemical evidence support a significant interaction of the N-terminal domain of FSTL3 with activin A&quot;&gt;activin&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11451568&quot; title=&quot;activin receptor ()-interacting proteins (ARIPs) ssociates not only with ActRIIs but also with Smads, and controls activin&quot;&gt;ActRIIs&lt;/a&gt;),&amp;nbsp; &lt;a href=&quot;http://www.uniprot.org/citations/22052913&quot; title=&quot;he structure reveals that the N-terminal domain (ND) of Fstl3 interacts uniquely with myostatin as compared with activin A, because it utilizes different surfaces on the ligand&quot;&gt;myostatin&lt;/a&gt;, and other TGF beta superfamily signaling and uniquely with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19074574&quot; title=&quot;Several mRNAs altered by spaceflight were associated with muscle growth, including the phosphatidylinositol 3-kinase&quot;&gt;phosphatidylinositol 3&lt;/a&gt;-kinase a &lt;a href=&quot;http://lnwme.blogspot.com/search?q=phosphatidylinositol&quot;&gt;hypothetical complex&lt;/a&gt; activity in &lt;a href=&quot;http://pseudofam.pseudogene.org/pages/psfam/showFams.jsf?genome=0&amp;amp;format=family&amp;amp;id=PF09289&quot; title=&quot;This protein family, FOLN, has 1 out of 16 genes found to have a total of 1 pseudogenes&quot;&gt;pseudogene&lt;/a&gt;º secretory function composed of a protein family of&lt;a href=&quot;http://omim.org/entry/605343&quot; title=&quot;a module protein family, which is composed of extracellular matrix-associated glycoproteins&quot;&gt; extracellular matrix&lt;/a&gt;-associated glycoproteins functioning as a secreted glycoprotein.&lt;/div&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7520. google_ad_client=&quot;pub-9610428118332343&quot;;
  7521. google_ad_host=&quot;&quot;;
  7522. google_ad_width=200;
  7523. google_ad_height=90;
  7524. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7525. google_color_border=&quot;EEEECC&quot;;
  7526. google_color_bg=&quot;EEEECC&quot;;
  7527. google_color_link=&quot;445566&quot;;
  7528. google_color_url=&quot;445566&quot;;
  7529. google_color_text=&quot;333333&quot;;
  7530. //--&gt;&lt;/script&gt;
  7531. &lt;script type=&quot;text/javascript&quot;
  7532.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7533. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2012/07/flrg-follistatin-related-gene-3.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjDmOAzmcwEgEXdRsNLVLmel2aJ8AOlR2O1L20w7Ty-FY_NXDNV8i6bTQkT-UUBtxs-pJGgdYmZTYZ0MfEyAzSt35Iqlh9LdAJ39BaqtwScc2fSOCEHLAz_idCA1LoeNwA29Oy7oA/s72-c/3b4v-2kcx-surface-1.png.png" height="72" width="72"/><thr:total>3</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-3246641453587329712</guid><pubDate>Sun, 24 Jun 2012 23:13:00 +0000</pubDate><atom:updated>2012-06-24T13:13:26.987-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">BMP</category><title>Follistatin a natural antagonist of myostatin.</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7534. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/Follistatin#5757712218425905282&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;Follistatin PDB: 2p6a and Model_1.PDB&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgofL7mWGmNh5Hk9jImWFYyBNna2LT4ebEZORO5ALSUo4irnfI7yquDqxAq7cSq7EVtTr5CK0CIc3aHOqnfI3_acILgYK2ZctBRW8If9mj0vh_S38A5jpV7W4B0r3m5sNPktuyX5Q/s640/ala.png&quot; style=&quot;border: 0px solid; height: 142px; width: 200px;&quot; title=&quot;Follistatin PDB: 2p6a and Model_1.PDB&quot; /&gt;&lt;/a&gt;Follistatin &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9235033.html?nr=3&amp;amp;pmid=12039070&quot; target=&quot;_blank&quot; title=&quot;Follistatin (FS) is well characterized as an activin-binding protein&quot;&gt;Activin&lt;/a&gt;-binding protein (FS)-gene &lt;a href=&quot;http://www.uniprot.org/citations/12651901&quot; target=&quot;_blank&quot; title=&quot;follistatin, ACTRIA, ACTRIB, ACTRIIA, ACTRIIB&quot;&gt;ACTRIIA&lt;/a&gt;-B* locus: 5q11.2: [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/10468&quot; target=&quot;_blank&quot;&gt;§§&lt;/a&gt;; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/95565.html?ID=88591&quot; target=&quot;_blank&quot;&gt;^&lt;/a&gt;]. Follistatin regulates its own &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13665122.html?nr=1&amp;amp;pmid=19106105&quot; target=&quot;_blank&quot; title=&quot;, activin induces follistatin transcription primarily through the action of Smad3 at an intronic Smad-binding element (SBE1)&quot;&gt;bioavailability&lt;/a&gt;, in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14364117.html?nr=1&amp;amp;pmid=18184649&quot; target=&quot;_blank&quot; title=&quot;FST by binding and bio-neutralizing activin and several other transforming growth factor-beta ligands&quot;&gt;intron 1&lt;/a&gt;, compromises &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11580864?dopt=Abstract&quot; target=&quot;_blank&quot; title=&quot;BMP is preceded by an increase in phosphorylation of the Smad-1 significantly inhibited by the BMP antagonists noggin and follistatin&quot;&gt;Smad&lt;/a&gt;-binding element (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19106105&quot; target=&quot;_blank&quot; title=&quot;activin induces follistatin transcription primarily through the action of Smad3 at an intronic Smad-binding element (SBE1)&quot;&gt;SBE1&lt;/a&gt;‡)-mediated transcription &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12872326.html?nr=3&amp;amp;pmid=18601690&quot; target=&quot;_blank&quot; title=&quot;Folliculo-stellate cells (FS-cells) are star-shaped and follicle-forming cells in the anterior pituitary gland&quot;&gt;follicular&lt;/a&gt;º development. Once bound, angiogenin is &lt;a href=&quot;http://www.uniprot.org/citations/16627583&quot; target=&quot;_blank&quot; title=&quot;FST isoforms were administered endogenously or exogenously, correlated closely with surface binding activity&quot;&gt;endocytosed &lt;/a&gt;and translocated to the nucleus and forms a tight &lt;a href=&quot;http://lnwme.blogspot.com/2012/03/ctnnb1-catenin-cadherin-associated.html&quot; target=&quot;_blank&quot; title=&quot;(proliferation versus differentiation, (1:1º) or cardiac left-right (LRº)ª asymmetry) at TBE1 site (TCF7L2)&quot;&gt;1:1&lt;/a&gt;* &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10634850.html?nr=5&amp;amp;pmid=15369773&quot; target=&quot;_blank&quot; title=&quot;anterior-posterior axis and mesoderm formation in mouse embryos LEFTYA, (left-right determination factor) an antagonist, as is FST, an inhibitor of mesoderm induction&quot;&gt;complex&lt;/a&gt; free inhibitor to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12697670?dopt=Abstract&quot; target=&quot;_blank&quot; title=&quot;the relative activity of each activin in tissues where both are produced, such as in the ovary, could be quite different&quot;&gt;bound inhibitor&lt;/a&gt; is approximately &#39;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3949066&quot; target=&quot;_blank&quot; title=&quot;implications of these results on the proposed role of the inhibitor/ribonuclease system&quot;&gt;3:1&lt;/a&gt; with &lt;a href=&quot;http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=1z7x&quot; target=&quot;_blank&quot; title=&quot;This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells&quot;&gt;RNH1&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8077341&quot; target=&quot;_blank&quot; title=&quot;the inhibin-activin-follistatin system in the corpus luteum appears to function in an autocrine fashion&quot;&gt;ribonuclease&lt;/a&gt;/&lt;a href=&quot;http://www.uniprot.org/citations/18245525&quot; target=&quot;_blank&quot; title=&quot;FST plays a critical role in the production of multiple-organ metastasis, predominantly by inhibiting the angiogenesis&quot;&gt;angiogenin&lt;/a&gt; inhibitor 1) in women with polycystic ovary syndrome (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/487405.html?nr=9&amp;amp;pmid=8567852&quot; target=&quot;_blank&quot; title=&quot;what the concentrations of FS are in follicles of women with polycystic ovary syndrome (PCOS)&quot;&gt;PCOS&lt;/a&gt;), showed that FST bound angiogenin (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12612391.html?nr=4&amp;amp;pmid=17991437&quot; target=&quot;_blank&quot; title=&quot;induced angiogenesis and cancer cell proliferation; domains 2 and 3 of follistatin were the minimal structure requirement for angiogenin binding&quot;&gt;ANG&lt;/a&gt;) in two mutations domains &lt;a href=&quot;http://www.uniprot.org/uniprot/P19883#P19883-2&quot; target=&quot;_blank&quot; title=&quot;318-344: Missing Isoform 2 -3 Also known as: FS315; Isoform 1&quot;&gt;2 and 3&lt;/a&gt; of FST retain &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10860270.html?nr=11&amp;amp;pmid=15492265&quot; target=&quot;_blank&quot; title=&quot;he EGF-like module of the SPARC FS domain is angiosuppressive, and its structural conformation is critical for antiangiogenic activity&quot;&gt;angiosuppressive&lt;/a&gt; wild-type ribonucleolytic&#39; activity in-vivo required for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17991437&quot; target=&quot;_blank&quot; title=&quot;domains 2 and 3 of follistatin were the minimal structure requirement for angiogenin binding&quot;&gt;ANG&lt;/a&gt; binding. &lt;a href=&quot;http://www.uniprot.org/citations/14563935&quot; target=&quot;_blank&quot; title=&quot;The 288-residue FS molecule has a distinctive structure comprised principally of three 10-cysteine FS domains&quot;&gt;Three&lt;/a&gt; FST isoforms have been described, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17893249&quot; target=&quot;_blank&quot; title=&quot;activin A (Act A), and follistatin (FS) compose an organotrophic system; interestingly it is modified by heparin&quot;&gt;heparin&lt;/a&gt; binding (FS domain 1) &lt;a href=&quot;http://www.uniprot.org/citations/14563935&quot; title=&quot;epitopes for heparin binding (FS domain 1) or antibody recognition (FS domain 2)&quot;&gt;or
  7535. antibody recognition&lt;/a&gt; (FS domain 2) and the Follistatin Activin-binding protein molecule &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/14563935.html&quot; target=&quot;_blank&quot; title=&quot;activin binding and biological activity in both  1 &amp;amp; 2 require bioactivity, deletion of N-terminal domain 3 was tolerated&quot;&gt;as a whole&lt;/a&gt;. A &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/14563935.html&quot; target=&quot;_blank&quot; title=&quot;the overall order of the domains in FS function, continuous sequence comprising&quot;&gt;continuous&lt;/a&gt; sequence composed of a single &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3120188&quot; target=&quot;_blank&quot; title=&quot;suggest that this compound be called follistatin to signify its structural difference from inhibin&quot;&gt;polypeptide&lt;/a&gt; chain comprising the N-terminal and FS &lt;a href=&quot;http://www.uniprot.org/citations/14563935&quot; title=&quot;FS domains 1 and 2 fulfills the minimum structural requirement for activin binding and FS bioactivity&quot;&gt;domain 1-2&lt;/a&gt;, for activin secreted &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10752175.html?nr=2&amp;amp;pmid=15574124&quot; target=&quot;_blank&quot; title=&quot;FLRG (follistatin-related gene) is a secreted glycoprotein that is highly homologous with follistatin&quot;&gt;glycoprotein&lt;/a&gt; homologous, follistatin related protein (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11451569?dopt=Abstract&quot; target=&quot;_blank&quot; title=&quot;the follistatin (FS) gene family may actually contain two sub-families&quot;&gt;FSRP&lt;/a&gt;) fulfills the minimum structural requirement. The&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/886035.html?nr=4&amp;amp;pmid=9034160&quot; target=&quot;_blank&quot; title=&quot;in plants, flavonol ST (FST) families, members the formation of bioactivated metabolites five known human cytosolic ST enzymes: an EST, an HSST, and three PSTs&quot;&gt; single FST&lt;/a&gt; gene can be similar &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/Follistatin#5757734862478759042&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;PDB:2BOU can result in tumour development&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg-Csdryu7sj71yN7brDd3j-jHmb7Jxawlw6UP4AkOOB51IZ6Ef0b-P2mnPXmVWB1bv5DYPmJazP5G4TCSnIeu4XVjrHmBBV43yq4v8o7wleaCUEnvoto8e1f3QL-cN-eYIgHzicw/s640/2bou.png&quot; style=&quot;border: 0px solid; height: 152px; width: 200px;&quot; title=&quot;PDB:2BOU can result in tumour development&quot; /&gt;&lt;/a&gt;to &lt;a href=&quot;http://en.wikipedia.org/wiki/PACAP&quot; target=&quot;_blank&quot; title=&quot;PACAP is similar to vasoactive intestinal peptide&quot;&gt;vasoactive intestinal peptide&lt;/a&gt;, as an indicator of bioactivated metabolites produced in the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15822649.html?nr=8&amp;amp;pmid=21191111&quot; target=&quot;_blank&quot; title=&quot;stimulates the transcription of follistatin (Fst) that, in turn, restrains activin signaling&quot;&gt;pituitary&lt;/a&gt;º, FS may &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18184649&quot; target=&quot;_blank&quot; title=&quot;Autocrine signalling is a form of signalling in which a cell secretes a hormone or chemical messenge Paracrine signaling is a form of cell signaling in which the target cell is near the signal-releasing cell&quot;&gt;therefore be&lt;/a&gt; paracrine or autocrine &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/7702418.html?nr=10&amp;amp;pmid=8515053&quot; target=&quot;_blank&quot; title=&quot;follistatin (FS) mRNA in gonadotropes [predominantly in cells with luteinizing hormone (LH) antigens] and folliculostellate cells (with S100 antigens)&quot;&gt;regulators&lt;/a&gt;, it encodes &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9383554.html?nr=5&amp;amp;pmid=11856418&quot; target=&quot;_blank&quot; title=&quot;there is no clear consensus over the estimation of population structuring itself, with particular emphasis on the effects of high mutation rates and mutation patterns&quot;&gt;three&lt;/a&gt; FST &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16627583?dopt=Abstract&quot; target=&quot;_blank&quot; title=&quot;biological actions among the FST isoforms and FSTL3&quot;&gt;isoforms&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16150905?dopt=Abstract&quot; target=&quot;_blank&quot; title=&quot;FST288 and FSTL3 may have distinct intracellular roles&quot;&gt;FST288&lt;/a&gt;, &lt;a href=&quot;http://www.uniprot.org/citations/17409095&quot; target=&quot;_blank&quot; title=&quot;Follistatin is expressed as two splice variants (FS288 and FS315)&quot;&gt;FST303&lt;/a&gt;, and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16627583&quot; target=&quot;_blank&quot; title=&quot;FST315 enhanced, activin-dependent TT cell proliferation&quot;&gt;FST315&lt;/a&gt;), &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15472207&quot; target=&quot;_blank&quot; title=&quot;the soluble, circulating FST isoform is likely to be FS315&quot;&gt;FST&lt;/a&gt;ª and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14337341.html?nr=7&amp;amp;pmid=18768470&quot; target=&quot;_blank&quot; title=&quot;. Follistatin-type antagonists, which include splice variants of follistatin (FS288 and FS315) and follistatin-like 3 (FSTL3)&quot;&gt;FSTL3&lt;/a&gt; follistatin messenger mRNA secreted proteins a gene product, N-terminal domain interacts with follistatin and activin A (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13276445.html?nr=3&amp;amp;pmid=17347381&quot; target=&quot;_blank&quot; title=&quot;Activin-type II receptor B (ACVR2B) and follistatin haplotype associations with muscle mass and strength in humans&quot;&gt;ACVR2B&lt;/a&gt;) on DNA precursors synthesis (Cellular Component) &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13741779.html?nr=9&amp;amp;pmid=19241394&quot; target=&quot;_blank&quot; title=&quot;extracellular factors that affect ligand stability, mobility, and receptor interaction&quot;&gt;extracellular&lt;/a&gt; region, human osteoblastic cell lines secreted glycoprotein &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8365212.html?nr=2&amp;amp;pmid=10859029&quot; target=&quot;_blank&quot; title=&quot;mac25 is a follistatin (FS)-like protein that may be a secreted tumor-suppressor that binds activin A&quot;&gt;homologous&lt;/a&gt; with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14563935&quot; target=&quot;_blank&quot; title=&quot;Several hydrophobic residues clustered within the C-terminal region of FS domains 1 and 2 are highly conserved among all FS domains&quot;&gt;FLRG&lt;/a&gt; Follistatin-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8542218.html?nr=13&amp;amp;pmid=11236858&quot; target=&quot;_blank&quot; title=&quot;the expected incidence of marriage between people of the same surname (isonymy) In the United States, the populations studied have been of predominantly British origin.&quot;&gt;Related&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8982863.html?nr=5&amp;amp;pmid=11390138&quot; target=&quot;_blank&quot; title=&quot;In many indigenous minority populations there is a strong tradition of endogamy and a preference for consanguineous unions&quot;&gt;Gene&lt;/a&gt; correlated with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17053951&quot; target=&quot;_blank&quot; title=&quot;inhibin-activin betaA- and betaB-subunits, follistatin, and Smads 2, 3 and 4&quot;&gt;Smads&lt;/a&gt; (of &lt;a href=&quot;http://www.uniprot.org/citations/18184649&quot; target=&quot;_blank&quot; title=&quot;the critical role of intron 1 of the follistatin gene in mediating Smad-dependent effects of activin&quot;&gt;intron 1&lt;/a&gt;‡) and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21829661/&quot; target=&quot;_blank&quot; title=&quot;enhancing effects of GDF9 in activin A-induced inhibin ²(B)-subunit mRNA&quot;&gt;GDF9&lt;/a&gt; to varied degrees but &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10173320.html?nr=6&amp;amp;pmid=14641240&quot; target=&quot;_blank&quot; title=&quot;estimates of disease gene frequencies can be inaccurate unless they are made jointly with estimates of population substructure and consanguinity&quot;&gt;activin&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21222045&quot; target=&quot;_blank&quot; title=&quot;INHBA (p = 0.021) increased lifespan comes at the cost of reduced fertility&quot;&gt;inhibinβA&lt;/a&gt; [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20926007&quot; target=&quot;_blank&quot; title=&quot;, the gene encoding activin A (inhibin ²A [INHBA])&quot;&gt;INHBA&lt;/a&gt;]) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/2036994&quot; target=&quot;_blank&quot; title=&quot;follistatin binds to both activin and inhibin through the common beta-subunit&quot;&gt;binding&lt;/a&gt; was &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12544503.html?nr=7&amp;amp;pmid=18001154&quot; target=&quot;_blank&quot; title=&quot;follistatin, and activin receptor proteins and mRNAs are present in the human fetal palate&quot;&gt;abolished&lt;/a&gt; a basic&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7887917&quot; target=&quot;_blank&quot; title=&quot;the heparin binding site of follistatin also contributes to its binding for activin&quot;&gt; heparin&lt;/a&gt;-binding sequence (HBS; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15471966&quot; target=&quot;_blank&quot; title=&quot;The FS homolog, FSTL3 (FLRG), also binds activin, but lacks any HBS and cannot associate with cell surfaces&quot;&gt;residues 75-86&lt;/a&gt;) in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16198295&quot; target=&quot;_blank&quot; title=&quot;Two follistatin molecules encircle activin, neutralizing the ligand by burying one-third of its residues and its receptor binding sites&quot;&gt;first of the three&lt;/a&gt;ª (FS) follistatin, bind and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene?db=gene&amp;amp;report=generif&amp;amp;term=10468#&quot; target=&quot;_blank&quot; title=&quot;GDF9 decreases basal and activin A-induced FST and FSTL3 expression&quot;&gt;inhibit&lt;/a&gt; after growth differentiation factor 9 (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21829661&quot; target=&quot;_blank&quot; title=&quot;(GDF9) enhances activin A-induced inhibin ²(B)-subunit mRNA levels&quot;&gt;GDF9&lt;/a&gt;) &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/16142435.html?nr=10&amp;amp;pmid=21829661&quot; target=&quot;_blank&quot; title=&quot;basal and activin A-induced FST and FSTL3 mRNA and protein levels increased, but changes were reversed by adding GDF9&quot;&gt;siRNA&lt;/a&gt; suppresses &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10837224.html?nr=1&amp;amp;pmid=16336961&quot; target=&quot;_blank&quot; title=&quot;their binding to activin and BMP, both members of the TGFbeta family&quot;&gt;activin&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/485844.html?nr=11&amp;amp;pmid=8562709&quot; target=&quot;_blank&quot; title=&quot;TGF beta 1, and activin A do not affect basal FS mRNA levels in human cultured granulosa-luteal (GL) cells&quot;&gt;A&lt;/a&gt; induced &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9203494.html?nr=5&amp;amp;pmid=11948405&quot; target=&quot;_blank&quot; title=&quot;activin A increases FLRG and follistatin at both the mRNA and protein levels&quot;&gt;binding&lt;/a&gt; basal from a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8244559.html?nr=6&amp;amp;pmid=7521084&quot; target=&quot;_blank&quot; title=&quot;follistatin and hedgehog-related genes in neural induction and patterning&quot;&gt;region&lt;/a&gt; of the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8473221.html?nr=7&amp;amp;pmid=11044400&quot; target=&quot;_blank&quot; title=&quot;, follistatin but not noggin produces a dorsal-to-ventral switch in progenitor cell identity and neuronal fate&quot;&gt;ectoderm&lt;/a&gt; of the three &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10471500.html?nr=9&amp;amp;pmid=15272372&quot; target=&quot;_blank&quot; title=&quot;factors secreted by the dorsal mesoderm (Noggin, Chordin, Follistatin, ...) which act by blocking BMP signaling&quot;&gt;germ layers&lt;/a&gt;, FST and FLRG,&amp;nbsp;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12531697?dopt=Abstract&quot; target=&quot;_blank&quot; title=&quot;activin A with BMP molecules suggests that BMP2 and BMP4 differently affect activin A induction of erythropoiesis&quot;&gt;downmodulate&lt;/a&gt; on activin signaling the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15954699.html?nr=10&amp;amp;pmid=21627449&quot; target=&quot;_blank&quot; title=&quot;Bone morphogenetic protein (Bmp) signaling plays a pivotal role in dorsal-ventral (DV) patterning in vertebrate embryos&quot;&gt;effects&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8571638.html?nr=12&amp;amp;pmid=11023800&quot; target=&quot;_blank&quot; title=&quot;appearance signal the opening of the receptive phase of the endometrium the inner membrane of the mammalian uterus&quot;&gt;attenuated&lt;/a&gt; by &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10624360.html?nr=11&amp;amp;pmid=15451575&quot; target=&quot;_blank&quot; title=&quot;compared the role of Activin A, BMP2 and BMP4&quot;&gt;BMPs&lt;/a&gt; (R1A-R2B) bone morphogenetic protein have an Activin receptor. Follistatin is a natural antagonist of &lt;a href=&quot;http://lnwme.blogspot.com/2012/05/myostatin-as-part-of-latent-complex-in.html&quot; target=&quot;_blank&quot; title=&quot;Myostatin as part of a latent complex in the vicinity of the (D) polymorphism MSTN&quot;&gt;myostatin&lt;/a&gt;.&lt;/div&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7536. google_ad_client=&quot;pub-9610428118332343&quot;;
  7537. google_ad_host=&quot;&quot;;
  7538. google_ad_width=200;
  7539. google_ad_height=90;
  7540. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7541. google_color_border=&quot;EEEECC&quot;;
  7542. google_color_bg=&quot;EEEECC&quot;;
  7543. google_color_link=&quot;445566&quot;;
  7544. google_color_url=&quot;445566&quot;;
  7545. google_color_text=&quot;333333&quot;;
  7546. //--&gt;&lt;/script&gt;
  7547. &lt;script type=&quot;text/javascript&quot;
  7548.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7549. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2012/06/follistatin-natural-antagonist-of.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgofL7mWGmNh5Hk9jImWFYyBNna2LT4ebEZORO5ALSUo4irnfI7yquDqxAq7cSq7EVtTr5CK0CIc3aHOqnfI3_acILgYK2ZctBRW8If9mj0vh_S38A5jpV7W4B0r3m5sNPktuyX5Q/s72-c/ala.png" height="72" width="72"/><thr:total>2</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-4801902292734947120</guid><pubDate>Tue, 29 May 2012 00:31:00 +0000</pubDate><atom:updated>2012-05-29T11:33:53.410-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">Kunitz-type genes</category><category domain="http://www.blogger.com/atom/ns#">TCF</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>Myostatin as part of a latent complex in the vicinity of the (D) polymorphism MSTN</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7550. &lt;div class=&quot;separator&quot; style=&quot;clear: both; text-align: center;&quot;&gt;
  7551. &lt;/div&gt;
  7552. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/MyostatinMay282012?authkey=Gv1sRgCM-T5fK99eiPsQE#5747735307185662850&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;3hh2-(Myostatin) of known structure IPR008197 Whey_acidic_protein&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgufAxMhFQAgqD9dHOWoQdqwQK2rs7b9uihyfdny4csMP9KeWCNp5JH2plgIwHWt1FC0eu0OD4IX29lgQLfF-Dwk2AXvn8xqnaCKoY8ZmTaa54lyU0zdiflyqSDfYeIdNxRzKPC7g/s720/allpre1.png&quot; style=&quot;border: 0px solid; border: 0px solid; height: 127px; width: 200px;&quot; title=&quot;3hh2-(Myostatin) of known structure IPR008197 Whey_acidic_protein&quot; /&gt;&lt;/a&gt;Myostatin , also known as growth and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12595574&quot; title=&quot;growth and differentiation factor-associated serum protein-1 (GASP-1), contains multiple domains associated with protease-inhibitory proteins, including a whey acidic protein domain&quot;&gt;differentiation&lt;/a&gt; factor 8 (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9173089.html?nr=9&amp;amp;pmid=12194980&quot; title=&quot;the transforming growth factor beta superfamily that negatively regulates skeletal muscle mass&quot;&gt;GDF8&lt;/a&gt;)
  7553.    a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12917200.html?nr=2&amp;amp;pmid=18535106&quot; title=&quot;Follistatin binds and neutralizes members of the TGFbeta superfamily including activin, myostatin, and growth and differentiation factor 11 (GDF11)&quot;&gt;TGF-beta&lt;/a&gt;
  7554.    family member is (an inhibitor of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16110474&quot; title=&quot;myostatin auto-regulates its gene expression through a Smad7 dependent mechanism in myogenic cells&quot;&gt;myogenesis&lt;/a&gt;) secreted into the plasma expressed in human
  7555.    skeletal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18600566?dopt=Abstract&quot; title=&quot;therapeutic strategies for intractable genetic muscular disorders including muscular dystrophy&quot;&gt;muscle&lt;/a&gt;
  7556.    (expressed in many different &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/991903.html?nr=3&amp;amp;pmid=9139826&quot; title=&quot;(GDF-8), is expressed specifically in developing and adult skeletal muscle&quot;&gt;muscles&lt;/a&gt;
  7557.    throughout the body) as a 12.5-kD &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12917295.html?nr=3&amp;amp;pmid=18596030&quot; title=&quot;WFIKKN2 are large extracellular multidomain proteins consisting of a WAP, a follistatin, an immunoglobulin, two Kunitz-type protease inhibitor domains, and an NTR domain&quot;&gt;propeptide&lt;/a&gt;
  7558.    and a 26-kD glycoprotein (myostatin-immunoreactive protein) a &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/MyostatinMay282012?authkey=Gv1sRgCM-T5fK99eiPsQE#5747735284592507730&quot; title=&quot;Dimerization of two such complexes may occur&quot;&gt;dimer&lt;/a&gt;
  7559.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15083369&quot; title=&quot;MSTN AluI A55T (exon 1), BanII K153R, TaqI E164 K and BstNI P198A (all in exon 2) markers and the ACE insertion (I)/deletion (D) polymorphism&quot;&gt;three&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10610713&quot; title=&quot;Two of these, A55T in exon 1 and K153R in exon 2, are polymorphic in the general population&quot;&gt;exons&lt;/a&gt; and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15083369?dopt=Abstract&quot; title=&quot;an association of the D or I allele with baseline strength, isometric and concentric torque or arm muscle cross-sectional area&quot;&gt;two&lt;/a&gt;
  7560.    introns) locus: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9843994&quot; title=&quot;The myostatin gene comprises three exons and two introns, maps to chromosomal region 2q33.2&quot;&gt;2q32.2&lt;/a&gt; [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/2660&quot;&gt;§§&lt;/a&gt;; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/88591.html?ID=92582&quot;&gt;^&lt;/a&gt;] and WFIKKN2 protein (WAP, follistatin/&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12595574&quot; title=&quot;(GASP-1), contains multiple domains associated with protease-inhibitory proteins, including a whey acidic protein domain, a Kazal domain, two Kunitz domains&quot;&gt;kazal, kunitz&lt;/a&gt;, immunoglobulin, and netrin domain (WFIKKN2) containing 2) binds
  7561.    mature &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18596030&quot; title=&quot;WFIKKN1/WFIKKN2 and GDF8/GDF11 in early vertebrates&quot;&gt;GDF8/myostatin&lt;/a&gt; and myostatin propeptide WFIKKN1 the paralogue
  7562.    (functional overlap) of these proteins. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12655088.html?nr=8&amp;amp;pmid=17924133&quot; title=&quot;these responses are further modified by whey protein intake. Conversely, myostatin-binding protein FLRG and cell-cycle kinase cdk2 mRNA increased only in the protein group&quot;&gt;Myostatin&lt;/a&gt;
  7563.    » &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16464946&quot; title=&quot;is primarily known for its ability to inhibit muscle growth. It also has actions on glucose metabolism&quot;&gt;decreases&lt;/a&gt; muscle mass*, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12562348.html?nr=13&amp;amp;pmid=17641910&quot; title=&quot;Repeated-bouts of EE (eccentric exercise) induced a large down-regulation of myostatin mRNA&quot;&gt;Myostatin&lt;/a&gt;-binding
  7564.    protein &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19346981&quot; title=&quot;myostatin (MSTN) 2379 A &amp;gt; G and 163 G &amp;gt; A and follistatin (FST) -5003 A &amp;gt; T and -833 G &amp;gt; T single nucleotide polymorphisms (SNP)&quot;&gt;FLRG&lt;/a&gt; Protein, &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/MyostatinMay282012?authkey=Gv1sRgCM-T5fK99eiPsQE#5747735284592507730&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;2p6a with the two neighboring molecules 2p6A 3hh2 and 3hh2a in the vicinity of the (D) polymorphism MSTN of the consensus motif&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhvNzChgpae2Mu8ca5a_39NZkk2CBVPhZQXYbWVg3D49dHmoaTER8UcE-D4rfs5VO52UmbUGUfLhbYvLXsV5k9IM92dKvPSi0dBkh6Hify6m6benVCYD_721IoOJNybh_6_2ic92A/s800/selene2.png&quot; style=&quot;border: 0px solid; height: 121px; width: 200px;&quot; title=&quot;2p6a with the two neighboring molecules 2p6A 3hh2 and 3hh2a in the vicinity of the (D) polymorphism MSTN of the consensus motif&quot; /&gt;&lt;/a&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22052913&quot; title=&quot;Myostatin is tightly controlled by Fst-like 3 follistatin (Fst)-type proteins, which is the only Fst-type molecule that has been identified in the serum bound to myostatin.&quot;&gt;follistatin&lt;/a&gt;-related
  7565.    gene « (15 g &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13752576.html?nr=1&amp;amp;pmid=19299575&quot; title=&quot;whey protein ingestion on acute and long-term signaling responses of resistance exercise&quot;&gt;whey&lt;/a&gt;) via signals originating from the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18309369&quot; title=&quot;Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone.&quot;&gt;gut&lt;/a&gt; (e.g., &lt;a href=&quot;http://www.blogger.com/post-edit.g?blogID=14256471&amp;amp;postID=4801902292734947120&quot; title=&quot;GLP-1R and the GIP receptor (GIP-R) he N terminus (NTD) this region of interaction is  mediated by the nGLP1R (receptor variants) released from the gut&quot;&gt;GIP&lt;/a&gt;),
  7566.    increased &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14584576.html?nr=7&amp;amp;pmid=19828686&quot; title=&quot;erum response factor mRNA (miRNA) and genes associated with muscle growth are expressed differently following EAA (Essential amino acids) ingestion&quot;&gt;mRNA&lt;/a&gt;
  7567.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9533722.html?nr=6&amp;amp;pmid=12175483&quot; title=&quot;muscle concentrations of mRNAs encoding two growth factors&quot;&gt;muscle&lt;/a&gt;
  7568.    cell&amp;nbsp; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18835929&quot; title=&quot;Myostatin is a potent antianabolic regulator of muscle mass that may also play a role in energy metabolism&quot;&gt;anabolic&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18535106&quot; title=&quot;Follistatin binds and neutralizes members of the TGFbeta superfamily including activin, myostatin, and growth and differentiation factor 11 (GDF11)&quot;&gt;stimulus&lt;/a&gt;*) proliferation and differentiation, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14301432.html?nr=1&amp;amp;pmid=18203713&quot; title=&quot;Adipogenesis is the process of cell differentiation by which preadipocytes become adipocytes Adipocytes, also known as lipocytes and fat cells&quot;&gt;adipogenesis&lt;/a&gt;
  7569.    is &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15181048&quot; title=&quot;depression of adipogenesis&quot;&gt;blocked&lt;/a&gt; by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18203713&quot; title=&quot;The inhibitory effects of myostatin on adipogenesis were blocked by RNAi silencing of beta-catenin and diminished by overexpression of dominant-negative TCF4&quot;&gt;RNAi&lt;/a&gt; silencing of signal to Wnt/beta-catenin/TCF4 &lt;a href=&quot;http://lnwme.blogspot.com/2012/04/tcl7l2-traits-and-activity-that-affect.html&quot; title=&quot;the Wnt signal, TCFs function as transcriptional repressors on the effects of myostatin (GDF8 the MSTN gene) on (TCF7L2) proliferation&quot;&gt;pathway&lt;/a&gt; muscle and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11855847&quot; title=&quot;muscle development in Myostatin knockout mice is associated with reduced adipogenesis&quot;&gt;adipose&lt;/a&gt; tissue develop from the same mesenchymal stem cells.
  7570.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10782933.html?nr=5&amp;amp;pmid=15988002&quot; title=&quot;are synthesized as precursors with prodomain sequences that are proteolytically removed&quot;&gt;Synthesized&lt;/a&gt;
  7571.    (removed by &lt;a href=&quot;http://en.wikipedia.org/wiki/Proprotein_convertase_2&quot; title=&quot;Subtilisins are secreted in large amounts from many Bacillus species there are 9 different subtilisin-like genes&quot;&gt;subtilisin-like&lt;/a&gt;
  7572.    proprotein convertases (&lt;a href=&quot;https://twitter.com/#%21/VackvSuG/status/203617363826970624&quot; title=&quot;Bacillus Amyloliquefaciens Strain D747; Exemption From the Requirement of a Tolerance&quot;&gt;SPCs&lt;/a&gt;))
  7573.    is the biologically active portion of the protein that &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10041351.html?nr=1&amp;amp;pmid=14623262&quot; title=&quot;hSGT may play a role in the regulation of myostatin secretion and activation&quot;&gt;hSGT&lt;/a&gt;
  7574.    (human small glutamine-rich tetratricopeptide repeat-containing
  7575.    protein) may play a role in regulation, and complexes with
  7576.    amyloid-beta like signal sequence. Myostatin circulates as part of a
  7577.    latent complex containing &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11459935&quot; title=&quot;follistatin, or other molecules that block signaling through this pathway may be useful agents for enhancing muscle growth for both human therapeutic and agricultural applications&quot;&gt;follistatin&lt;/a&gt;-related gene &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12595574?dopt=Abstract&quot; title=&quot;a protein that binds and inhibits activin&quot;&gt;FLRG&lt;/a&gt;. Activin type II receptors (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15451561&quot; title=&quot;FLRG () protein binds activin and myostatin () with a high affinity&quot;&gt;ActRIIs&lt;/a&gt;) transmit the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11459935&quot; title=&quot;the propeptide (GDF8), follistatin, or other molecules that block signaling through this pathway may be useful agents&quot;&gt;activin&lt;/a&gt;-binding protein (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9173089.html?nr=9&amp;amp;pmid=12194980&quot; title=&quot;myostatin propeptide and FLRG are major negative regulators of myostatin&quot;&gt;FLRG&lt;/a&gt;)
  7578.    a protein that binds and inhibits &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18535106&quot; title=&quot;Follistatin binds and neutralizes members of the TGFbeta superfamily including activin&quot;&gt;activin&lt;/a&gt;*, the polymorphisms, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21931616&quot; title=&quot;[LV and right ventricle (LV, RV,)] with biopsy&quot;&gt;showed&lt;/a&gt;
  7579.    their relation to - left » ventricular mass (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14103111.html?nr=10&amp;amp;pmid=19136503&quot; title=&quot;MSTN on the variant degree of physiological hypertrophy (increase in the volume of an organ) of male athletes&quot;&gt;LVM&lt;/a&gt;)
  7580.    - of endurance, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15451561&quot; title=&quot;the primary receptors that transmit the activin signal to intracellular signaling pathways&quot;&gt;acitvin&lt;/a&gt; receptor type « &lt;a href=&quot;http://www.wikigenes.org/e/gene/e/93.html#Biological_context_of_ACVR2B&quot; title=&quot;/pubmed/16930017 ACVR2B, and LEFTYA are all members of a pathway that is critical for proper left-right development&quot;&gt;ACVR&lt;/a&gt;-
  7581.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17878677?dopt=Abstract&quot; title=&quot;FLRG protein binds to and neutralizes several transforming growth factor-beta (TGF-beta) superfamily members, including myostatin&quot;&gt;IIB&lt;/a&gt; and the myostatin propeptide is known to bind and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10362012?dopt=Abstract&quot; title=&quot;myostatin could play an important role in cardiac development and physiology&quot;&gt;inhibit&lt;/a&gt;
  7582.    myostatin in vitro.&lt;/div&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7583. google_ad_client=&quot;pub-9610428118332343&quot;;
  7584. google_ad_host=&quot;&quot;;
  7585. google_ad_width=200;
  7586. google_ad_height=90;
  7587. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7588. google_color_border=&quot;EEEECC&quot;;
  7589. google_color_bg=&quot;EEEECC&quot;;
  7590. google_color_link=&quot;445566&quot;;
  7591. google_color_url=&quot;445566&quot;;
  7592. google_color_text=&quot;333333&quot;;
  7593. //--&gt;&lt;/script&gt;
  7594. &lt;script type=&quot;text/javascript&quot;
  7595.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7596. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2012/05/myostatin-as-part-of-latent-complex-in.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgufAxMhFQAgqD9dHOWoQdqwQK2rs7b9uihyfdny4csMP9KeWCNp5JH2plgIwHWt1FC0eu0OD4IX29lgQLfF-Dwk2AXvn8xqnaCKoY8ZmTaa54lyU0zdiflyqSDfYeIdNxRzKPC7g/s72-c/allpre1.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-2651945850625601989</guid><pubDate>Wed, 16 May 2012 07:36:00 +0000</pubDate><atom:updated>2012-05-15T22:12:16.855-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">GPCR</category><title>DOMAIN OF AREA COMPLEXED GLP-1_GLP1R_GCG_EXENDIN-4 REGION IF INTERACTION RECEPTOR VARIANTS</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7597. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/GLP1ReceptorGLP1R#5742925027019970194&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;Figure:1_Crystal Structure Of Glucagon-Like Peptide-1 In Complex With The Extracellular Domain Of The Glucagon-Like Peptide-1 Receptor_Figure:3 &amp;amp; 4&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhKW30_2M5-0ZC2wYSAAepZGl-3hPQtmqKm6vcBk9iAD6iK5Fn_OnNsbIxHk0w7fztRCGcNUNh9b3clMAFR7QNRMhB0hvqmj_MBVZwAown86DV4vAT1CCDQmgauHhogvaWZuOYgmw/s720/helixloopc.png&quot; style=&quot;border: 0px solid; border: 0px solid; height: 178px; width: 262px;&quot; title=&quot;Figure:1_Crystal Structure Of Glucagon-Like Peptide-1 In Complex With The Extracellular Domain Of The Glucagon-Like Peptide-1 Receptor_Figure:3 &amp;amp; 4&quot; /&gt;&lt;/a&gt;GLP1 receptor (GLP1R) a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12767038.html?nr=3&amp;amp;pmid=18287102&quot; title=&quot;GLP-1 is involved in glucose homeostasis, and activation of GLP-1R in the plasma membrane of pancreatic beta-cells potentiates glucose-dependent insulin secretion&quot;&gt;seven-transmembrane&lt;/a&gt;
  7598.    family &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11035202?dopt=Abstract&quot; title=&quot;pancreatic B&quot;&gt;B&lt;/a&gt;
  7599.    G protein-coupled receptor (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22147710&quot; title=&quot;human glucagon-like peptide-1 receptor (GLP-1R) has a critical role in GLP-1 peptide&quot;&gt;GPCR&lt;/a&gt;) locus &lt;span class=&quot;cytogenetic-location text-font&quot;&gt;: &lt;a href=&quot;http://omim.org/geneMap/6/361?start=-3&amp;amp;limit=10&amp;amp;highlight=361&quot;&gt;6p21.2&lt;/a&gt;&lt;/span&gt;  [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/2740&quot; target=&quot;_blank&quot;&gt;§§&lt;/a&gt;; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/88666.html?ID=92582&quot; target=&quot;_blank&quot;&gt;^&lt;/a&gt;],
  7600.    with a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13227343.html?nr=1&amp;amp;pmid=17444618&quot; title=&quot;is a ligand binding domain with differential affinity for Ex4 and GLP-1:&quot;&gt;N-terminal&lt;/a&gt;
  7601.    extracellular &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19861722&quot; title=&quot;The structure PDB 3I0L shows that important hydrophobic ligand-receptor interactions are conserved in agonist-and antagonist-bound forms of the extracellular domain&quot;&gt;domain&lt;/a&gt; is a
  7602.    potent &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8564786.html?nr=4&amp;amp;pmid=11116211&quot; title=&quot;purified N-terminal fragment (hereafter referred to as NT) &amp;amp; wild-type (WT) GLP-1R indicate that the NT domain of the GLP-1R is able to bind GLP-1&quot;&gt;insulinotropic&lt;/a&gt;
  7603.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15853665.html?nr=4&amp;amp;pmid=21540554&quot; title=&quot;incretin glucose-dependent insulinotropic polypeptide (GIP)&quot;&gt;incretin&lt;/a&gt;
  7604.    hormone important in maintaining &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11103197.html?nr=6&amp;amp;pmid=15975668&quot; title=&quot;(GLP-1R) polymorphism in which threonine 149 is substituted with a methionine residue&quot;&gt;blood&lt;/a&gt;
  7605.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21046358?dopt=Abstract&quot; title=&quot;Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis&quot;&gt;glucose&lt;/a&gt;
  7606.    homeostasis, through their receptors, GLP1R and glucose-dependent
  7607.    insulinotropic polypeptide &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22105074&quot; title=&quot;core domain of their receptors. These core domains are important not only for specific ligand binding but also for ligand-induced receptor activation&quot;&gt;GIPR&lt;/a&gt;. The
  7608.    glucagon-like peptide-1 (GLP-1) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21868452&quot; title=&quot;(e.g. exendin 9-39) may interact solely with the receptor N terminus&quot;&gt;C-terminal&lt;/a&gt;
  7609.    regions &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21616920&quot; title=&quot;full-length (1-37) and truncated (7-37) forms of GLP-1&quot;&gt;bind&lt;/a&gt;
  7610.    to the N terminus (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20649595&quot; title=&quot;The membrane-tethered NTD of hGLP-1R displayed similar affinity for GLP-1 and Ex4&quot;&gt;NTD&lt;/a&gt;) this &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20529866&quot; title=&quot;molecular approximations the first extracellular loop and the the juxtamembrane region&quot;&gt;region&lt;/a&gt; of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19815559&quot; title=&quot;Ex4 NMR structure (PDB code: 1JRJ) with the antagonist Ex4-(9–39)-bound GLP1 receptor amino-terminal domain crystal structure (PDB code: 3C59) that followed by replacing with the agonist GLP1 NMR structure (PDB code: 1D0R)&quot;&gt;interaction&lt;/a&gt;
  7611.    is&amp;nbsp; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11035202?dopt=Abstract&quot; title=&quot;incretin hormone glucagon-like peptide 1(7-36)amide (GLP-1) are mediated by the GLP-1 receptor (GLP-1R)&quot;&gt;mediated
  7612.  
  7613.  
  7614.      by&lt;/a&gt; the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20690636&quot; title=&quot;the nGLP-1R compared to the full-length GLP-1R&quot;&gt;nGLP1R&lt;/a&gt;
  7615.    (receptor variants) released from the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10554120.html?nr=7&amp;amp;pmid=15034199&quot; title=&quot;(GLP-1) is the most insulinogenic of the glucagon-like peptides secreted mainly by L cells in the small and large intestine in response to the ingestion of nutrients&quot;&gt;gut&lt;/a&gt;
  7616.    as an &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9676433.html?nr=10&amp;amp;pmid=12684481&quot; title=&quot;The area postrema AP a circumventricular organ is a key site for peripheral GLP-1 to activate central autonomic regulatory sites&quot;&gt;incretin&lt;/a&gt;&amp;nbsp;
  7617.  
  7618.  
  7619.    and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15371411.html?nr=3&amp;amp;pmid=20547734&quot; title=&quot;GLP-1 receptor, including full-length (1-37) and truncated (7-37) forms of GLP-1 that can each exist in an amidated form and the related peptide oxyntomodulin&quot;&gt;oxyntomodulin&lt;/a&gt;
  7620.    (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14677036.html?nr=8&amp;amp;pmid=20147608&quot; title=&quot;There was a high degree of cosensitivity to GLP-1 and OXM, and the effects of both hormones were blocked by the GLP-1R antagonist exendin(9-39)&quot;&gt;OXM&lt;/a&gt;)
  7621.    and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10006197.html?nr=8&amp;amp;pmid=14514604&quot; title=&quot;: GLP-1R agonists and DPP-IV inhibitors have shown promising results in clinical trials&quot;&gt;DPP-IV&lt;/a&gt;
  7622.    inhibitors are structurally related gastrointestinal hormone
  7623.    secreted from &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14316919.html?nr=3&amp;amp;pmid=18445652&quot; title=&quot;enteroendocrine L cells and potentiates glucose-dependent insulin secretion in pancreatic beta cells However, beta-arrestin-1 knockdown did not affect GLP-1 R surface expression&quot;&gt;enteroendocrine&lt;/a&gt;
  7624.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14220871.html?nr=7&amp;amp;pmid=20026306&quot; title=&quot;Glucagon-like peptide-1 (GLP-1) is one of the incretins&quot;&gt;L
  7625.      cell&lt;/a&gt;s into the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13144302.html?nr=7&amp;amp;pmid=17306374&quot; title=&quot;enhancing glucose-induced insulin secretion, continuous GLP-1R activation also increases insulin synthesis, beta cell proliferation&quot;&gt;blood&lt;/a&gt;
  7626.    stream governed by the tethered &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15528268&quot; title=&quot;(beta)arr2 interaction locks the receptor in a high-affinity conformation, which can be explored by some, but not all, ligands&quot;&gt;(beta)arr2&lt;/a&gt;.
  7627.    GLP-1R and the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14190817.html?nr=4&amp;amp;pmid=19841474&quot; title=&quot;(GIP) are gut-derived incretin hormones that regulate blood glucose levels&quot;&gt;GIP&lt;/a&gt;
  7628.    receptor (&lt;a href=&quot;http://lnwme.blogspot.com/search?q=gip&quot; title=&quot;GCG glucagon ╬, : [§§; ^]. tree /88573.html?ID=88574&quot;&gt;GIP-R&lt;/a&gt;) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17505054&quot; title=&quot;These results suggest that the GIP-R is ubiquitated, resulting in downregulation of the actions of GIP&quot;&gt;affect&lt;/a&gt; the
  7629.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22147710&quot; title=&quot;mutation of several residues displayed distinct pathway responses with respect to wild type receptor&quot;&gt;ligand&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12767038.html?nr=3&amp;amp;pmid=18287102&quot; title=&quot;in the N terminus of nGLP-1R and a loop between two antiparallel beta-strands&quot;&gt;dependent&lt;/a&gt;
  7630.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/22147709&quot; title=&quot;extracellular loop ECL&quot;&gt;signal&lt;/a&gt; bias
  7631.    of extracellular loop-ECL2 mutations) pharmacological
  7632.    properties&amp;nbsp; (&lt;a href=&quot;http://en.wikipedia.org/wiki/Liraglutide#Pharmacokinetics&quot; title=&quot;Liraglutide is a once-daily GLP-1 derivative the currently approved Byetta form of exenatide, which is twice daily, but considerably more frequent than the once weekly Bydureon form of exenatide&quot;&gt;exendin-4&lt;/a&gt;&amp;nbsp;
  7633.  
  7634.    (from the venom of the lizard &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8405712&quot; title=&quot;exendin-4 and exendin-(9-39)&quot;&gt;Heloderma&lt;/a&gt;
  7635.    &lt;a href=&quot;http://en.wikipedia.org/wiki/Gila_monster#Drug_research&quot; title=&quot;a synthetic version of a protein, exendin-4, derived from the Gila monster&#39;s saliva&quot;&gt;suspectum&lt;/a&gt;)
  7636.    is used in humans, as a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18287102&quot; title=&quot;Exendin-4 has a C-terminal extension of nine amino acid residues known as the Trp cage, which is absent in GLP-1&quot;&gt;therapeutic&lt;/a&gt;
  7637.    tool: &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15876137.html?nr=6&amp;amp;pmid=21562063&quot; title=&quot;The glucagon like peptide-1 receptor (GLP-1R) agonist liraglutide&quot;&gt;liraglutide&lt;/a&gt;)
  7638.    of these proteins, is &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15200525.html?nr=9&amp;amp;pmid=20374430&quot; title=&quot;GLP-1R mediated neurotrophic and anti-apoptotic actions co-contribute to the neuroprotective property of GLP-1&quot;&gt;neuroprotective&lt;/a&gt;.
  7639.    GLP1 and GLP1R are expressed in the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19077438&quot; title=&quot;Nuclei in the hypothalamus include the arcuate nucleus (ARC), ventral medial nucleus (VMN), dormal medial nucleus (DMN), paraventricular nucleus (PVN) and lateral hypothalamic area (LHA). Brainstem regions shown include the dorsal raphe nucleus (DRN) and nucleus tractus solitarius (NTS). BBB = blood brain barrier&quot;&gt;brain&lt;/a&gt; and
  7640.    associated &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8986619.html?nr=9&amp;amp;pmid=11262390&quot; title=&quot;multiple extrahypothalamic regions of the mouse and rat CNS, including cell groups in the cerebellum, medulla, amygdala,hippocampus, dentate gyrus, pons, cerebral cortex, and pituitary&quot;&gt;mechanisms&lt;/a&gt;
  7641.    in the central nervous &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1752213.html?nr=8&amp;amp;pmid=9886047&quot; title=&quot;GLP-1 ot only functions as a satiety factor but also acts as a neurotransmitter or neuromodulator in anatomically and functionally distinct areas of the central nervous system&quot;&gt;system&lt;/a&gt;,
  7642.    regulation of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15065564.html?nr=10&amp;amp;pmid=20413910&quot; title=&quot;determined whether and how neonatal GLP-1 overexpression may modify hippocampal GR [glucocorticoid receptor] expression and thus programme adolescent behaviour in rats&quot;&gt;neuroendocrine&lt;/a&gt;
  7643.    and behavioural responses in certain &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10476586.html?nr=7&amp;amp;pmid=15279492&quot; title=&quot;Gender-related differences were found in the hindbrain and medial hypothalamus for GLUT-2 and in the lateral hypothalamus for GLP-1R&quot;&gt;cells&lt;/a&gt;
  7644.    in the brain. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13832375.html?nr=8&amp;amp;pmid=19386626&quot; title=&quot;(GIP-R) was decreased in islets from humans with T2DM as well as in isolated human islets treated with siRNA to TCF7L2&quot;&gt;TCF7L2&lt;/a&gt;
  7645.    and GLP1R/GIPR expression effects on &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12334849.html?nr=1&amp;amp;pmid=16931572&quot; title=&quot;T2DM were correlated with pancreatic beta cell function&quot;&gt;beta-cell&lt;/a&gt;
  7646.    function was decreased in human T2DM &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21094904?dopt=Abstract&quot; title=&quot;glucose metabolism-dependent secretion of insulin from pancreatic β cells located within the islets of Langerhans&quot;&gt;islets&lt;/a&gt;
  7647.    is a characteristic feature of NIDDM. GLP-1 stimulate secretion of
  7648.    pituitary hormones. &lt;a href=&quot;http://string-db.org/newstring_cgi/show_network_section.pl?identifier=P0C6A0&quot; title=&quot;(By similarity)&quot;&gt;GLP1&lt;/a&gt; is a hormone derived from the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1752213.html?nr=2&amp;amp;pmid=9886047&quot; title=&quot;Glucagon-like peptide-1 (GLP-1) is derived from the peptide precursor pre-pro-glucagon (PPG)&quot;&gt;preproglucagon&lt;/a&gt;
  7649.    molecule (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15853665.html?nr=4&amp;amp;pmid=21540554&quot; title=&quot;glucagon receptor (Gcgr) results in increased levels of the insulinotropic hormone glucagon-like peptide 1 (GLP-1)&quot;&gt;GCG&lt;/a&gt;).
  7650.    GLP1 a Glucagon Receptor Antagonist dose not bind peptides of
  7651.    related structure glucagon, (GCG) does not modify (Unrelated,
  7652.    non-diabetic &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1815097.html?nr=2&amp;amp;pmid=10078851&quot; title=&quot;implies that structural variants of these genes do not contribute to variation&quot;&gt;Pima&lt;/a&gt;
  7653.    Indians) the growth or apoptosis of a seven transmembrane (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11116211&quot; title=&quot;charged residues concentrated at the distal TM2/extracellular loop-1 (EC1) interface&quot;&gt;TM&lt;/a&gt;) domain
  7654.    protein (GLP1) in normal human &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/101035.html?nr=9&amp;amp;pmid=8404634&quot; title=&quot;the most potent endogenous stimuli of insulin secretion and have powerful antidiabetogenic effects&quot;&gt;pancreas&lt;/a&gt;
  7655.    ectopic expression of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8770921?dopt=Abstract&quot; title=&quot;the observed extrapancreatic actions of GLP-1&quot;&gt;pancreatic&lt;/a&gt;
  7656.    master regulator &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14153967.html?nr=6&amp;amp;pmid=19755420&quot; title=&quot;at two distinct steps; it increases the proliferation of liver cells predisposed to transdifferentiated in response to PDX-1 and promotes the maturation of transdifferentiated cells along the pancreatic lineage&quot;&gt;PDX-1&lt;/a&gt;*
  7657.    (pancreatic and duodenal homeobox gene 1) neuroendocrine &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13321816.html?nr=9&amp;amp;pmid=17631146&quot; title=&quot;Cholangiocytes are the epithelial cells of the bile duct cholangiocytes undergo a neuroendocrine transdifferentiation and their biology is regulated by neuroendocrine hormones&quot;&gt;transdifferentiation&lt;/a&gt;*
  7658.    of pancreatic ductal cells within the &lt;a href=&quot;http://en.wikipedia.org/wiki/Endocrine_system&quot; title=&quot;system of glands each of which secretes a type of hormone directly into the bloodstream to regulate the body&quot;&gt;endocrine&lt;/a&gt;
  7659.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14301268.html?nr=12&amp;amp;pmid=18162507&quot; title=&quot;human pancreatic islets and the underlying signaling pathways&quot;&gt;pancreas&lt;/a&gt;. The activity of this receptor is mediated by G proteins which activate &lt;a href=&quot;http://string-db.org/version_9_0/newstring_cgi/show_network_section.pl?identifier=9606.ENSP00000362353&amp;amp;all_channels_on=1&amp;amp;interactive=no&amp;amp;network_flavor=evidence&amp;amp;targetmode=proteins&quot;&gt;adenylyl cyclase&lt;/a&gt;,&amp;nbsp; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/114#bibliography&quot; title=&quot;GeneRIFs: Gene References Into Functions&quot;&gt;ADCY8&lt;/a&gt;&amp;nbsp; (brain) plays a central role including signalling via the GLP1R.&lt;/div&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7660. google_ad_client=&quot;pub-9610428118332343&quot;;
  7661. google_ad_host=&quot;&quot;;
  7662. google_ad_width=200;
  7663. google_ad_height=90;
  7664. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7665. google_color_border=&quot;EEEECC&quot;;
  7666. google_color_bg=&quot;EEEECC&quot;;
  7667. google_color_link=&quot;445566&quot;;
  7668. google_color_url=&quot;445566&quot;;
  7669. google_color_text=&quot;333333&quot;;
  7670. //--&gt;&lt;/script&gt;
  7671. &lt;script type=&quot;text/javascript&quot;
  7672.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7673. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2012/05/domain-of-area-complexed-glp.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhKW30_2M5-0ZC2wYSAAepZGl-3hPQtmqKm6vcBk9iAD6iK5Fn_OnNsbIxHk0w7fztRCGcNUNh9b3clMAFR7QNRMhB0hvqmj_MBVZwAown86DV4vAT1CCDQmgauHhogvaWZuOYgmw/s72-c/helixloopc.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-1258797235906046559</guid><pubDate>Thu, 26 Apr 2012 04:35:00 +0000</pubDate><atom:updated>2012-04-30T23:10:23.575-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">LEF1</category><category domain="http://www.blogger.com/atom/ns#">Pima</category><title>TCF7L2 traits and activity that affect its expression</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7674. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/April252012#5735544706289890898&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;TCL7L2 transcription factor 7-like 2 (T-cell specific, HMG-box) Ribbon diagram showing the overlay (CTNNB1 NCBI.pdb&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhpz7PBPHNknmAcNsMKqqh6qkNnOLJWq3LUqvSuWh1Wc51D8BDaJxdj1W9C7-z9QSUOTL7Bvw1WmVGhs0WyuaClzOhPgSKWVjtivejSJw2JRZoTGarEPwzSemxQXv4Acz2LBPFLJA/s640/ncbi-lys-1jdh2.png&quot; style=&quot;border: 0px solid; height: 123px; width: 326px;&quot; title=&quot;TCL7L2 transcription factor 7-like 2 (T-cell specific, HMG-box) Ribbon diagram showing the overlay (CTNNB1 NCBI.pdb&quot; /&gt;&lt;/a&gt;TCF7L2 Transcription factor 7-like 2 acts through regulation of pro&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15513765.html?nr=10&amp;amp;pmid=20648057&quot; title=&quot;glucagon-like peptide-1 (GLP-1) signalling chain. 167 patients underwent an oral glucose tolerance test&quot;&gt;glucagon&lt;/a&gt; (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13832375.html?nr=11&amp;amp;pmid=19386626&quot; title=&quot;interplay between TCF7L2 and GLP-1R/GIP-R expression&quot;&gt;GLP-1R&lt;/a&gt;) in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12594978.html?nr=12&amp;amp;pmid=17661009&quot; title=&quot;glucagon-like peptide-1 (GLP-1) secretion from intestinal L cells&quot;&gt;enteroendocrine&lt;/a&gt;
  7675.    cells implicated in blood &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15391563.html?nr=5&amp;amp;pmid=20682688&quot; title=&quot;Common genetic variants in GCK and TCF7L2 are associated with higher fasting glucose and type 2 diabetes&quot;&gt;glucose&lt;/a&gt; homeostasis also called TCF4 of the four members of the downstream effector of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13231973.html?nr=9&amp;amp;pmid=17392368&quot; title=&quot;f human immunodeficiency virus (HIV)-associated dementia (HAD) progression in the cerebral spinal fluid of HAD patients&quot;&gt;Wnt&lt;/a&gt; signaling &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9801016.html?nr=10&amp;amp;pmid=12446687&quot; title=&quot;family of DNA-binding proteins&quot;&gt;T-cell factor&lt;/a&gt; (TCF ) to
  7676.    human chromosome band 10q25.2, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17683561&quot; title=&quot;TCF7-like HMG box-containing transcription factors, and maps to human chromosome 10q25.3&quot;&gt;25.3&lt;/a&gt; : [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/6934&quot;&gt;§§&lt;/a&gt;; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/92582.html?ID=87523&quot;&gt;^&lt;/a&gt;].&amp;nbsp; Noninsulin-dependent,
  7677.    susceptibality to TCF7L2, IVS3, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14221187.html?nr=13&amp;amp;pmid=19934000&quot; title=&quot;isk-conferring TCF7L2 genotypes (TT or TC at rs7903146) with wild-type genotype (CC)&quot;&gt;C&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12336600.html?nr=6&amp;amp;pmid=17020404&quot; title=&quot;the T allele at rs7903146 of TCF7L2&quot;&gt;T&lt;/a&gt;&amp;nbsp; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13591123.html?nr=7&amp;amp;pmid=19033397&quot; title=&quot;The TCF7L2 rs12255372 polymorphism showed the highest odds ratio (OR) for type 2 diabetes&quot;&gt;polymorphisms&lt;/a&gt;* (and high-risk rs&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21707949&quot; title=&quot;(SNP) of TCF7L2 (rs7903146) was genotyped and associations with gastric emptying (GE) of solids and liquids, gastric volume (GV), and satiation (maximum tolerated volume and symptoms after nutrient drink test)&quot;&gt;7903146&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15722842.html?nr=9&amp;amp;pmid=20540670&quot; title=&quot;polymorphism of TCF7L2 (rs7903146 C/T) gene Additionally, CT and TT genotypes&quot;&gt;TT&lt;/a&gt; genotype and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19473183?dopt=Abstract&quot; title=&quot;insulin secretion was higher in the CT/TT group than in the CC group&quot;&gt;low&lt;/a&gt;-risk &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20957343?dopt=Abstract&quot; title=&quot;Middle-aged normoglycaemic individuals carrying the rs7903146 TCF7L2 risk TT genotype show early signs of dysregulated glucose metabolism&quot;&gt;CC&lt;/a&gt; genotype) to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17206141&quot; title=&quot;HapB(T2D), to the ancestral T allele of a SNP, rs7903146&quot;&gt;ancestral&lt;/a&gt; T allele,
  7678. excess &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12566001.html?nr=4&amp;amp;pmid=17805508&quot; title=&quot;there were no relationships between the TCF7L2 single nucleotide polymorphism rs7903146 and androgen levels in Polycystic ovary syndrome (PCOS) a genetic disease&quot;&gt;androgen&lt;/a&gt; DNA binding domain (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9946296.html?nr=10&amp;amp;pmid=12799378&quot; title=&quot;AR and Tcf4 can interact directly and that this interaction may occur on the promoters or enhancers of particular genes&quot;&gt;DBD&lt;/a&gt;),&amp;nbsp; PCOS-specific &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14254311.html?nr=5&amp;amp;pmid=20092643&quot; title=&quot;polycystic ovary syndrome (PCOS) BMI in patients with PCOS to unselected females of the same age range we genotyped 1,971 females&quot;&gt;traits&lt;/a&gt; and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14176139.html?nr=2&amp;amp;pmid=20041287&quot; title=&quot;There was no association of either of the two variants, rs7903146 of TCF7L2 and rs1111875 of HHEX, with the occurrence of PCOS in the Chinese population&quot;&gt;activity&lt;/a&gt;    (The &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14241762.html?nr=8&amp;amp;pmid=20142250&quot; title=&quot;a known inverse association between type 2 diabetes (T2D) and prostate cancer&quot;&gt;TCF7L2&lt;/a&gt; allele &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14185391.html?nr=4&amp;amp;pmid=20043145&quot; title=&quot;did not find evidence of association between type 2 diabetes susceptibility variants through glucose homeostasis response to exercise&quot;&gt;rs&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18706099?dopt=Abstract&quot; title=&quot;Tropical calcific pancreatitis (TCP) unique to developing countries in tropical regions invariable progression to diabetes polymorphism rs7903146&quot;&gt;7903146&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19258437?dopt=Abstract&quot; title=&quot;rs7903146 (TCF7L2) polymorphisms were genotyped in 772 participants of the Dutch Famine Birth Cohort Study&quot;&gt;º&lt;/a&gt; &#39; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18264689?dopt=Abstract&quot; title=&quot;1,065 German participants for single nucleotide polymorphisms rs7903146 in TCF7L2&quot;&gt;ª&lt;/a&gt; &#39; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15195949.html?nr=1&amp;amp;pmid=20424228&quot; title=&quot;f well-established common variants with type 2 diabetes in Indians&quot;&gt;␠&lt;/a&gt; associated with impaired &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20802253?dopt=Abstract&quot; title=&quot;increase in insulin secretion upon improvement of glycemia by lifestyle intervention only in carriers of the risk alleles&quot;&gt;incretin&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19934000&quot; title=&quot;TCF7L2 variant rs7903146 appears to affect risk of type 2 diabetes, at least in part, by modifying the effect of incretins on insulin secretion&quot;&gt;signaling&lt;/a&gt; is modified by use of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18398040&quot; title=&quot;TCF7L2 polymorphism and recent use of aspirin/nonsteroidal anti-inflammatory drugs&quot;&gt;aspirin / NSAIDs&lt;/a&gt;; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19509102&quot; title=&quot;significantly associated with type 2 diabetes (T2D) in Taiwanese subjects&quot;&gt;rs&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14250927.html?nr=1&amp;amp;pmid=20054294&quot; title=&quot;TCF7L2 rs290487(C/T) are associated with a heightened risk of developing type 2 diabetes mellitus (T2DM)&quot;&gt;290487&lt;/a&gt; risk &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13691025.html?nr=5&amp;amp;pmid=18972257&quot; title=&quot;TCF7L2 gene (rs12255372 and rs7903146) were strongly associated with type 2 diabetes&quot;&gt;allele&lt;/a&gt; rs&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19002430?dopt=Abstract&quot; title=&quot;rs7903146 and rs12255372 in TCF7L2; examine the association between these diabetogenic variants and gestational diabetes mellitus (GDM)&quot;&gt;12255372&lt;/a&gt;* &#39; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15171169.html?nr=4&amp;amp;pmid=20215779&quot; title=&quot;gene-dietary fat interactions may influence glucose homeostasis-related phenotypes and play an important role in determining the increased risk of diabetes&quot;&gt;º&lt;/a&gt; &#39; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14316867.html?nr=9&amp;amp;pmid=18461161&quot; title=&quot;Genes expressed in the pancreas interact together and their combined effect dramatically increases the risk for T2D&quot;&gt;ª&lt;/a&gt;&amp;nbsp; (associated with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17909099&quot; title=&quot;TCF7L2 is not a major susceptibility gene for type 2 diabetes in Pima Indians&quot;&gt;Pima&lt;/a&gt; Indians) and rs &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18598350?dopt=Abstract&quot; title=&quot;TCF7L2 (rs 10885409) was associated with increased LDL-cholesterol (p = 0.010) in NGT and total and LDL-cholesterol levels in combined cohort&quot;&gt;10885409&lt;/a&gt;)&amp;nbsp; in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19602480&quot; title=&quot;(SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene TCf7L2&quot;&gt;intron 3&lt;/a&gt;, &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18166673&quot; title=&quot;Short nucleotide repetitions (STRs) are commonly used as genetic markers&quot;&gt;STR&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18072015&quot; title=&quot;DG10S478 allele X and its association with diabetic complications,&quot;&gt;DG10S478&lt;/a&gt; is located in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21357677&quot; title=&quot;By analyzing human isolated islets, we provide three explanations for this opposite regulation and the mechanisms of TCF7L2 on β-cell function and survival&quot;&gt;islet&lt;/a&gt;-selective open
  7679.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20696899&quot; title=&quot;cis-regulatory regions bound by the intestine-restricted transcription factor CDX2 in colonic cells uncovered highly significant overrepresentation of sequences that bind TCF4&quot;&gt;chromatin&lt;/a&gt; within a 92-kb &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12486090.html?nr=8&amp;amp;pmid=17601994&quot; title=&quot;TCF7L2 intron 4 SNPs rs7895340, rs11196205, and rs12255372&quot;&gt;intron 4 block&lt;/a&gt; of &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/April252012#5735544733168564466&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;Figure (2.) TCF4 with 2LEF DNA oriefted to figure (1.) Crystal Structure Of A Human Tcf-4 BETA-Catenin Complex&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjH-13D-jMymidT47XgkMOsJWsaF-uMmeViLPHkui924LZITZ4Vcp64Qjj0UCeRMkU2Ve8pUIl4sFjRr4atqbiF32a9Hiw09_Is8TZgPpUIhyphenhyphen_MmTjvTPICaGAeZ8AgUlT1QKo6hg/s640/lef1-1g3j-1jdh-lys2.png&quot; style=&quot;border: 0px solid; height: 136px; width: 227px;&quot; title=&quot;Figure (2.) TCF4 with 2LEF DNA oriefted to figure (1.) Crystal Structure Of A Human Tcf-4 BETA-Catenin Complex&quot; /&gt;&lt;/a&gt;linkage
  7680.    disequilibrium population-attributable risk of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19636253&quot; title=&quot;The actual prevalence of type 2 diabetes in the study population was 20%&quot;&gt;21%&lt;/a&gt; respectively for regulatory defects, of
  7681.    the TCF7L2 gene, comprises &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20878273&quot; title=&quot;TCF7L2 plays an important role for several vital functions in the pancreatic islet&quot;&gt;17 exons&lt;/a&gt;, an intron can influence &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19247628&quot; title=&quot;TCF7L2 with forms containing exon 4 and 15 being most abundant in islets&quot;&gt;islet&lt;/a&gt; function,&amp;nbsp; on exons 1 and 2 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15853773&quot; title=&quot;the functional relevance of two cis-acting binding elements D-glucuronic acid into L-iduronic acid of HS, endows the nascent polysaccharide chain with the ability to bind to growth factors and cytokines.&quot;&gt;cis-acting&lt;/a&gt;† binding
  7682.    extracellular ectodomain elements through the beta-catenin / &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9422416.html?nr=1&amp;amp;pmid=11931652&quot; title=&quot;have identified the T-cell factor-4 (Tcf-4) motif and the activator protein-1 site as the major regulatory elements of the MMP-26 promoter&quot;&gt;E(epithelial)&lt;/a&gt;-cadherin pathway (GLCE† glucuronic acid epimerase: intestinal &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19141695?dopt=Abstract&quot; title=&quot;after a high-fat meal were assessed. All subjects were genotyped for transcription factor 7-like 2 (TCF7L2) polymorphism&quot;&gt;postprandial&lt;/a&gt; in both differentiation,
  7683.    undifferentiated &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17875931&quot; title=&quot;These findings indicate that Sox proteins can act as both antagonists and agonists of beta-catenin/TCF activity&quot;&gt;states&lt;/a&gt;) lacking (CTBP-C-terminal* binding site) the essential function of the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19816403?dopt=Abstract&quot; title=&quot;germinal centre kinase family as a Tcf4 interactor in the proliferative crypts of mouse small intestine&quot;&gt;kinase&lt;/a&gt; activity in Wnt-TCF /
  7684.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16564030?dopt=Abstract&quot; title=&quot;beta-catenin might be a major factor regulating the import of Tcf4 from the cytoplasm into the nucleus&quot;&gt;beta-catenin&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10606455.html?nr=7&amp;amp;pmid=15525529&quot; title=&quot;t CtBP lowers the availability of free nuclear beta-catenin for binding to TCF by sequestering APC&quot;&gt;binding&lt;/a&gt; domain. That hypoxia inducible factor-1alpha
  7685.    (HIF-1a ) TCF1, and LEF1 contain a virtually identical N-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20654575&quot; title=&quot;N- and C-termini allows variability in TCF7L2 functions and regulations&quot;&gt;terminal&lt;/a&gt;
  7686.    HMG box, numerous alternative splicings at its &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12155445.html?nr=4&amp;amp;pmid=16547505&quot; title=&quot;among which some contain binding domains for CtBP C-terminal binding protein&quot;&gt;3&#39; end&lt;/a&gt;* affect its expression. TCF1-alpha mediated gene transcription (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9946296.html?nr=4&amp;amp;pmid=12799378&quot; title=&quot;there is a direct interaction between the AR DNA binding domain (DBD) and Tcf4&quot;&gt;beta-catenin&lt;/a&gt;)
  7687.    CTNNB1-N-terminal binding domain competes with TCF-4 for direct
  7688.    binding to beta-catenin DNA topoisomerase IIalpha (Topo IIalpha) inhibitors, merbarone and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17983804&quot; title=&quot;causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. It is used as a form of chemotherapy&quot;&gt;etoposide&lt;/a&gt; are component&#39;s. Followed by in the absence of Wnt ligands a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13800199.html?nr=6&amp;amp;pmid=19304756&quot; title=&quot;in the absence of Wnt ligands they bind TLE/Groucho proteins to act as transcriptional repressors&quot;&gt;Groucho&lt;/a&gt; (TLE1)-interacting
  7689.    domain, the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9801016.html?nr=10&amp;amp;pmid=12446687&quot; title=&quot;This domain influences the DNA binding properties of TCF4&quot;&gt;TCF4E&lt;/a&gt; harbors a C terminus, binding site. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12048202&quot; title=&quot;beta-catenin-mediated induction was inhibited by dominant-negative TCF and by deletion of the TBE1 sequence&quot;&gt;PKD1&lt;/a&gt;-polycystin transactivating factors
  7690.    include 4 TCF-binding elements (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9742577.html?nr=6&amp;amp;pmid=12566320&quot; title=&quot;promoter reporter construct containing the, TBE but not with mutant TBE. Mutant beta-catenin expression up-regulated the COX-2 promoter activity and the endogenous COX-2 mRNA&quot;&gt;TBE&lt;/a&gt;s) due to the activation of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10800007.html?nr=7&amp;amp;pmid=15514942&quot; title=&quot;, a putative TCF4-binding element (TBE) was identified in PTTG [pituitary tumor transforming gene] promoter region&quot;&gt;beta-catenin/WNT&lt;/a&gt; signaling. A Tcf-4-binding element (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9742577.html?nr=8&amp;amp;pmid=12566320&quot; title=&quot;implicate the Wnt signal transduction pathway in colon and liver carcinogenesis&quot;&gt;TBE&lt;/a&gt;) in the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8980043.html?nr=8&amp;amp;pmid=11396184&quot; title=&quot;An identified putative Tcf-4 binding element in the COX-2 promoter&quot;&gt;COX-2&lt;/a&gt; [cyclooxygenase-2] promoter may partly explain in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12020561.html?nr=4&amp;amp;pmid=16569639&quot; title=&quot;physiological function of Daxx, via interaction with Tcf4, to regulate proliferation and differentiation of colon cells&quot;&gt;colon&lt;/a&gt; and liver, carcinogenesis. In the absence of the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9663616.html?nr=4&amp;amp;pmid=12711682&quot; title=&quot;the Tcf/Lef family of the HMG box transcription factors are nuclear effectors of Wnt&quot;&gt;Wnt signal&lt;/a&gt;, TCFs function as transcriptional repressors on the effects of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14301432.html?nr=9&amp;amp;pmid=18203713&quot; title=&quot;substances such as follistatin that block the binding of myostatin to its receptor have significantly larger muscles&quot;&gt;myostatin&lt;/a&gt; (GDF8 the MSTN gene) on (TCF7L2) proliferation versus differentiation at &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12048202&quot; title=&quot;beta-catenin-mediated induction was inhibited by dominant-negative TCF and by deletion of the TBE1 sequence&quot;&gt;TBE&lt;/a&gt; site 1.&lt;/div&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7691. google_ad_client=&quot;pub-9610428118332343&quot;;
  7692. google_ad_host=&quot;&quot;;
  7693. google_ad_width=200;
  7694. google_ad_height=90;
  7695. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7696. google_color_border=&quot;EEEECC&quot;;
  7697. google_color_bg=&quot;EEEECC&quot;;
  7698. google_color_link=&quot;445566&quot;;
  7699. google_color_url=&quot;445566&quot;;
  7700. google_color_text=&quot;333333&quot;;
  7701. //--&gt;&lt;/script&gt;
  7702. &lt;script type=&quot;text/javascript&quot;
  7703.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7704. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2012/04/tcl7l2-traits-and-activity-that-affect.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhpz7PBPHNknmAcNsMKqqh6qkNnOLJWq3LUqvSuWh1Wc51D8BDaJxdj1W9C7-z9QSUOTL7Bvw1WmVGhs0WyuaClzOhPgSKWVjtivejSJw2JRZoTGarEPwzSemxQXv4Acz2LBPFLJA/s72-c/ncbi-lys-1jdh2.png" height="72" width="72"/><thr:total>0</thr:total><georss:featurename>15-167 Puni Lani Loop N, Pāhoa, HI 96778, USA</georss:featurename><georss:point>19.556838076132298 -154.89044666290283</georss:point><georss:box>19.5530975761323 -154.89538216290282 19.560578576132297 -154.88551116290284</georss:box></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-6893434024090467562</guid><pubDate>Sun, 25 Mar 2012 22:34:00 +0000</pubDate><atom:updated>2012-04-04T12:35:23.990-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">APC</category><category domain="http://www.blogger.com/atom/ns#">Axin</category><category domain="http://www.blogger.com/atom/ns#">CDH1</category><category domain="http://www.blogger.com/atom/ns#">GLI3/ssh</category><category domain="http://www.blogger.com/atom/ns#">TCF</category><title>CTNNB1 catenin (cadherin-associated protein), beta 1 and formation of branching point structures beta-catenin / LEF demonstrating nucleation at TBE1 site (TCF7L2)</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7705. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/vP2Ghn34_dx-vAJAsXUlRNMTjNZETYmyPJy0liipFm0?feat=directlink&quot; target=&quot;=&amp;quot;_blank&amp;quot;&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;Catenin Beta 1, CTNNB PDB:3FQR and the closely related T-cell factor 1 (TCF-1) Lymphoid enhancer-binding factor (PDB; 2LEF[-1]) as the technical DNA coil,&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjGwoplVN_TwoO5zPWrJ87vjcgoL2wnyB7RKDHZv4_wHbzX94BP92L9gkH3yMXseMgJODjjYMaiPjQ3YZkVpgquA2zB8Noe0ElpUykNkF822QcW9aF8DiGT3krtFxOfyUYij-VWZw/s720/3fqr.png&quot; style=&quot;border: 0px solid; height: 171px; width: 267px;&quot; title=&quot;Catenin Beta 1, CTNNB PDB:3FQR and the closely related T-cell factor 1 (TCF-1) Lymphoid enhancer-binding factor (PDB; 2LEF[-1]) as the technical DNA coil,&quot; /&gt;&lt;/a&gt;Catenin Beta 1, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13396772.html?nr=13&amp;amp;pmid=17710160&quot; title=&quot;i.e., beta-catenin&quot;&gt;CTNNB&lt;/a&gt;
  7706.    are cell adhesion molecules called&amp;nbsp;(&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9843038.html?nr=1&amp;amp;pmid=12640114&quot; title=&quot;catenin (cadherin-associated protein), delta 1&quot;&gt;p120&lt;/a&gt;*&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9223001.html?nr=6&amp;amp;pmid=12370829&quot; title=&quot;The interaction with p120(ctn) is likely to be direct, as the interaction occurs in K562 cells lacking functional adherens junctions and E-cadherin expression&quot;&gt;␠&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10136084.html?nr=4&amp;amp;pmid=14625392&quot; title=&quot;heterotypic (mixed) complexes] are associated with alpha-and beta-catenin, plakoglobin (proportions variable among species), p120ctn of lens structure and functions, notably clear and sharp vision&quot;&gt;catenin&lt;/a&gt;)
  7707.    cadherins (the (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13600674.html?nr=13&amp;amp;pmid=19038973&quot; title=&quot;recruiting beta-CATENIN into plasma membranes and promoting the formation of adherens junctions involving CDH1&quot;&gt;CDH1&lt;/a&gt;)
  7708.    E-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12543392.html?nr=1&amp;amp;pmid=18006853&quot; title=&quot;The disruption of E-cadherin/beta-catenin complex formation promotes EMT, thereby stimulating tumor progression&quot;&gt;cadherin&lt;/a&gt;/catenin
  7709.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8767420.html?nr=3&amp;amp;pmid=11254878&quot; title=&quot;the level of co-localised peripheral staining and increased the level of cytoplasmic staining&quot;&gt;complex&lt;/a&gt;)
  7710.    include the&amp;nbsp; beta-catenins a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9842506.html?nr=9&amp;amp;pmid=12588987&quot; title=&quot;an inhibitor of T-cell factor 4 (TCF-4), and E-cadherin binding to beta-catenin&quot;&gt;multifunctional&lt;/a&gt;
  7711.    molecule Locus: 3p22.1 [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/1499&quot;&gt;§§&lt;/a&gt;; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/87523.html?ID=91509&quot;&gt;^&lt;/a&gt;].
  7712.  
  7713.  
  7714.    Neurons also exhibited a higher CTNNB/TCF pathway association
  7715.    (concentration versus accumulation) with cadherins; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9485090.html?nr=6&amp;amp;pmid=12061792&quot; title=&quot;CAS with E-cadherin enhances the formation of E-cadherin/beta-catenin cell-cell adhesive complex&quot;&gt;CAS&lt;/a&gt;-chromosome
  7716.    segregation 1-like (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9472850.html?nr=1&amp;amp;pmid=12037680&quot; title=&quot;conjugating enzyme UBC3/CDC34. UBC3B complements the yeast cdc34-2 cell cycle arrest mutant in S.cerevisiae&quot;&gt;yeast&lt;/a&gt;)
  7717.    binds with E-cadherin but &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13496939.html?nr=12&amp;amp;pmid=19003969&quot; title=&quot;a yeast two-hybrid screen, betaTrCP, a negative regulator of beta-catenin was identified&quot;&gt;not
  7718.      with&lt;/a&gt; beta-catenin. Which interacts with (Tcf-T-cell factor
  7719.    where a functional &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12447507.html?nr=6&amp;amp;pmid=17220880&quot; title=&quot;the expansion of tumours and the inadequacy of their local vasculature results in areas of hypoxia where cell growth is typically constrained&quot;&gt;hypoxia&lt;/a&gt;
  7720.    switch is &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15106247.html?nr=7&amp;amp;pmid=20460486&quot; title=&quot;and its role in hypoxia-induced aggressiveness. The clinical significance of beta-catenin and/or hypoxia-induced factor-1alpha (HIF-1alpha)&quot;&gt;instigated&lt;/a&gt;,
  7721.    also &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9166502.html?nr=7&amp;amp;pmid=11983685&quot; title=&quot;beta-catenin and CARM1 can also act synergistically with LEF-1/TCF-4&quot;&gt;coactivators&lt;/a&gt;,
  7722.    known as lymphocyte enhancer-binding factor, &lt;a href=&quot;http://lnwme.blogspot.com/search?q=LEF&quot; title=&quot;LEF1/TCF regions, expression of Beta-catenin/TCF complexes plakoglobin (gamma-catenin) aspects, induction of LEF1&quot;&gt;Lef&lt;/a&gt;) &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9748155.html?nr=2&amp;amp;pmid=12830000&quot; title=&quot;functions as a transcriptional activator in the nucleus&quot;&gt;transcription
  7723.      factor&lt;/a&gt;s &quot;&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12009889.html?nr=6&amp;amp;pmid=16568448&quot; title=&quot;A 17,700 compounds subset of the Pharmacia corporate collection was docked to this hot spot&quot;&gt;hot
  7724.      spots&lt;/a&gt;,&quot; including &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12270201.html?nr=5&amp;amp;pmid=17052462&quot; title=&quot;. We have determined the crystal structure of a beta-catenin/BCL9/Tcf-4 triple complex at 2.6 A resolution&quot;&gt;4
  7725.      TCF&lt;/a&gt;-triple complex binding elements, (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10740920.html?nr=6&amp;amp;pmid=15888491&quot; title=&quot;identification of nine putative Tcf/Lef-binding elements (TBEs) upstream to the ATG initiation site of the AKT1 gene&quot;&gt;TBEs&lt;/a&gt;)
  7726.    express &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10298060.html?nr=14&amp;amp;pmid=15077166&quot; title=&quot;T-cell factor (TCF4 [?]), the specific inhibitor of the beta-catenin/TCF4 complex&quot;&gt;TCF4&lt;/a&gt;
  7727.    (TCF7L2) &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13018351.html?nr=6&amp;amp;pmid=18632682&quot; title=&quot;Polycystin-1 (PC1), the product of the PKD1 gene mutated&quot;&gt;polycystin&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14407698.html?nr=8&amp;amp;pmid=17979146&quot; title=&quot;(PKD1) interacts with E-cadherin and is associated with altered cell aggregation and motility in prostate cancer (PC&quot;&gt;PKD1&lt;/a&gt;
  7728.    gene (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14198329.html?nr=5&amp;amp;pmid=20028853&quot; title=&quot;(PI3K)/Akt signaling pathways sustain medulloblastoma pathophysiology. phosphoinositide-dependent protein kinase 1 (PDK1), Akt, and [corrected] immunohistochemistry in all primary medulloblastomas&quot;&gt;pathophysiology&lt;/a&gt;∵)
  7729.    a target of the beta-catenin/&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12030394.html?nr=8&amp;amp;pmid=16724116&quot; title=&quot;both proteins are prevented from association with the TCF-binding elements&quot;&gt;TCF&lt;/a&gt;
  7730.    adhesion disruption pathway (proliferation &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11508467.html?nr=1&amp;amp;pmid=15853773&quot; title=&quot;the functional relevance of two cis-acting binding elements for the beta-catenin-TCF4 complex&quot;&gt;versus&lt;/a&gt;
  7731.    differentiation, (1:1º) or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21757651&quot; title=&quot;the development of second heart field-derived structures of the heart&quot;&gt;cardiac&lt;/a&gt; left-right (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13553920.html?nr=7&amp;amp;pmid=19103803&quot; title=&quot;Wnt/beta-catenin signaling and regulates the competence of the heart field to express left-sided genes&quot;&gt;LR&lt;/a&gt;º)ª
  7732.    asymmetry) at TBE1 site (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9796392.html?nr=5&amp;amp;pmid=12861022&quot; title=&quot;This protein contains the N-terminal interaction domain for beta-catenin [?] but lacks the DNA binding domain&quot;&gt;TCF7L2&lt;/a&gt;). A minor nuclear-enriched monomeric form (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20419129&quot; title=&quot;beta-catenin hypophosphorylated at T41/S45 can be spatially separated &amp;amp; S45 serves a distinct nuclear function&quot;&gt;ABC&lt;/a&gt;), or an alternative (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11381529.html?nr=4&amp;amp;pmid=16442529&quot; title=&quot;via Bcr: Tcf1 [HNF1homeobox A] in complex with beta-catenin&quot;&gt;Tcf1&lt;/a&gt;)
  7733.    isoform of « TCF-4,&amp;nbsp; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10779184.html?nr=1&amp;amp;pmid=15806138&quot; title=&quot;The TCF4 promoter contains a single consensus TCF-binding site that is critical for activation by beta-catenin&quot;&gt;outside&lt;/a&gt;
  7734.    of the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12917294.html?nr=1&amp;amp;pmid=18593713&quot; title=&quot;an essential mediator of the canonical Wnt signaling pathway. Wnts stabilize beta-catenin&quot;&gt;canonical&lt;/a&gt;
  7735.    Wnt-regulated pathway from, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8431636.html?nr=7&amp;amp;pmid=10966653&quot; title=&quot;LEF-1/TCF, APC and conductin/axin are essential for wnt-controlled stabilization of beta-catenin&quot;&gt;conductin&lt;/a&gt;
  7736.    /&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9224999.html?nr=4&amp;amp;pmid=12000790&quot; title=&quot;Normally, cytoplasmic beta-catenin associates with APC and axin&quot;&gt;Axin&lt;/a&gt;
  7737.    or functional &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9163973.html?nr=7&amp;amp;pmid=11940574&quot; title=&quot;Axin1 or its homolog Axin2/Axil /conductin promotes beta-catenin phosphorylation&quot;&gt;differences&lt;/a&gt;
  7738.    acts as a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1506301.html?nr=8&amp;amp;pmid=9601641&quot; title=&quot;upon which APC [?], beta-catenin and GSK3 beta [?] assemble to coordinate the regulation of beta-catenin signaling&quot;&gt;scaffold&lt;/a&gt;
  7739.    upon &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9555355.html?nr=6&amp;amp;pmid=12297048&quot; title=&quot;Alzheimer&#39;s disease-linked gene presenilin 1 functions as a scaffold that rapidly couples beta-catenin phosphorylation&quot;&gt;part&lt;/a&gt;
  7740.    of a complex including (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1906439.html?nr=7&amp;amp;pmid=10330403&quot; title=&quot;APC [?] and GSK3beta is critical for the ability of Axin to regulate signaling via beta-catenin&quot;&gt;APC&lt;/a&gt;)
  7741.    adenomatous polyposis coli enhancing &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10277263.html?nr=5&amp;amp;pmid=15064706&quot; title=&quot;a protective mechanism against the development of cancer.&quot;&gt;beta-catenin&lt;/a&gt;
  7742.    turnover as part of a protective mechanism. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10206284.html?nr=5&amp;amp;pmid=14993280&quot; title=&quot;alpha-catenin and alpha-catulin have distinct activities that downregulate, respectively, beta-catenin and Ras signals&quot;&gt;Alpha-catulin&lt;/a&gt;
  7743.    may associate with a beta-catenin fraction. In the absence of a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10531569.html?nr=7&amp;amp;pmid=15327768&quot; title=&quot;APC and axin bind to the same surface of, and compete directly for, beta-catenin&quot;&gt;Wnt
  7744.      signal&lt;/a&gt;, APC &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13478040.html?nr=6&amp;amp;pmid=19061640&quot; title=&quot;A mutation in APC that deprives this protective function exposes the N-terminal phosphorylated serine/threonine residues of beta-catenin to (protein phosphatase 2A)PP2A&quot;&gt;normally&lt;/a&gt;
  7745.    associates beta-catenin, the TCF7L2-PKD1∵ gene association is at the
  7746.    expense of sensory &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14045111.html?nr=1&amp;amp;pmid=19703993&quot; title=&quot;rachnoidal cells associated with brain meninges, are usually benign resulted in increased expression of beta-catenin&quot;&gt;neuronal&lt;/a&gt;
  7747.    fate, this &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19633924&quot; title=&quot;Down regulation of axin expression and up regulation of beta-catenin were detected , Wnt signaling play a role in neuroepithelial brain tumors&quot;&gt;transcript&lt;/a&gt; does not include &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1321107.html?nr=12&amp;amp;pmid=9467945&quot; title=&quot;conventional APC, at least one of the four (Bloom Syndrome) BS-APC protein isoforms also interacts with beta-catenin&quot;&gt;exon
  7748.      1&lt;/a&gt;.&amp;nbsp; Virtually (in-vivo) all other (Wnt/beta-catenin)
  7749.    neural crest derivatives stabilizes beta-catenin / LEF and then
  7750.    upregulates downstream genes, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1866660.html?nr=6&amp;amp;pmid=10318916&quot; title=&quot;beta-Catenin plays a dual role in the cell&quot;&gt;cell-cell&lt;/a&gt;
  7751.    adhesion and &lt;a href=&quot;https://picasaweb.google.com/lh/photo/7OSuR8NaJvxmhyzOVIa_L9MTjNZETYmyPJy0liipFm0?feat=directlink&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;Structure Of A
  7752. Beta-Trcp1-Skp1-Beta-Catenin Complex: Destruction Motif&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgjX4IWJfpaQ9c-akfEKdwTs6ePgaFFCKneoIAEIhScSeFIhz6xWzN5oIhQkV36_PAMIwhyMP3qGNXhHw2wxZ5tnmlabdh-LTx5JL1U3TG8pOrhur6vZsPLAxeGOl0FYVaOFlWXlA/s524/tyr-lef05.png&quot; style=&quot;border: 0px solid; border: 0px solid; height: 152px; width: 187px;&quot; title=&quot;Structure Of A Beta-Trcp1-Skp1-Beta-Catenin Complex:
  7753. Destruction Motif&quot; /&gt;&lt;/a&gt;&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12271691.html?nr=2&amp;amp;pmid=17020613&quot; title=&quot;in many types of human cancer. beta-catenin is stabilized by these mutations&quot;&gt;Wnt&lt;/a&gt;-stimulated
  7754.    (transcriptional &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14097827.html?nr=8&amp;amp;pmid=19816403&quot; title=&quot;Wnt signalling maintains the undifferentiated state of intestinal crypt/progenitor cells&quot;&gt;programme&lt;/a&gt;ª
  7755.    and { tumors arising from the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13383691.html?nr=5&amp;amp;pmid=17691963&quot; title=&quot;Wnt/beta-catenin signaling linked to WT1 (Wilms Tumor 1) loss-of-function mutations&quot;&gt;urogenital&lt;/a&gt;
  7756.    tract} tumourigenesis. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21781302&quot; title=&quot;through the inhibition of Wnt/β-catenin signaling&quot;&gt;Phellinus linteus&lt;/a&gt; (PL) mushroom are (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19703516&quot; title=&quot;Herba Epimedii (HEF) plausibly functions via the BMP and Wnt/beta-catenin signaling pathways&quot;&gt;Herba Epimedii&lt;/a&gt; / &lt;a href=&quot;http://en.wikipedia.org/wiki/Kanggu_Zengsheng_Wan&quot; title=&quot;Chinese classic herbal formula Kanggu Zengsheng Wan&quot;&gt;淫羊藿&lt;/a&gt;), known to possess anti-tumor effects through the inhibition of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21577209&quot; title=&quot;in colon and liver cancer canonical Wnt signalling produces increased cytoplasmic and nuclear localised beta-catenin&quot;&gt;Wnt/β-catenin&lt;/a&gt; signaling &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21949247&quot; title=&quot;efforts to treat human colorectal cancer by pharmacological inhibition of the Wnt/β-catenin pathway&quot;&gt;for instance&lt;/a&gt;,  the binding of b-cat to Tcf-4 was also disrupted by &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15670774&quot; title=&quot;n early events in colorectal carcinogenesis. We examined the effect of quercetin&quot;&gt;quercetin&lt;/a&gt;.) by mutations in the APC and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13801132.html?nr=6&amp;amp;pmid=19389926&quot; title=&quot;examples of the epithelial-mesenchymal transition&quot;&gt;beta-catenin&lt;/a&gt;
  7757.    genes transcriptional activation, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9724731.html?nr=9&amp;amp;pmid=12556497&quot; title=&quot;(LEF-1/TCF) to form a transcription complex that activates Wnt target genes&quot;&gt;TCF&lt;/a&gt;-/&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10821872.html?nr=2&amp;amp;pmid=16510874&quot; title=&quot;(beta-cat), a transcriptional coactivator of LEF-1/TCF HMG proteins in the Wnt/Wg signaling pathway&quot;&gt;LEF&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12878081.html?nr=2&amp;amp;pmid=18612673&quot; title=&quot;stabilizing cadherin [?] mediated cell-cell contact and by regulating TCF-/LEF&quot;&gt;mediated&lt;/a&gt;
  7758.    gene transcription (epithelial-mesenchymal transition (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12254360.html?nr=8&amp;amp;pmid=17018282&quot; title=&quot;nuclear translocation by blocking phosphorylation of beta-catenin by GSK-3beta and displacing Axin from beta-catenin&quot;&gt;EMT&lt;/a&gt;)ª
  7759.    processes, in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14268174.html?nr=6&amp;amp;pmid=20123964&quot; title=&quot;considered hallmarks of angiogenesis [1:1]&quot;&gt;EC
  7760.      migration&lt;/a&gt;º « (angiogenesis : &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19780202&quot; title=&quot;mechanical loading on beta-catenin in mineralizing human differentiating osteoblasts&quot;&gt;anabolic&lt;/a&gt;º effects), cell-cell adhesion, and formation of
  7761.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20123964&quot; title=&quot;beta-catenin/LEF-1 signaling in formation of branching point structures.&quot;&gt;branching point&lt;/a&gt; structures), in adherens junctions. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9843038.html?nr=1&amp;amp;pmid=12640114&quot; title=&quot;p120 catenin but only upon activation, and stimulates -Fer and Fyn-tyrosine kinases&quot;&gt;AJs&lt;/a&gt;
  7762.    (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10381788.html?nr=6&amp;amp;pmid=14595118&quot; title=&quot;t beta-catenin might be one of the proteins that targets and/or retains shrew-1 [AJAP1, AJ protein] in the adherens junctions&quot;&gt;AJAP1&lt;/a&gt;
  7763.    might be one (TBE)) mediate adhesion between (beta-catenin has no &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12830964.html?nr=7&amp;amp;pmid=18439914&quot; title=&quot;the mechanisms by which beta-catenin is imported into the nucleus and forms a complex with the TCF-4&quot;&gt;nuclear
  7764.      localization&lt;/a&gt; signal) communicate a signal disruption and
  7765.    reestablishment to these cell to cell junctions (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13709364.html?nr=8&amp;amp;pmid=19355941&quot; title=&quot;TA cell proliferation by releasing beta-catenin from the nucleus, and delivering it to cytoplasmic APCaxinGSK-3beta complexes for ultimate proteasomal destruction.&quot;&gt;transit-amplifying&lt;/a&gt;
  7766.    (TA) preventing CTNNB1 from returning to the nucleus) to stop
  7767.    dividing and anchor the actin cytoskeleton serving the maintenance
  7768.    of epithelial layers in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14406850.html?nr=1&amp;amp;pmid=18391483&quot; title=&quot;beta-catenin /T cell factor (TCF) transcriptional activity that is functionally important on aberrant crypt foci (ACF) formation&quot;&gt;colonic&lt;/a&gt;
  7769.    epithelium layers (the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13555795.html?nr=4&amp;amp;pmid=19031475&quot; title=&quot;activation of embryonic processes such as epithelial-mesenchymal transition (EMT), lead to tumour invasion and metastasis&quot;&gt;intestinal&lt;/a&gt;ª
  7770.    stem cell nicheº), such as organ lining &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10742713.html?nr=8&amp;amp;pmid=16007074&quot; title=&quot;TCF4 regulates intestinal tumorigenesis by integrating JNK and APC/beta-catenin&quot;&gt;surfaces&lt;/a&gt;ª
  7771.    transactivates transcription with CTNNB giving heparan sulfate (HS)
  7772.    the ability to bind growth factors and cytokines. Junction &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/180141.html?nr=2&amp;amp;pmid=7890674&quot; title=&quot;Plakoglobin, also known as gamma-catenin, directly binds to both APC and alpha-catenin and also to the APC-beta-catenin complex, but not directly to beta-catenin.&quot;&gt;plakoglobin&lt;/a&gt;
  7773.    (gamma-catenin) is among the three known &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9158111.html?nr=9&amp;amp;pmid=11790773&quot; title=&quot;Plakophilins are a subfamily of p120-related arm-repeat proteins&quot;&gt;plakophilin&lt;/a&gt;s␠
  7774.    a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9535185.html?nr=5&amp;amp;pmid=12183361&quot; title=&quot;beta-catenin and plakoglobin (gamma-catenin)&quot;&gt;homologous&lt;/a&gt;&amp;nbsp;
  7775.    molecule&amp;nbsp; known as gamma-catenin or JUP found in a role in
  7776.    nucleating &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8401208.html?nr=13&amp;amp;pmid=10769211&quot; title=&quot;Desmosomes contain two types of cadherin: desmocollin (Dsc) and desmoglein (Dsg&quot;&gt;desmosomes&lt;/a&gt;
  7777.    of all epithelia, delta-catenin also demonstrated &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9159963.html?nr=8&amp;amp;pmid=11821434&quot; title=&quot;three p120-related catenins: delta-catenin, ARVCF [armidillo], and p0071(plakophilin 4&quot;&gt;specific&lt;/a&gt;*
  7778.    high affinity binding. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11528358.html?nr=1&amp;amp;pmid=15987741&quot; title=&quot;N-cadherin and beta-catenin colocalized in the contact regions between melanoma cells and endothelial cells&quot;&gt;N-cadherin&lt;/a&gt;
  7779.    was associated with &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1274379.html?nr=12&amp;amp;pmid=9405455&quot; title=&quot;vinculin plays a role in the establishment or regulation of the cadherin-based cell adhesion complex by direct interaction with beta-catenin.&quot;&gt;vinculin&lt;/a&gt;
  7780.    which&lt;b&gt; &lt;/b&gt;serves a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9740814.html?nr=8&amp;amp;pmid=12657639&quot; title=&quot;these three proteins could form a ternary complex. lp-dlg/KIAA0583 as a novel binding partner for vinexin by using yeast two-hybrid screening&quot;&gt;similar&lt;/a&gt;
  7781.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8363820.html?nr=7&amp;amp;pmid=10873669&quot; title=&quot;KIAA0313 associates with beta-catenin through KIAA0705 in vivo at sites of cell-cell contact in the yeast two-hybrid system&quot;&gt;†&lt;/a&gt;
  7782.    function as &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1102138.html?nr=6&amp;amp;pmid=9233779&quot; title=&quot;the role in preventing alpha-catenin once dissociated from reassociating with E-cadherin until cells reach confluence&quot;&gt;Alpha-catenin&lt;/a&gt;
  7783.    forms a 1:1º heterodimer with beta-catenin components of (AJ)
  7784.    adherens junctions that occur at &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8821789.html?nr=9&amp;amp;pmid=11277264&quot; title=&quot;f N-cadherin-mediated cell-cell adhesion&quot;&gt;cell–cell&lt;/a&gt;    junctions. &lt;/div&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7785. google_ad_client=&quot;pub-9610428118332343&quot;;
  7786. google_ad_host=&quot;&quot;;
  7787. google_ad_width=200;
  7788. google_ad_height=90;
  7789. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7790. google_color_border=&quot;EEEECC&quot;;
  7791. google_color_bg=&quot;EEEECC&quot;;
  7792. google_color_link=&quot;445566&quot;;
  7793. google_color_url=&quot;445566&quot;;
  7794. google_color_text=&quot;333333&quot;;
  7795. //--&gt;&lt;/script&gt;
  7796. &lt;script type=&quot;text/javascript&quot;
  7797.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7798. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2012/03/ctnnb1-catenin-cadherin-associated.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjGwoplVN_TwoO5zPWrJ87vjcgoL2wnyB7RKDHZv4_wHbzX94BP92L9gkH3yMXseMgJODjjYMaiPjQ3YZkVpgquA2zB8Noe0ElpUykNkF822QcW9aF8DiGT3krtFxOfyUYij-VWZw/s72-c/3fqr.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-6483433734210165498</guid><pubDate>Tue, 14 Feb 2012 18:38:00 +0000</pubDate><atom:updated>2012-02-17T14:07:10.109-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">laminin</category><category domain="http://www.blogger.com/atom/ns#">TRIO</category><title>LAR, Leukocyte common antigen related, Receptor-type tyrosine-protein phosphatase F  (PTPRF)</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7799. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/February142012#5709049195332743922&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;PDB-1LAR Associated subunits RPTPs (receptor protein tyr. phos.) that acts as a protein-tyrosine phosphatase Domain 1&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjIwmG_THnm31HP4h2OUS_zSl0ip0vWEEmWcEquYBvXoPFaKiXtEpJQ-vkBm8t6iBnhr3yA-n223IePgDGuYMDPtny8rUa015TsS3v4QZZesRo-tx0dCkOcfHxJpQQqwQnoBKDeJA/s128/2e.png&quot; style=&quot;border: 0px solid; height: 128px; width: 122px;&quot; title=&quot;PDB-1LAR Associated subunits RPTPs (receptor protein tyr. phos.) that acts as a protein-tyrosine phosphatase Domain 1&quot; /&gt;&lt;/a&gt;The human LAR (PTPRF) gene has 2 tandemly repeated PTPase associated
  7800.    tandem subunit domains, locus: 1p34.2 [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&amp;amp;cmd=Link&amp;amp;LinkName=protein_gene&amp;amp;from_uid=109633041&quot;&gt;§§&lt;/a&gt;;&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/91509.html?ID=91488&quot;&gt;^&lt;/a&gt;] and represents a receptor-type &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&amp;amp;cmd=Link&amp;amp;LinkName=protein_gene&amp;amp;from_uid=109633041#summary&quot; title=&quot;Summary&quot;&gt;PTP&lt;/a&gt; (EC &lt;a href=&quot;http://enzyme.expasy.org/EC/3.1.3.48&quot; title=&quot;receptor protein-tyrosine kinases having a transmembrane domain and those not having a transmembrane domain&quot;&gt;3.1.3.48&lt;/a&gt;), through &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12095414&quot; title=&quot;LAR may play a role in regulating E-cadherin-dependent cell-cell communication and contact inhibition&quot;&gt;cell-cell&lt;/a&gt; or &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8643598&quot; title=&quot;propose that LAR and the Trio GEF/PSK may orchestrate cell-matrix and cytoskeletal rearrangements necessary for cell migration&quot;&gt;cell&lt;/a&gt;-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9245795&quot; title=&quot;(PTPases) display a high degree of homology with cell adhesion molecules in their extracellular (ECM) domains&quot;&gt;matrix&lt;/a&gt; interactions &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7796809&quot; title=&quot;t LAR and LIP.1 may regulate the disassembly of focal adhesions and thus help orchestrate cell-matrix interactions&quot;&gt;processed&lt;/a&gt; into 2 noncovalently
  7801.    associated subunits &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9292907.html?nr=5&amp;amp;pmid=12376545&quot; title=&quot;two protein-tyrosine phosphatase (PTP) domains (RPTP-D2s) bind and are proposed to regulate the membrane-proximal PTP domains (RPTP-D1s)&quot;&gt;RPTP&lt;/a&gt;s that acts as a protein-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8735029.html?nr=8&amp;amp;pmid=11121408&quot; title=&quot;Protein-tyrosine-phosphatases (PTPs), in conjunction with protein-tyrosine kinases&quot;&gt;tyrosine&lt;/a&gt; phosphatase associate with Trk protein tyrosine kinase (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12285794.html?nr=9&amp;amp;pmid=17013927&quot; title=&quot;TrkB and regulates neurotrophic signaling in embryo in the mammalian nervous system stands for tropomyosin-receptor-kinase (and not tyrosine kinaseonic hippocampal neurons&quot;&gt;PTK&lt;/a&gt;) receptors in
  7802.    the cytoplasmic segment for dephosphorylation of
  7803.    tyrosine-phosphorylated insulin receptor phosphorylated by &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/64626.html?nr=1&amp;amp;pmid=1321126&quot; title=&quot;insulin receptors were activated by insulin and receptor dephosphorylation, and kinase&quot;&gt;insulin&lt;/a&gt;
  7804.    stimulation. LAR is a member of the PPFIA1 (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9812346.html?nr=2&amp;amp;pmid=12629171&quot; title=&quot;interacts with the LAR family of receptor protein tyrosine phosphatases&quot;&gt;liprin&lt;/a&gt;) family shown to interact with &lt;a href=&quot;http://en.wikipedia.org/wiki/Liprin-alpha-1&quot; title=&quot;a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family.&quot;&gt;PTPRF&lt;/a&gt;.&amp;nbsp; PTP-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11158333&quot; title=&quot;PTPase activity is associated with only the first of the two domains, PTPase domain 1, and the membrane-distal PTPase domain 2, which has no catalytic activity&quot;&gt;LAR&lt;/a&gt; functional cell &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12459889.html?nr=10&amp;amp;pmid=17259169&quot; title=&quot;LAR localizes to cadherin-beta-catenin-based cellular junctions. They play important roles in cell adhesion, ensuring that cells within tissues are bound together.&quot;&gt;adhesion&lt;/a&gt; molecule (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&amp;amp;cmd=Link&amp;amp;LinkName=protein_gene&amp;amp;from_uid=109633041#general-gene-info&quot; title=&quot;Cell adhesion molecules (CAMs)&quot;&gt;CAMs&lt;/a&gt;) &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14060.html?nr=1&amp;amp;pmid=1695146&quot; title=&quot;The second PTPase like domains do not have detectable catalytic activity&quot;&gt;domain 1&lt;/a&gt;
  7805.    (cadherin and the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17259169&quot; title=&quot;LAR-beta-catenin interaction&quot;&gt;cytoplasmic&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1812282.html?nr=8&amp;amp;pmid=10187801&quot; title=&quot;LAR (leukocyte common antigen related) colocalizes with the cadherin-catenin complex in epithelial cells and associates with beta-catenin and plakoglobin&quot;&gt;catenin&lt;/a&gt;s) negatively regulates &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11309481&quot; title=&quot;overexpression of LAR in muscle causes whole-body insulin resistance, most likely due to dephosphorylation&quot;&gt;dephosphorylation&lt;/a&gt; in part of a complex (a region of the receptor-linked PTPases, absolutely required for &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14060.html?nr=1&amp;amp;pmid=1695146&quot; title=&quot;one cysteine residue in the first domain of both LCA and LAR is absolutely required for activity&quot;&gt;LCA and LAR&lt;/a&gt;) of proteins (Trio/&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13424779.html?nr=1&amp;amp;pmid=17803936&quot; title=&quot;Death-associated protein kinase (DAPK) is a calmodulin-regulated serine [?]/threonine kinase&quot;&gt;DAPK&lt;/a&gt;)&lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/February142012#5709049196746867426&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;placement of tyrosine phosphorylated 1LAR that is other wise in the center between the two domains D1 and D2 here on the D1 ribbon&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj8-_XTvOqBdY3_swD1bneRZR7wrO03wWuIToGCu09_k-sQlkb24Be-T2-VezcElGvV4ifc_aO7yK0T143eEDP8sqq-MyhnGt_EfhiPYy6496Z-KV_5q6LtaSr_omdGa6NEnpG0ow/s128/2d.png&quot; style=&quot;border: 0px solid; height: 114px; width: 128px;&quot; title=&quot;placement of tyrosine phosphorylated 1LAR that is other wise in the center between the two domains D1 and D2 here on the D1 ribbon&quot; /&gt;&lt;/a&gt; that constitute &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12459889.html?nr=10&amp;amp;pmid=17259169&quot; title=&quot;LAR localizes to cadherin-beta-catenin-based cellular junctions&quot;&gt;adherens junctions&lt;/a&gt; (AJs), the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12376545&quot; title=&quot;membrane-distal PTP domains (RPTP-D2s) bind and are proposed to regulate the membrane-proximal PTP domains (RPTP-D1s)&quot;&gt;generally inactive&lt;/a&gt; (D2) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/8995282&quot; title=&quot;endosomes with neutralizing LAR antibodies&quot;&gt;extracellular&lt;/a&gt;
  7806.    cytoplasmic &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1113432.html?nr=10&amp;amp;pmid=9245795&quot; title=&quot;the related PTPase LAR was expressed on the cell surface as a two-subunit complex&quot;&gt;domain&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/275329.html?nr=1&amp;amp;pmid=7796809&quot; title=&quot;LAR-interacting protein 1 (LIP.1), which binds to the LAR membrane-distal D2 protein tyrosine [?] phosphatase domain and appears to localize LAR to focal adhesions&quot;&gt;two&lt;/a&gt;&amp;nbsp; only decreases insulin receptor mediated
  7807.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/2207808.html?nr=6&amp;amp;pmid=10822386&quot; title=&quot;autophosphorylation of growth factor receptors was not affected by induction of LAR&quot;&gt;autophosphorylation&lt;/a&gt;, a process called &lt;a href=&quot;http://en.wikipedia.org/wiki/Endosome#Pathways&quot; title=&quot;transcytosis allows some materials to enter one side of a cell and exit from the opposite side&quot;&gt;transcytosis&lt;/a&gt;.
  7808.    The &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12496362&quot; title=&quot;development of thymocytes in CD45 knockout mice&quot;&gt;PTPRF&lt;/a&gt; and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9292907.html?nr=5&amp;amp;pmid=12376545&quot; title=&quot;two protein-tyrosine phosphatase (PTP) domains (RPTP-D2s) bind and are proposed to regulate the membrane-proximal PTP domains (RPTP-D1s)&quot;&gt;CD45&lt;/a&gt; molecule have both domains in the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8697800.html?nr=10&amp;amp;pmid=11158333&quot; title=&quot;Most PTPases have two tandemly repeated PTPase domains in the cytoplasmic segments PTPase domain 1 or domain 2&quot;&gt;cytoplasmic&lt;/a&gt;
  7809.    segment. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/558245.html?nr=1&amp;amp;pmid=8643598&quot; title=&quot;The C-terminal most similar to calcium/calmodulin-dependent kinases. it forms a complex with LAR. As the LAR PTPase localizes to the ends of focal adhesions&quot;&gt;Trio&lt;/a&gt; (triple functional domain (PTPRF &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7929208&quot; title=&quot;the two conserved tyrosine phosphatase domains and the entire 3&#39;-untranslated region. Exon 1, which presumably encodes the 5&#39;-untranslated sequence, has not been identified&quot;&gt;interacting&lt;/a&gt;))
  7810.    contains three enzyme domains: 2 that forms a complex with the
  7811.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12176037&quot; title=&quot;PTPs (PTP1B, PTP1C, SHPTP2, PTEN, and LAR) are actually localized in caveolin-enriched membrane fractions. his protein (LAR) has both a cytoplasmic C-terminus and a cytoplasmic N-terminus&quot;&gt;cytoplasmic&lt;/a&gt; segments of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/439099.html?nr=9&amp;amp;pmid=8524829&quot; title=&quot;PTPases each contain two intracellular PTPase domains and an extracellular region consisting of Ig-like and fibronectin type III-like domains&quot;&gt;LAR protein&lt;/a&gt; and a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1469310.html?nr=3&amp;amp;pmid=9624153&quot; title=&quot;liprins are subdivided into alpha-type and beta-type liprins The C-terminal, non-coiled coil regions of alpha-liprins bind to LAR&quot;&gt;cell adhesion&lt;/a&gt;-like
  7812.    ectodomain. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18925540/&quot; title=&quot;associated with insulin resistance that can be reduced by regulation of PTPases&quot;&gt;LAR&lt;/a&gt; (PTPRF) is widely expressed in receptor-type
  7813.    protein-tyrosine-phosphatases as a regulator of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?term=10692429&quot; title=&quot;LAR and PTP-alpha may act upon cell surface insulin receptors&quot;&gt;insulin&lt;/a&gt; receptor (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11017556.html?nr=2&amp;amp;pmid=15896785&quot; title=&quot;LAR as a crucial regulator of the sensitivity of two key insulin signalling pathways to insulin&quot;&gt;IR&lt;/a&gt;). &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?term=11836260&quot; title=&quot;Liprin may regulate LAR protein properties via interaction with another member of the family&quot;&gt;Liprin&lt;/a&gt; localize &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11931740&quot; title=&quot;the liprin-alpha/SYD2 family of proteins that interact with LAR receptor&quot;&gt;LAR&lt;/a&gt; to cell focal
  7814.    adhesions-like ectodomain, the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15067023.html?nr=4&amp;amp;pmid=20139422&quot; title=&quot;the molecular details of the NGL-3-LAR Structurally, netrin NGL resembles the extracellular matrix protein laminin&quot;&gt;laminin&lt;/a&gt;-&lt;a href=&quot;http://en.wikipedia.org/wiki/Nidogen&quot; title=&quot;Structurally it (along with perlecan) connects the networks formed by collagens and laminins to each other&quot;&gt;nidogen&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9647658&quot; title=&quot;The laminin-nidogen complex&quot;&gt;complex&lt;/a&gt; is
  7815.    a ligand for a coiled-coil LAR-interacting protein where PPFIA1 co-localizes.
  7816.    LAR is important for &lt;a href=&quot;http://en.wikipedia.org/wiki/Dendrite&quot; title=&quot;dendrites are the branched projections of a neuron that act to conduct the electrochemical stimulation received from other neural cells&quot;&gt;dendrite&lt;/a&gt;
  7817.    development.&lt;/div&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7818. google_ad_client=&quot;pub-9610428118332343&quot;;
  7819. google_ad_host=&quot;&quot;;
  7820. google_ad_width=200;
  7821. google_ad_height=90;
  7822. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7823. google_color_border=&quot;EEEECC&quot;;
  7824. google_color_bg=&quot;EEEECC&quot;;
  7825. google_color_link=&quot;445566&quot;;
  7826. google_color_url=&quot;445566&quot;;
  7827. google_color_text=&quot;333333&quot;;
  7828. //--&gt;&lt;/script&gt;
  7829. &lt;script type=&quot;text/javascript&quot;
  7830.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7831. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2012/02/lar-leukocyte-common-antigen-related.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjIwmG_THnm31HP4h2OUS_zSl0ip0vWEEmWcEquYBvXoPFaKiXtEpJQ-vkBm8t6iBnhr3yA-n223IePgDGuYMDPtny8rUa015TsS3v4QZZesRo-tx0dCkOcfHxJpQQqwQnoBKDeJA/s72-c/2e.png" height="72" width="72"/><thr:total>1</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-8037484287766081965</guid><pubDate>Sat, 28 Jan 2012 20:00:00 +0000</pubDate><atom:updated>2012-01-30T11:31:41.314-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">Janus</category><category domain="http://www.blogger.com/atom/ns#">Pima</category><category domain="http://www.blogger.com/atom/ns#">pka</category><category domain="http://www.blogger.com/atom/ns#">tyrosine hydroxylase</category><title>Protein-tyrosine phosphatase 1B</title><description>&lt;div style=&quot;text-align: justify;&quot;&gt;
  7832. &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/January262012#5702763509144747410&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;2CMC oriented towards pocket containing cysteine molecule&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhS1JevI6B7hmcD-rye8vhlVmDMSbY1FvMwgOvPc0YsPPrv5La3Kez6YWBsnT7Pq_AyZlIpilrqUlID06yaJbAeCkgRE2yC9wqnFzFkT4HIoQnExPzCAgrb-iiHI2BhJHpp-5QIGQ/s128/folder5.png&quot; style=&quot;border: 0px solid; height: 112px; width: 128px;&quot; title=&quot;2CMC oriented towards pocket containing cysteine molecule&quot; /&gt;&lt;/a&gt;PTPN1 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18846048&quot; title=&quot;which suppresses the signaling pathway of leptin&quot;&gt;nonreceptor&lt;/a&gt;
  7833.    type1 gene, which encodes &lt;a href=&quot;http://www.blogger.com/post-edit.g?blogID=14256471&amp;amp;postID=8037484287766081965&quot; title=&quot;is a major risk contributor to type 2 diabetes mellitus (T2DM)&quot;&gt;PTP1B&lt;/a&gt;
  7834.    the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20937240&quot; title=&quot;available with respect to the modulation of this phosphatase in non-Epo depending cells&quot;&gt;prototypic&lt;/a&gt;
  7835.    member of the PTP family is responsible for &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14596593&quot; title=&quot;biochemical studies provide strong evidence that PTP1B negatively regulates insulin signaling&quot;&gt;negatively&lt;/a&gt;
  7836.    regulating insulin by dephosphorylating the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21123182&quot; title=&quot;the sequence context flanking the target phosphotyrosines specifically modulated by PTP1B&quot;&gt;phosphotyrosine&lt;/a&gt;
  7837.    (ptyr) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16582879&quot; title=&quot;the three tyrosines of the kinase loop&quot;&gt;residues&lt;/a&gt;*
  7838.    of the insulin receptor (INSR) kinase activation segment &lt;a href=&quot;http://www.rcsb.org/pdb/explore.do?structureId=2B4S&quot; title=&quot;The crystallographic asymmetric unit contains two PTP1B-IRK complexes PubMed: 16271887&quot;&gt;IRK&lt;/a&gt; (&lt;span class=&quot;se_abstract&quot;&gt;&lt;a href=&quot;http://www.blogger.com/post-edit.g?blogID=14256471&amp;amp;postID=8037484287766081965&quot;&gt;kinase&lt;/a&gt; &lt;a href=&quot;http://www.blogger.com/post-edit.g?blogID=14256471&amp;amp;postID=8037484287766081965&quot;&gt;domain&lt;/a&gt; of the &lt;a href=&quot;http://www.blogger.com/post-edit.g?blogID=14256471&amp;amp;postID=8037484287766081965&quot;&gt;insulin&lt;/a&gt; &lt;a href=&quot;http://www.blogger.com/post-edit.g?blogID=14256471&amp;amp;postID=8037484287766081965&quot;&gt;receptor&lt;/a&gt;&lt;/span&gt;) mainly
  7839.    by its association with &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21305007&quot; title=&quot;IRS1 is a substrate for PTP1B in brown adipocytes insulin-induced IR and IRS1 phosphorylation&quot;&gt;IR&lt;/a&gt;
  7840.    localized to the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14722096&quot; title=&quot;the IR is localized to the plasma membrane and PTP-1B to the endoplasmic reticulum&quot;&gt;plasma membrane&lt;/a&gt;
  7841.    in a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12388170&quot; title=&quot;The activity of PTP1B is determined mainly by its association with IR and Grb2&quot;&gt;Grb2&lt;/a&gt;
  7842.    fashion, or by inhibiting insulin signaling locus: &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17403124&quot; title=&quot;Type 2 diabetes (T2DM) with polymorphisms in PTPN1 located on chromosome 20q&quot;&gt;20q&lt;/a&gt;13.1-q13.2
  7843.  
  7844.  
  7845.  
  7846.  
  7847.  
  7848.  
  7849.    (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15504984&quot; title=&quot;PTPN1 is located in 20q13&quot;&gt;EC&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10350489&quot; title=&quot;constitutes an efficient regulatory mechanism&quot;&gt;3.1.3.48&lt;/a&gt;),
  7850.    [&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/5770#bibliography&quot;&gt;§§&lt;/a&gt;]
  7851. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/91488.html&quot; target=&quot;_blank&quot;&gt;^&lt;/a&gt;    as well as &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/gene/5770#summary&quot; title=&quot;a negative regulator of insulin signaling by dephosphorylating the phosphotryosine residues of insulin receptor kinase&quot;&gt;JAK2
  7852.      and TYK2&lt;/a&gt; kinases. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19008309&quot; title=&quot;human PTP-1B in SH-SY5Y cells completely abolished leptin- and insulin-dependent janus kinase-2,STAT-3, and ERK 1/2 phosphorylations&quot;&gt;Leptin&lt;/a&gt; as
  7853.    well as &lt;a class=&quot;the hormones insulin and leptin are hallmarks of both type 2 diabetes and obesity&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12209150&quot;&gt;insulin&lt;/a&gt;&lt;span class=&quot;the hormones insulin and leptin are hallmarks of both type
  7854.      2 diabetes and obesity&quot;&gt;,&lt;/span&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9440539.html?nr=5&amp;amp;pmid=11970899&quot; title=&quot;leptin receptor, is(not) a substrate of PTP1B&quot;&gt;induced&lt;/a&gt;
  7855.    the expression of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12354677&quot; title=&quot;whether PTP1B affects leptin receptor(lepR) signaling directly&quot;&gt;PTP1B&lt;/a&gt; and T
  7856.    cell protein tyrosine phosphatase (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13831372.html?nr=6&amp;amp;pmid=19474293&quot; title=&quot;The control of tyrosine phosphorylation depends on the fine balance between kinase and phosphatase activities&quot;&gt;TC-PTP&lt;/a&gt;)
  7857.    a closely related phosphatase. &lt;a href=&quot;http://lnwme.blogspot.com/2011/12/non-receptor-tyrosine-protein-kinase.html&quot; title=&quot;Non-receptor tyrosine-protein kinase TYK2&quot;&gt;TYK2&lt;/a&gt;
  7858.    and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11694501&quot; title=&quot;A substrate-trapping mutant of PTP1B formed a stable interaction with JAK2 and TYK2 in response to interferon stimulation&quot;&gt;JAK2&lt;/a&gt;
  7859.    are substrates, PTP1B expression augments &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20504764&quot; title=&quot;Signal transducing adapter molecule 2 an endosomal protein involved in sorting activated RTKs for lysosomal degradation&quot;&gt;STAM2&lt;/a&gt; an &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9742225.html?nr=8&amp;amp;pmid=12424235&quot; title=&quot;cofactors, PTPs may help to regulate the EGFR&quot;&gt;RTK&lt;/a&gt;,
  7860.    phosphorylation downstream of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9718155.html?nr=10&amp;amp;pmid=12748279&quot; title=&quot;JAK2 phosphorylation and suggest that PTP-1B is essential for limiting the action of GH&quot;&gt;JAK&lt;/a&gt;
  7861.    kinases. PTP-1B encoded by the PTPN1 gene and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9163422.html?nr=8&amp;amp;pmid=11907034&quot; title=&quot;residues 130-132, the DDQ loop, from one moleculethe high degree of functional and structural similarity between TC-PTP and PTP1B&quot;&gt;T-cell&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13831372.html?nr=10&amp;amp;pmid=19474293&quot; title=&quot;(tcptp(+/-)ptp1b(+/-)) exhibited normal development&quot;&gt;PTP&lt;/a&gt; localizes to the
  7862.    endoplasmic &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14183892.html?nr=6&amp;amp;pmid=20118922&quot; title=&quot;the protein tyrosine phosphatase PTP1B (ref. 1), localizes to the cytoplasmic face of the endoplasmic reticulum(ER)&quot;&gt;reticulum&lt;/a&gt;␠
  7863.    oriented towards the cytoplasm (located on the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21487008&quot; title=&quot;J. Biol.Chem. (2011) alanine is known to convert PTP1B into a substrate-trapping protein that binds to but cannot dephosphorylate its substrates&quot;&gt;cytosolic&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15733745&quot; title=&quot;PTP1B mainly occurred in the endoplasmic reticulum&quot;&gt;side&lt;/a&gt; of the
  7864.    endoplasmic reticulum post-translational &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11836311&quot; title=&quot;frequencies ofthe  C allele and the T allele&quot;&gt;C-terminal&lt;/a&gt;
  7865.    (The &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17634210&quot; title=&quot;One common (-1023C-A) and 6 rare (-51delA,-451A-G, -467T-C, -1045G-A, -1286-3bp-del, and-1291-9bp-del) variants were identified in the PTPN1 promoter&quot;&gt;1023(C)&lt;/a&gt;-common
  7866.  
  7867.  
  7868.  
  7869.  
  7870.  
  7871.  
  7872.    allele) &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14034902.html?nr=7&amp;amp;pmid=19605464&quot; style=&quot;font-style: italic;&quot; title=&quot;through activation of protein phosphatase 2A (PP2A). PTP1B [?] is anchored to the endoplasmic reticulum membrane via its C-terminal tail&quot;&gt;attachment&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17643420&quot; title=&quot;the C-terminal membrane anchor of PTP1B is formed by a combination of a single stretch transmembrane domain (TMD) followed by a tail&quot;&gt;membrane anchor&lt;/a&gt;
  7873.    ») associated with microsomal membranes or an « &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18332219&quot; title=&quot;invadopodia are protrusions in the cell membrane of some cells taht extend into the ECM&quot;&gt;interconnected&lt;/a&gt;
  7874.    network &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20118922&quot; title=&quot;Endocytosis of EGFR is required for interaction with the protein tyrosine phosphatase PTP1B (endosomal sorting complex required for transport) sorting within MVBs, and PTP1B&quot;&gt;not ordinarily&lt;/a&gt;
  7875.    present in living cells with induction of the ER (endoplasmic
  7876.    reticulum)-stress response pharmacologically induced&amp;nbsp; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21605081&quot; title=&quot;experimental tools in biology. ER-stress response and L-PTP1B expression are interlinked in obesity- and pharmacologically induced ER stress&quot;&gt;tunicamycin&lt;/a&gt;
  7877.    and thapsigargin) « &lt;a href=&quot;http://www.blogger.com/post-edit.g?blogID=14256471&amp;amp;postID=8037484287766081965&quot; title=&quot;Overexpression of PTP1B induced a marked downregulation of mRNA the upregulation of PTP1B via an effect a a serine/threonine-specific protein kinase PKG&quot;&gt;in
  7878.  
  7879.  
  7880.  
  7881.  
  7882.  
  7883.  
  7884.      vitro&lt;/a&gt; » and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21406170&quot; title=&quot;pharmacological inhibition of PTP1B would improve liver regeneration in patients with acute or chronic liver injury&quot;&gt;in vivo&lt;/a&gt;,
  7885.    showing that suramin and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20542335&quot; title=&quot;Vanadyl compounds mimic the effects of insulin, although humans seem to have no dietary requirement for vanadium&quot;&gt;vanadyl &lt;/a&gt;complexes
  7886.  
  7887.  
  7888.  
  7889.  
  7890.  
  7891.  
  7892.    a &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20236928&quot; title=&quot;crystal structures for the transition state analogs for both steps&quot;&gt;two&lt;/a&gt;-step
  7893.  
  7894.  
  7895.  
  7896.  
  7897.  
  7898.  
  7899.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?Db=structure&amp;amp;DbFrom=pubmed&amp;amp;Cmd=Link&amp;amp;LinkName=pubmed_structure&amp;amp;LinkReadableName=Structure&amp;amp;IdsFromResult=20236928&quot; title=&quot;First abd second Catalytic Step[Hydrolase, EC: 3.1.3.48]&quot;&gt;mechanism&lt;/a&gt;
  7900.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15039022&quot; style=&quot;font-style: italic;&quot; title=&quot;PTP undergoes oxidative inactivation that can be further differentiated into reversible and irreversible components&quot;&gt;reversibly&lt;/a&gt;
  7901.    mediated by the activation of &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21311858&quot; title=&quot;the beneficial effect that absence of the phosphatase PTPs confers against an insulin-resistant condition&quot;&gt;PKA&lt;/a&gt;, that &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20601126&quot; title=&quot;Ang II modulates both anti-mitogenic and mitogenic pathways of insulin via the activation of PTP-1B&quot;&gt;Ang II&lt;/a&gt;
  7902.    (Angiotensin) modulates, a group of blood-pressure-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/21188419&quot; title=&quot;is appropriate for the study of false discoveries&quot;&gt;related&lt;/a&gt;
  7903.    phenotypes examine&lt;span class=&quot;se_abstract&quot;&gt; the catalytic domain&lt;/span&gt;&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9718117.html?nr=4&amp;amp;pmid=12745253&quot; title=&quot;values for the catalytic domains of (T cell protein
  7904.      tyrosine phosphatase) TCPTP and PTP-1B were structurally related
  7905.      they share a 72% amino acid sequence identity within their
  7906.      catalytic domains&quot;&gt;&lt;/a&gt;&lt;span class=&quot;se_abstract&quot;&gt; of the &lt;/span&gt;&lt;a href=&quot;http://www.rcsb.org/pdb/explore.do?structureId=1PA1&quot; title=&quot;this mutant may be used for screening fermentation broth and other natural products to identify inhibitors of PTP-1B PubMed: 12748196&quot;&gt;apoenzyme&lt;/a&gt;&lt;span class=&quot;se_abstract&quot;&gt;&lt;a href=&quot;http://www.blogger.com/post-edit.g?blogID=14256471&amp;amp;postID=8037484287766081965&quot;&gt; &lt;/a&gt;&lt;/span&gt;and the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14154065.html?nr=9&amp;amp;pmid=19755521&quot; style=&quot;color: #274e13;&quot; title=&quot;Apocynin first isolated from the root of Canadian hemp (Apocynum cannabinum)facilitating EGFR transactivation in rat cardiomyocytes&quot;&gt;effects&lt;/a&gt;
  7907.    &lt;span style=&quot;color: #006600; font-weight: bold;&quot;&gt;‡&lt;/span&gt; of
  7908.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11232859.html?nr=2&amp;amp;pmid=15715932&quot; style=&quot;color: #006600;&quot; title=&quot;one of the 50 fundamental herbs used in traditional Chinese medicine&quot;&gt;Astragalus
  7909.  
  7910.      membranaceus&lt;/a&gt;&lt;span style=&quot;color: #006600;&quot;&gt; &lt;/span&gt;(黄芪)
  7911.    roots &lt;span style=&quot;color: #006600; font-weight: bold;&quot;&gt;‡&lt;/span&gt;
  7912.    polysaccharide (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13839304.html?nr=5&amp;amp;pmid=19524131&quot; title=&quot;increased the insulin sensitivity through decreasing the overexpression of PTP1B&quot;&gt;APS&lt;/a&gt;). And competitive inhibitor of PTP1B and
  7913.    Yersinia PTP (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?term=14734566&quot; title=&quot;YopH, the phosphatase that is an essential virulence factor for bubonic plague&quot;&gt;YopH&lt;/a&gt;) contains all of the invariant residues present
  7914.    in human &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15998263&quot; title=&quot;activity depends on a catalytic thiolate group on an acidic cysteine residue that is sensitive to reactive oxygen species&quot;&gt;PTP1B&lt;/a&gt;
  7915.    including &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7540771&quot; style=&quot;font-style: italic;&quot; title=&quot;was accompanied by a conformational change of a surface loop that created a phosphotyrosine recognition pocket and induced a catalytically competent form of the enzyme&quot;&gt;cysteine&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12573287&quot; title=&quot;inhibition of PTP1B through a mechanism that was greatly enhanced by addition of cysteine&quot;&gt;addition&lt;/a&gt;
  7916.    &lt;a href=&quot;https://picasaweb.google.com/100787464692550241934/January262012#5702763380285189922&quot;&gt;&lt;img align=&quot;right&quot; alt=&quot;&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjsr07sNuUZJ6RrVQe4d4YvJB3EIZR0PozQmvQdX9XdVurBuGagCn4z6Z8KFWflNcNeHXvX8HFc5OO0CWfNaemijYLTJ4uuSbkFFBJoP6-g-f9gFChR9yuCWoKzcTHzcFuzthVyBA/s128/folder4.png&quot; style=&quot;border: 0px solid; height: 128px; width: 105px;&quot; title=&quot;PDB 2CMC double mutant&quot; /&gt;&lt;/a&gt;through a mechanism of inhibition (the &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15258570&quot; title=&quot;a novel site located approximately 20 A from the catalytic site&quot;&gt;catalytic loop&lt;/a&gt;)
  7917.    that CLK1 and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?term=10480872&quot; title=&quot;CLK1 and CLK2 phosphorylate and activate the S. cerevisiae PTP-1B family member, YPTP1&quot;&gt;CLK2&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20682768&quot; title=&quot;regulated assembly of the PP2A phosphatase holoenzyme complex&quot;&gt;CDC-like&lt;/a&gt; kinase) phosphorylate and activate
  7918.    enzymes in a perinuclear &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17159996&quot; title=&quot;(SUMO) E3 ligase, associates with PTP1B, sumoylation, which has been implicated primarily in processes in the nucleus and nuclear pore&quot;&gt;endosome&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14722096&quot; title=&quot;PTP-1B appears not only to interact with and dephosphorylate the insulin-stimulated IR in a perinuclear endosome compartment&quot;&gt;compartment&lt;/a&gt;,
  7919.    and activate the S. cerevisiae &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13096168.html?nr=4&amp;amp;pmid=17159996&quot; title=&quot;Using a yeast two-hybrid assay, a protein inhibitor of activated STAT1 (PIAS1-protein inhibitor of activated STAT, 1) was isolated&quot;&gt;PTP-1B&lt;/a&gt;
  7920.    family member &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/2006506.html?nr=11&amp;amp;pmid=10480872&quot; title=&quot;PTP-1B and its yeast analog, YPTP, are phosphorylated and activated by members of the CLK family&quot;&gt;YPTP1&lt;/a&gt;
  7921.    Ran-gtpase activating protein, rangap1 in a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/694959.html?nr=1&amp;amp;pmid=8826975&quot; title=&quot;dephosphorylation by PTP1B may play a significant role in insulin receptor signal transduction&quot;&gt;dephosphorylated&lt;/a&gt;
  7922.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9332315.html?nr=6&amp;amp;pmid=12237455&quot; title=&quot;PTP-1B also recognized IR-like motifs in Trk autophosphorylation domains dephosphorylation efficiency is strongly modulated by the introduction of phospho-serine or phospho-threonine in their cognate phospho-tyrosine substrates&quot;&gt;state&lt;/a&gt;
  7923.    (the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8906861.html?nr=4&amp;amp;pmid=11506178&quot; title=&quot;PTP1B the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state&quot;&gt;inactive
  7924.  
  7925.  
  7926.  
  7927.  
  7928.  
  7929.  
  7930.  
  7931.  
  7932.  
  7933.  
  7934.  
  7935.    &lt;/a&gt;form) by PTP1B. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8700028.html?nr=8&amp;amp;pmid=11106648&quot; title=&quot;PTP1B interacts directly with the cytoplasmic domain of N-cadherin&quot;&gt;N-cadherin&lt;/a&gt;
  7936.    binds PTP1B to&amp;nbsp; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?term=17204654&quot; target=&quot;_blank&quot;&gt;cell-to-cell&lt;/a&gt; variability, overexpression of h&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed?term=12414790&quot; title=&quot;PTP1B activity contributes to the anti-migratory, but not anti-mitogenic, actions of hSPRY2 all share a cysteine-rich region substrate proteins&quot;&gt;SPRY2&lt;/a&gt;
  7937.    increases PTP1B without an increase in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1222424.html?nr=1&amp;amp;pmid=9355745&quot; title=&quot;The sequence for the Src homology 2 (SH2) domains of the adapter protein Grb2 is correlated with a 3-fold increase in PTP catalytic activity both in vitro and in cells&quot;&gt;total&lt;/a&gt;*
  7938.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/800510.html?nr=4&amp;amp;pmid=8940134&quot; title=&quot;canonical class II Src homology 3 domain e establish that PTP1B interacts with Crk, Grb2&quot;&gt;amount&lt;/a&gt;
  7939.    of cellular PTP1B to mediate cellular environment associated with &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12570496.html?nr=6&amp;amp;pmid=17897622&quot; title=&quot;protein phosphatase 2A overexpression of wild-type PTP1B associated with PP2A&quot;&gt;PP2A&lt;/a&gt;
  7940.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10162902.html?nr=1&amp;amp;pmid=12941932&quot; title=&quot;PTP1B may regulate gene expression of SREBP-1 via enhancement of PP2A activity&quot;&gt;activity&lt;/a&gt;,
  7941.    its eventual termination &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12570496.html?nr=5&amp;amp;pmid=17897622&quot; title=&quot;via protein phosphatase 2A(PP2A) activation Enzymes called kinases (phosphorylation) and phosphatases (dephosphorylation) are involved in this process&quot;&gt;dephosphorylation&lt;/a&gt;
  7942.    and deactivation of insulin &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15671768.html?nr=10&amp;amp;pmid=21305007&quot; title=&quot;IRS1 is a substrate for PTP1B in brown adipocytes&quot;&gt;receptor&lt;/a&gt;
  7943.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13385251.html?nr=3&amp;amp;pmid=17545163&quot; title=&quot;insulin receptor (IR) and IR substrate (IRS)-1 deficiency provide a model of polygenic type 2 diabetes&quot;&gt;substrate-1&lt;/a&gt;
  7944.    the PTP1B-IRK interaction are unique to susceptibility. Secretion of
  7945.    insulin activates phosphoprotein phosphatase leading to
  7946.    dephosphorylation and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13385251.html?nr=9&amp;amp;pmid=17545163&quot; title=&quot;phosphoenolpyruvate carboxykinase provide an alternate path to effectively reverse&quot;&gt;enzymes&lt;/a&gt;
  7947.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1469275.html?nr=1&amp;amp;pmid=9624118&quot; style=&quot;font-style: italic;&quot; title=&quot;Iodoacetate is an irreversible inhibitor of all cysteine peptidases&quot;&gt;reversibly&lt;/a&gt; mediated active at the same time, a biochemical pathway
  7948.    in which the liver generates &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8387148.html?nr=2&amp;amp;pmid=10751417&quot; title=&quot;3) overexpression of PTP1B alone in adipocytes does not impair glucose transport.&quot;&gt;glucose&lt;/a&gt;,
  7949.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15267613.html?nr=6&amp;amp;pmid=20515652&quot; style=&quot;color: #006600;&quot; title=&quot;Berberine As a traditional medicine or dietary supplement is usually found in the roots, rhizomes, stems, and bark&quot;&gt;Berberine&lt;/a&gt;&lt;span style=&quot;color: #006600;&quot;&gt; &lt;/span&gt;(BBR)&lt;span style=&quot;color: #006600;&quot;&gt; &lt;span style=&quot;font-weight: bold;&quot;&gt;‡&lt;/span&gt;&lt;/span&gt;
  7950.    has recently been shown to improve insulin resistance. The &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10416717.html?nr=9&amp;amp;pmid=15097232&quot; title=&quot;one PTP1B variant (1484insG) neither variants (the R65L or A142V variants) were associated with HT&quot;&gt;1484insG&lt;/a&gt;
  7951.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17560463&quot; title=&quot;no significant difference in anthropometric and biochemical parameters was seen between the wild-type and heterozygous 1484insG&quot;&gt;allele&lt;/a&gt; (&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/11833006&quot; title=&quot;human embryo kidney 293 cells transfected with 1484insG PTP1B&quot;&gt;mRNA&lt;/a&gt;)
  7952.    causes PTP1B overexpression at defined phosphotyrosine and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15301795.html?nr=6&amp;amp;pmid=20504764&quot; title=&quot;PTP1B can affect receptor tyrosine kinases (RTK) signaling in a previously unrecognized manner&quot;&gt;RTK&lt;/a&gt;
  7953.    (receptor tyrosine kinase) &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/20864346&quot; title=&quot;endocytic down-regulation of RTKs could be directly controlled by PTP1B&quot;&gt;sites&lt;/a&gt;, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10191790.html?nr=6&amp;amp;pmid=12907755&quot; title=&quot;Protein tyrosine phosphatases (PTPs) play key roles in switching off tyrosine phosphorylation cascades,&quot;&gt;PTP&lt;/a&gt;ases
  7954.  
  7955.  
  7956.  
  7957.  
  7958.  
  7959.  
  7960.  
  7961.  
  7962.  
  7963.  
  7964.  
  7965.    (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15772534.html?nr=8&amp;amp;pmid=21216966&quot; title=&quot;PTP1B and TCPTP play nonredundant roles in modulating ER (endoplasmic reticulum) stress&quot;&gt;TCPTP&lt;/a&gt;
  7966.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18819921&quot; title=&quot;PTP1B and TCPTP play distinct and non-redundant roles in the regulation of the Met receptor-tyrosine kinase&quot;&gt;␠&lt;/a&gt;, PTP-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18925540&quot; title=&quot;(PTP1B) and leukocyte antigen-related PTPase (LAR) are the PTPases implicated most frequently in insulin resistance and diabetes mellitus&quot;&gt;LAR&lt;/a&gt;, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10837002.html?nr=10&amp;amp;pmid=16363874&quot; title=&quot;Calcineurin (CN) is a protein phosphatase also known as protein phosphatase 3, and calcium-dependent serine-threonine phosphatase. It activates the T cells of the immune system&quot;&gt;Calcineurin&lt;/a&gt;)
  7967.    were cloned for  &lt;a href=&quot;http://www.rcsb.org/pdb/explore.do?structureId=1G7G&quot; title=&quot;cholecystokinin(is a peptide hormone of the gastrointestinal system) (CCK-8) were found to be surprisingly potent inhibitors of PTP1B, and a common N-terminal tripeptide PubMed: 11341829&quot;&gt;N-terminal&lt;/a&gt; cDNA and included replacement of the &lt;a href=&quot;http://www.rcsb.org/pdb/explore.do?structureId=1JF7&quot; title=&quot;inhibitory activity can be maintained in the absence of an N-terminal PubMed: 11806712&quot;&gt;C-terminal&lt;/a&gt;, the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9718117.html?nr=4&amp;amp;pmid=12745253&quot; title=&quot;values for the catalytic domains of (T cell protein tyrosine phosphatase) TCPTP and PTP-1B were structurally related they share a 72% amino acid sequence identity within their catalytic domains&quot;&gt;catalytic&lt;/a&gt;
  7968.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15328074.html?nr=2&amp;amp;pmid=20627780&quot; title=&quot;Protein tyrosine phosphatase interacting protein 51 (PTPIP51) was identified as an in vitro interacting partner of PTP1B and TCPTP&quot;&gt;domains&lt;/a&gt;
  7969.    were identical to 40 &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12547827&quot; title=&quot;PTP1B inhibitory agents can be acquired by targeting the area defined by residues Lys-41, Arg-47, and Asp-48&quot;&gt;PTPases&lt;/a&gt;
  7970.    receptor forms (&quot;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18716132&quot; title=&quot;PTP1B knockdown or deficiency&quot;&gt;substrate-trapping&lt;/a&gt;&quot;
  7971.    &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18387954&quot; title=&quot;(PTP1B) as a potential drug target cortactin and provides a potential mechanism to explain the effects of PTP1B&quot;&gt;mutants&lt;/a&gt;)
  7972.    and &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17509747&quot; title=&quot;Hepatic The liver, D-glucose dose-dependently enhanced the PTP1B promoter activity&quot;&gt;hepatic&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18840608&quot; title=&quot;Cysteine S-nitrosylation Humans, some other primates, and guinea pigs are not able to make ceratian oxidases&quot;&gt;enzyme&lt;/a&gt; &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17339316&quot; title=&quot;PTP1B governs differential recruitment of signaling pathways involved in EGFR regulation&quot;&gt;cofactors&lt;/a&gt;
  7973.    (genotyped in &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17333110&quot; title=&quot;insulin sensitivity and fasting glucose levels&quot;&gt;Pima&lt;/a&gt;
  7974.    Indians) in regulating &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11147821.html?nr=8&amp;amp;pmid=15699041&quot; title=&quot;the liver is a major site of the peripheral action of PTP1B&quot;&gt;glucose&lt;/a&gt;
  7975.    in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9739351.html?nr=5&amp;amp;pmid=12502489&quot; title=&quot;reduction of PTP1B is sufficient to increase insulin-dependent metabolic signaling in a diabetic animal model&quot;&gt;liver&lt;/a&gt;,
  7976.    similar to the common leukocyte antigen &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9169392.html?nr=7&amp;amp;pmid=12082107&quot; title=&quot;tyrosine-specific phosphatases (PTP1B, CD45, and HePTP)&quot;&gt;CD45&lt;/a&gt;
  7977.    (to &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14342985.html?nr=6&amp;amp;pmid=18819921&quot; title=&quot;Met enables the nuclear-localized isoform of TCPTP, TC45&quot;&gt;exit&lt;/a&gt;
  7978.    the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13831372.html?nr=4&amp;amp;pmid=19474293&quot; title=&quot;these genes are not interchangeable by interbreeding TC-PTP and PTP-1B parental lines&quot;&gt;nucleus&lt;/a&gt;)
  7979.    and to leukocyte &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10284872.html?nr=10&amp;amp;pmid=15031294&quot; title=&quot;PTP1B and LAR are increased in muscle of insulin-resistant rodents and humans&quot;&gt;common&lt;/a&gt;
  7980.    antigen-&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15031294&quot; title=&quot;insulin signaling by PTP1B and LAR suggests that these PTPs have overlapping actions&quot;&gt;related&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/2128313.html?nr=1&amp;amp;pmid=10660596&quot; title=&quot;(LAR), and leukocyte antigen-related phosphatase) (LRP) toward IRS-1 dephosphorylation&quot;&gt;LAR&lt;/a&gt;
  7981.    in addition to the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9306078.html?nr=2&amp;amp;pmid=12377785&quot; title=&quot;a cell-permeable peptide mimicking the 8 most COOH-terminal amino acids in the PTP1B target domain This domain partially overlaps with the beta-catenin binding domain&quot;&gt;peptide&lt;/a&gt;
  7982.    sequence forms.&lt;/div&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  7983. google_ad_client=&quot;pub-9610428118332343&quot;;
  7984. google_ad_host=&quot;&quot;;
  7985. google_ad_width=200;
  7986. google_ad_height=90;
  7987. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  7988. google_color_border=&quot;EEEECC&quot;;
  7989. google_color_bg=&quot;EEEECC&quot;;
  7990. google_color_link=&quot;445566&quot;;
  7991. google_color_url=&quot;445566&quot;;
  7992. google_color_text=&quot;333333&quot;;
  7993. //--&gt;&lt;/script&gt;
  7994. &lt;script type=&quot;text/javascript&quot;
  7995.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  7996. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2012/01/protein-tyrosine-phosphatase-1b.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhS1JevI6B7hmcD-rye8vhlVmDMSbY1FvMwgOvPc0YsPPrv5La3Kez6YWBsnT7Pq_AyZlIpilrqUlID06yaJbAeCkgRE2yC9wqnFzFkT4HIoQnExPzCAgrb-iiHI2BhJHpp-5QIGQ/s72-c/folder5.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-3111930856199860263</guid><pubDate>Mon, 12 Dec 2011 01:19:00 +0000</pubDate><atom:updated>2013-02-12T10:49:54.082-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">gp160</category><category domain="http://www.blogger.com/atom/ns#">Janus</category><category domain="http://www.blogger.com/atom/ns#">SH3</category><title>Non-receptor tyrosine-protein kinase TYK2</title><description>&lt;table cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; class=&quot;tr-caption-container&quot; style=&quot;float: right; margin-left: 1em; text-align: right;&quot;&gt;&lt;tbody&gt;
  7997. &lt;tr&gt;&lt;td style=&quot;text-align: center;&quot;&gt;&lt;a href=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh8u7Fh2Z1CEQB1QUBX-x6ffM7qPtkI6BKp5C-VnptqYFrwvqbaMEjTo24KaLtYN0vsejDUmW2m7i3d9xqn1lBmZMTnFQbH58dEsKJT_sv1yjuz2mGQcjp4G4vBE_EHv6BOBi1TtA/s1600/tyrsurf-png.svg.png&quot; imageanchor=&quot;1&quot; style=&quot;clear: right; margin-bottom: 1em; margin-left: auto; margin-right: auto;&quot;&gt;&lt;img border=&quot;0&quot; height=&quot;170&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh8u7Fh2Z1CEQB1QUBX-x6ffM7qPtkI6BKp5C-VnptqYFrwvqbaMEjTo24KaLtYN0vsejDUmW2m7i3d9xqn1lBmZMTnFQbH58dEsKJT_sv1yjuz2mGQcjp4G4vBE_EHv6BOBi1TtA/s200/tyrsurf-png.svg.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/td&gt;&lt;/tr&gt;
  7998. &lt;tr&gt;&lt;td class=&quot;tr-caption&quot; style=&quot;text-align: center;&quot;&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt;&lt;a href=&quot;https://picasaweb.google.com/lh/photo/9wCOceUzizsLJDkgfroHXtMTjNZETYmyPJy0liipFm0?feat=directlink&quot; target=&quot;_blank&quot;&gt;Tyk2 forms&lt;/a&gt; deleted at the N terminus&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;
  7999. &lt;/tbody&gt;&lt;/table&gt;
  8000. &lt;div style=&quot;text-align: justify;&quot;&gt;
  8001. &lt;div style=&quot;text-align: right;&quot;&gt;
  8002. &lt;/div&gt;
  8003. &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&amp;amp;cmd=Retrieve&amp;amp;dopt=Graphics&amp;amp;list_uids=7297&quot; title=&quot;Summary This gene&quot;&gt;TYK2&lt;/a&gt; a&amp;nbsp;&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8343956.html?nr=9&amp;amp;pmid=10542297&quot; title=&quot;a Janus kinase, plays both structural and catalytic roles in type I interferon (IFN) signaling&quot;&gt;Janus&lt;/a&gt;
  8004.    kinase, contains a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10895961.html?nr=6&amp;amp;pmid=15277531&quot; title=&quot;Jamip1 was shown to associate with two Jak family members, Tyk2 and Jak1, in Jurkat T cells via its C-terminal region&quot;&gt;C&lt;/a&gt;-terminal protein tyrosine kinase &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/2010549.html?nr=2&amp;amp;pmid=10449913&quot; title=&quot;(JAK1, JAK2, JAK3 and TYK2), plays an essential role in the signal transduction pathway from non-catalytic cytokine receptors to the nucleus&quot;&gt;catalytic&lt;/a&gt;
  8005.    domain and has no &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1258693.html?nr=5&amp;amp;pmid=9388212&quot; title=&quot;N-terminal domain of Bcr linked to the transmembrane and cytoplasmic domains is capable of interacting with JAK1, JAK2, and TYK2&quot;&gt;N&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10895961.html?nr=6&amp;amp;pmid=15277531&quot; title=&quot;Jamip1 was shown to associate with two Jak family members, Tyk2 and Jak1, in Jurkat T cells via its C-terminal region it comprises an N-terminal region&quot;&gt;terminal&lt;/a&gt; signal peptide or transmembrane &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1577839.html?nr=4&amp;amp;pmid=9733772&quot; title=&quot;a critical function was previously attributed to the N region (amino acids 1-591) of Tyk2&quot;&gt;domain&lt;/a&gt;,
  8006.    of coding regions of exons and the adjacent intronic &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1288647.html?nr=9&amp;amp;pmid=9417082&quot; title=&quot;DNA regulatory elements GAS (interferon-gamma activation site) and ISRE (interferon-stimulated response element) and colocalization with Jak1 and Tyk2&quot;&gt;DNA&lt;/a&gt; sequences,
  8007.    identical to &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/6759550.html?nr=4&amp;amp;pmid=2156206&quot; title=&quot;Three new PTK genes and of the mRNA encoded for by these genes&quot;&gt;tyk2&lt;/a&gt; of mutant &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1225026.html?nr=7&amp;amp;pmid=9342324&quot; title=&quot;TYK2 characterized by a large N-terminal region, a kinase-like domain and a tyrosine [?] kinase domain&quot;&gt;Tyk2 forms&lt;/a&gt; deleted at the N terminus locus:19p13.2 [&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/92937.html?ID=92436&quot;&gt;§§&lt;/a&gt;], a human &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12982578.html?nr=2&amp;amp;pmid=18683816&quot; title=&quot;expression of plasminogen activator 2 protein but not mRNA is strongly enhanced in the absence of Tyk2&quot;&gt;mRNA&lt;/a&gt; (rs2304256) exon¤ encoding a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8891796.html?nr=1&amp;amp;pmid=11694501&quot; title=&quot;protein tyrosine phosphatase, non-receptor type 1&quot;&gt;non-receptor&lt;/a&gt; protein
  8008.    tyrosine kinase, the Tyk2 &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15945648.html?nr=3&amp;amp;pmid=21622231&quot; title=&quot;the crucial role of TYK2 in immunity&quot;&gt;deficiency&lt;/a&gt; is likely to account for the
  8009.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12858914.html?nr=1&amp;amp;pmid=18456658&quot; title=&quot;Tyk2 V678F the effect on ligand-induced signaling is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor&quot;&gt;phenotype&lt;/a&gt; by &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15210941.html?nr=7&amp;amp;pmid=20478313&quot; title=&quot;obtaining JAK-isozyme selective inhibitors which bind in the ATP-binding cavities of both JAK isozymes in orientations similar to...&quot;&gt;preventing&lt;/a&gt;* Tyk2 &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/658685.html?nr=8&amp;amp;pmid=8702790&quot; title=&quot;Tyk2 forms mutated on Tyr-1054 and Tyr-1055 or on Lys-930 allowed some inducible gene expression&quot;&gt;tyrosine&lt;/a&gt; phosphorylation for interferon (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15945648.html?nr=3&amp;amp;pmid=21622231&quot; title=&quot;Tyrosine kinase 2 (TYK2) was the first member of the JAK family&quot;&gt;IFN&lt;/a&gt;) responses and Stat
  8010.    activation. STAT1 and STAT3 translocated to the nucleus following &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9989217.html?nr=4&amp;amp;pmid=14500680&quot; title=&quot;C-terminal region contains important domains for Jak2 activation&quot;&gt;PAF&lt;/a&gt;
  8011.    (platelet-activating factor) stimulation in the presence of TYK2 in
  8012.    controlling responses to multiple cytokines &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12858973.html?nr=4&amp;amp;pmid=18474601&quot; title=&quot;the Tyr-based endocytic motif within IFNAR1 identify a member of the Janus kinase (Jak) family, Tyk2, as a component of such a masking complex&quot;&gt;IFNAR1&lt;/a&gt; (the Tyr-based &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/16064393.html?nr=8&amp;amp;pmid=21737619&quot; title=&quot;Endogenous and Exogenous exogenous IL-6-induced STAT3 phosphorylation and nuclear translocation ndependently of the phosphorylation of JAK1, JAK2, and TYK2&quot;&gt;endo&lt;/a&gt;cytic motif within) or &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1754518.html?nr=7&amp;amp;pmid=9974409&quot; title=&quot;Tyk2. uPA and ATF [PLAU] induced a time-dependent activation of both kinases&quot;&gt;PLAU&lt;/a&gt;R (a UPA receptor)
  8013.    urokinase signaling complex &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8507863.html?nr=11&amp;amp;pmid=10995743&quot; title=&quot;Jak1 and Tyk2 play an important role in urokinase-type plasminogen activator (uPA)-dependent signaling&quot;&gt;uPA&lt;/a&gt; containing TYK2 and phosphatidylinositol
  8014.    3-kinase &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10021161.html?nr=3&amp;amp;pmid=12719789&quot; title=&quot;uPA stimulates migration via the uPA receptor (uPAR) signalling complex containing the Janus kinase Tyk2 and phosphatidylinositol 3-kinase (PI3-K)&quot;&gt;PI3K&lt;/a&gt; stabilized at the cell surface are downstream&lt;br /&gt;
  8015. &lt;table cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; class=&quot;tr-caption-container&quot; style=&quot;float: left; margin-right: 1em; text-align: left;&quot;&gt;&lt;tbody&gt;
  8016. &lt;tr&gt;&lt;td style=&quot;text-align: center;&quot;&gt;&lt;a href=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj8HvKp7Mr9Fltnfq8SB8T8cBkuxvgUX2d6YEjnkcPZtzn-FRKjSr5ilTvAyyh15Ei8oraOJ-n-VxeiwjEc-_WiMTlrpbbtIj8LVhz6CtlaKBYpBthHLnCyQ8i-HSWm6NRQ84GjZw/s1600/lightputty.svg.png&quot; style=&quot;clear: right; margin-bottom: 1em; margin-left: auto; margin-right: auto;&quot;&gt;&lt;img border=&quot;0&quot; height=&quot;120&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj8HvKp7Mr9Fltnfq8SB8T8cBkuxvgUX2d6YEjnkcPZtzn-FRKjSr5ilTvAyyh15Ei8oraOJ-n-VxeiwjEc-_WiMTlrpbbtIj8LVhz6CtlaKBYpBthHLnCyQ8i-HSWm6NRQ84GjZw/s200/lightputty.svg.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/td&gt;&lt;/tr&gt;
  8017. &lt;tr&gt;&lt;td class=&quot;tr-caption&quot; style=&quot;text-align: center;&quot;&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt; &lt;a href=&quot;http://www.rcsb.org/pdb/explore/explore.do?pdbId=3NZ0&quot; target=&quot;_blank&quot;&gt;3NOZ&lt;/a&gt; the &lt;a href=&quot;https://picasaweb.google.com/lh/photo/KOr7F7cibNQ7eqi3y19d_tMTjNZETYmyPJy0liipFm0?feat=directlink&quot; target=&quot;_blank&quot;&gt;DNA&lt;/a&gt;-bindin&lt;wbr&gt;&lt;/wbr&gt;g domain&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;
  8018. &lt;/tbody&gt;&lt;/table&gt;
  8019. events
  8020.    binding to the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1057827.html?nr=11&amp;amp;pmid=9208871&quot; title=&quot;the type I (alpha, beta, and omega) and type II (gamma) interferons (IFNs). Tyk2 and Jak1 kinases are recruited to the receptor complex and activated&quot;&gt;type I&lt;/a&gt; IFN receptor complex a pathway that
  8021.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12547777.html?nr=8&amp;amp;pmid=17942530&quot; title=&quot;prevents them from inadvertently serving as a reservoir for viral replication and spread to cardiac myocytes&quot;&gt;supplements&lt;/a&gt; &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/9890942.html&quot; title=&quot;TYK2 were refractory to induction of beta-R1 by IFN-beta despite robust expression of other ISGs.&quot;&gt;ISGF3&lt;/a&gt;/interferon-stimulated response element, and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10768844.html?nr=7&amp;amp;pmid=15657875&quot; title=&quot;TYK2 binds to the type I IFN receptor complex and IRF5 is a regulator of type I IFN gene expression&quot;&gt;IRF5&lt;/a&gt; a
  8022.    regulator. (IFNaR1) domain (dimerized) is required to induce &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1225026.html?nr=7&amp;amp;pmid=9342324&quot; title=&quot;basal autophosphorylation activity of Tyk2, but it is required for efficient in vitro IFNAR1 phosphorylation&quot;&gt;phosphorylation&lt;/a&gt;
  8023.    of binding &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9822938.html?nr=1&amp;amp;pmid=12554654&quot; title=&quot;In the absence of Tyk2, mature IFNAR1 is weakly expressed on the cell surface&quot;&gt;helical
  8024.      bundled&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1577839.html?nr=1&amp;amp;pmid=9733772&quot; title=&quot;involves the activation of the Janus kinase(JAK) family of tyrosine kinases&quot;&gt;cytokines&lt;/a&gt;
  8025.    and TYK2 &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12858914.html?nr=1&amp;amp;pmid=18456658&quot; title=&quot;Tyk2 V678F the effect on ligand-induced signaling is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor&quot;&gt;phenotype&lt;/a&gt;s  &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12858914.html?nr=1&amp;amp;pmid=18456658&quot; title=&quot;the Val(678)-to-Phe substitution on Tyk2 functioning is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor&quot;&gt;ability&lt;/a&gt; at binding and signal transduction to the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/2010549.html?nr=2&amp;amp;pmid=10449913&quot; title=&quot;(JAK1, JAK2, JAK3 and TYK2), plays an essential role in the signal transduction pathway from non-catalytic cytokine receptors to the nucleus&quot;&gt;nucleus&lt;/a&gt; for the acquisition of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/336904.html?nr=4&amp;amp;pmid=7657660&quot; title=&quot;Janus PTKs activation of latent signal transducers and activators of transcription (Stats) are common elements in signal transduction&quot;&gt;DNA&lt;/a&gt; binding activity, and modulates uPAR dependent functional responses in upregulation of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10802694.html?nr=6&amp;amp;pmid=15944400&quot; title=&quot;Tyk2 and the transcription factor Stat3 serve as downstream components&quot;&gt;C5aR*&lt;/a&gt; expression. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14044269.html?nr=4&amp;amp;pmid=19717292&quot; title=&quot;associated with viral and mycobacterial infection&quot;&gt;Mutation&lt;/a&gt;s in TYK2 and STAT3 mostly impair &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12752869.html?nr=9&amp;amp;pmid=18083507&quot; title=&quot;conferring a predisposition to staphylococcal disease in particular&quot;&gt;IL-6R&lt;/a&gt;* responses, and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14148180.html?nr=7&amp;amp;pmid=19653082&quot; title=&quot;TYK2 and STAT3 are genetic determinants&quot;&gt;polymorphism&lt;/a&gt;s¤. &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/10652206.html&quot; title=&quot;After stimulation with phenylephrine, Jak2 and STAT1 were found to associate with alpha(1B) receptor.&quot;&gt;Phenylephrine&lt;/a&gt;  &lt;a href=&quot;http://en.wikipedia.org/wiki/Phenylephrine&quot; title=&quot;the most common over-the-counter (OTC) decongestant in the United States&quot;&gt;‡&lt;/a&gt; induced
  8026.    tyrosine phosphorylation of Jak2, Tyk2, and STAT1. TYK2, has an SH2
  8027.    domain that contains a &lt;a href=&quot;http://www.wikigenes.org/e/ref/e/11752426.html&quot; title=&quot;human TYK2, has an SH2 domain that contains a histidine instead of the conserved arginine at the key phosphotyrosine-binding position, betaB5&quot;&gt;histidine&lt;/a&gt; instead of arginine (semi- vs essential amino acid) it may have
  8028.    lost the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12858914.html?nr=1&amp;amp;pmid=18456658&quot; title=&quot;the Val(678)-to-Phe substitution on Tyk2 functioning is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor&quot;&gt;ability&lt;/a&gt; on &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/658685.html?nr=8&amp;amp;pmid=8702790&quot; title=&quot;the putative activation loop prevented ligand-dependent activation&quot;&gt;ligand&lt;/a&gt;-induced signaling to bind &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8891796.html?nr=1&amp;amp;pmid=11694501&quot; title=&quot;JAK2 and TYK2 are substrates of PTP1B&quot;&gt;phosphotyrosine&lt;/a&gt; at a neutral pH of 7. Either of the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10148460.html?nr=3&amp;amp;pmid=14617019&quot; title=&quot;IFN-alpha may be transduced by two signalling pathways, one regulated by Tyk2 and the other dependent on Stat1&quot;&gt;two&lt;/a&gt; Src homology 2(&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1661018.html?nr=7&amp;amp;pmid=9794795&quot; title=&quot;The tyrosine phosphorylated STAT factors dissociate from the receptor, dimerize and translocate to the nucleus&quot;&gt;SH2&lt;/a&gt;)&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8507863.html?nr=7&amp;amp;pmid=10995743&quot; title=&quot;Tyk2 directly binds to either of the two Src homology 2(SH2)p85 domains in a uPA-dependent fashion.&quot;&gt;p85&lt;/a&gt; domains binds the
  8029.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/658685.html?nr=8&amp;amp;pmid=8702790&quot; title=&quot;substitutions in this kinase-negative Tyk2 abolished the induced phosphorylation substitutions in the putative activation loop prevented ligand-dependent activation of Tyk2&quot;&gt;pseudokinase&lt;/a&gt; domain (a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12858973.html?nr=4&amp;amp;pmid=18474601&quot; title=&quot;Tyk2, as a component of such a masking complex&quot;&gt;hypothetical&lt;/a&gt; masking complex) of TYK2 directly.&lt;br /&gt;
  8030. &lt;table align=&quot;center&quot; cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; class=&quot;tr-caption-container&quot; style=&quot;margin-left: auto; margin-right: auto; text-align: center;&quot;&gt;&lt;tbody&gt;
  8031. &lt;tr&gt;&lt;td style=&quot;text-align: center;&quot;&gt;&lt;a href=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh96qNQx3TpZflcU6HoLyUT7OkIdAFXhPtF-q4zEzGTGzqEcSoSn19Eqksft9EoajR6jB-Hogc0p357ylWv45NC2y9sdpdsCbAGB15Ja_CE-NtbqQF2502UXQkBijp4bkzpm5yong/s1600/hmm3NOZ2.png&quot; style=&quot;margin-left: auto; margin-right: auto;&quot;&gt;&lt;img border=&quot;0&quot; height=&quot;229&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh96qNQx3TpZflcU6HoLyUT7OkIdAFXhPtF-q4zEzGTGzqEcSoSn19Eqksft9EoajR6jB-Hogc0p357ylWv45NC2y9sdpdsCbAGB15Ja_CE-NtbqQF2502UXQkBijp4bkzpm5yong/s320/hmm3NOZ2.png&quot; width=&quot;320&quot; /&gt;&lt;/a&gt;&lt;/td&gt;&lt;/tr&gt;
  8032. &lt;tr&gt;&lt;td class=&quot;tr-caption&quot; style=&quot;text-align: center;&quot;&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt;3lnx light Magneta,
  8033. &lt;a href=&quot;https://picasaweb.google.com/lh/photo/rJHFBj9upivKNGl9xQtzkdMTjNZETYmyPJy0liipFm0?feat=directlink&quot; target=&quot;_blank&quot;&gt;3nzo by chain colors CHNOS&lt;/a&gt;, 1bf5-1ynl cartoon Hidden MM prediction model
  8034. all centered on 1bf5 DNA of binding helical bundled cytokines and TYK2
  8035. of coding regions of exons and the adjacent intronic DNA sequences by
  8036. 3nzo unspecifie&lt;wbr&gt;&lt;/wbr&gt;d 3nxo ligands GBR in foreground&lt;wbr&gt;&lt;/wbr&gt;.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;
  8037. &lt;/tbody&gt;&lt;/table&gt;
  8038. &lt;br /&gt;
  8039. &amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; &lt;/div&gt;
  8040. &lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  8041. google_ad_client=&quot;pub-9610428118332343&quot;;
  8042. google_ad_host=&quot;&quot;;
  8043. google_ad_width=200;
  8044. google_ad_height=90;
  8045. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  8046. google_color_border=&quot;EEEECC&quot;;
  8047. google_color_bg=&quot;EEEECC&quot;;
  8048. google_color_link=&quot;445566&quot;;
  8049. google_color_url=&quot;445566&quot;;
  8050. google_color_text=&quot;333333&quot;;
  8051. //--&gt;&lt;/script&gt;
  8052. &lt;script type=&quot;text/javascript&quot;
  8053.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  8054. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2011/12/non-receptor-tyrosine-protein-kinase.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh8u7Fh2Z1CEQB1QUBX-x6ffM7qPtkI6BKp5C-VnptqYFrwvqbaMEjTo24KaLtYN0vsejDUmW2m7i3d9xqn1lBmZMTnFQbH58dEsKJT_sv1yjuz2mGQcjp4G4vBE_EHv6BOBi1TtA/s72-c/tyrsurf-png.svg.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-3786849528823776740</guid><pubDate>Sun, 27 Nov 2011 03:25:00 +0000</pubDate><atom:updated>2011-11-30T08:14:13.161-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">gp160</category><category domain="http://www.blogger.com/atom/ns#">IFNG</category><category domain="http://www.blogger.com/atom/ns#">Janus</category><category domain="http://www.blogger.com/atom/ns#">mRNPs</category><title>STAT1 signal transducer and activator of transcription 1</title><description>&lt;table cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; class=&quot;tr-caption-container&quot; style=&quot;float: right; margin-left: 1em; text-align: right;&quot;&gt;&lt;tbody&gt;
  8055. &lt;tr&gt;&lt;td style=&quot;text-align: center;&quot;&gt;&lt;a href=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg6rZyJxL732BdNhc3Z7bYy-6T20Mm_EWSwKiOKmdsOsAcKKBFWDzrlBXEtrQQPyCp7uvWsHC5UpuIGuMFgxdIIlvASkHloKh53Gc_OzrVfztZ2s8InVHTED5yFdimP8dp7AuEi5Q/s1600/1bf5+aligned+1yvl-svg-png%252Cpng.png&quot; imageanchor=&quot;1&quot; style=&quot;clear: right; margin-bottom: 1em; margin-left: auto; margin-right: auto;&quot;&gt;&lt;img border=&quot;0&quot; height=&quot;102&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg6rZyJxL732BdNhc3Z7bYy-6T20Mm_EWSwKiOKmdsOsAcKKBFWDzrlBXEtrQQPyCp7uvWsHC5UpuIGuMFgxdIIlvASkHloKh53Gc_OzrVfztZ2s8InVHTED5yFdimP8dp7AuEi5Q/s200/1bf5+aligned+1yvl-svg-png%252Cpng.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/td&gt;&lt;/tr&gt;
  8056. &lt;tr&gt;&lt;td class=&quot;tr-caption&quot; style=&quot;text-align: center;&quot;&gt;antiparallel and parallel &lt;a href=&quot;https://picasaweb.google.com/lh/photo/tK9TZ-3hRqCUrVEgFP1p5dMTjNZETYmyPJy0liipFm0?feat=directlink&quot; target=&quot;_blank&quot;&gt;1bf5;1yvl&lt;/a&gt; aligned &lt;/td&gt;&lt;/tr&gt;
  8057. &lt;/tbody&gt;&lt;/table&gt;
  8058. &lt;div style=&quot;text-align: justify;&quot;&gt;
  8059. &lt;div style=&quot;text-align: left;&quot;&gt;
  8060. &lt;/div&gt;
  8061. &lt;div style=&quot;text-align: justify;&quot;&gt;
  8062. The JAK/STAT pathway signal transducer and activator of
  8063.    transcription &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1558953.html?nr=1&amp;amp;pmid=9724754&quot; title=&quot;STAT proteins are latent cytoplasmic transcription factors that become activated by tyrosine phosphorylation in response to cytokine stimulation&quot;&gt;STAT1&lt;/a&gt;
  8064.    location: 2q32.2: [&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/gs/92436.html?ID=89591&quot;&gt;§§&lt;/a&gt;], is downstream of cytokine receptor IL2RG consisting
  8065.    of an &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9659647.html?nr=1&amp;amp;pmid=12403783&quot; title=&quot;the N-terminal and C-terminal regions were necessary for the transcriptional synergy&quot;&gt;N&lt;/a&gt;-terminal
  8066.  
  8067.    oligomerization domain surrounds a completely conserved &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13636276.html?nr=8&amp;amp;pmid=19136629&quot; title=&quot;STAT1 inhibitor PIAS1 (protein inhibitor of activated STAT1). PIAS1 is arginine methylated by PRMT1 in vitro as well as in vivo upon IFN treatment&quot;&gt;arginine&lt;/a&gt;
  8068.    residue. And a C-terminal SRC homology-2 (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10795642.html?nr=7&amp;amp;pmid=15780933&quot; title=&quot;Two dimer interfaces are seen termed antiparallel or parallel, as determined by SH2 domain orientations&quot;&gt;SH2&lt;/a&gt;)
  8069.    domain and receptors which translocates GAF and&amp;nbsp; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/538490.html?nr=10&amp;amp;pmid=8621447&quot; title=&quot;STAT1-STAT2 heterodimers were still formed, indicating that they do not contain p48, IFN-stimulated response elements (ISREs) in cells that lack signal transducer and activator of transcription 1 (STAT1), and STAT1 homodimers bind to IR inverted repeat elements&quot;&gt;p48&lt;/a&gt;
  8070.    ((protein &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13129341.html?nr=6&amp;amp;pmid=17325370&quot; title=&quot;rubulaviruses it encodes a V protein (MPRV/V) that inhibits the formation of the transcription factor complex ISGF3&quot;&gt;48&lt;/a&gt;),
  8071.  
  8072.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/794535.html?nr=3&amp;amp;pmid=8864350&quot; title=&quot;IFN alpha and IFN gamma, dictated by the DNA-binding protein ISGF3 gamma p48&quot;&gt;ISGF3&lt;/a&gt;)
  8073.    to the nucleus and upregulates in signal transduction from both the
  8074.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9909172.html?nr=6&amp;amp;pmid=12856330&quot; title=&quot;(IL-1) induces the phosphorylation of Stat1&quot;&gt;type
  8075.  
  8076.      I&lt;/a&gt; and type &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10273329.html?nr=5&amp;amp;pmid=14722224&quot; title=&quot;Selective viral effects on type I IFN-dependent signaling were confirmed&quot;&gt;II&lt;/a&gt;
  8077.    interferons transcription of &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/11253135.html?nr=1&amp;amp;pmid=16148108&quot; title=&quot;genes that are induced by IFN-gamma via Stat1-independent but Stat3-dependent pathways and have been implicated in inflammatory tissue destruction&quot;&gt;IFNG&lt;/a&gt;-regulated
  8078.  
  8079.  
  8080.  
  8081.    genes and protein inhibitor of the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/829780.html?nr=4&amp;amp;pmid=8986769&quot; title=&quot;Stat1, which then forms homodimers, translocates to the nucleus and participates in IFN-gamma-induced transcription&quot;&gt;latent&lt;/a&gt;
  8082.    cytoplasmic transcription factor activated &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8503391.html?nr=6&amp;amp;pmid=10805787&quot; title=&quot;PIAS1 does not interact with Stat1, it serves as a modulatory domain&quot;&gt;STAT1&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10164894.html?nr=5&amp;amp;pmid=12855578&quot; title=&quot;Members of the PIAS family of proteins were found to strongly stimulate sumoylation of STAT1.&quot;&gt;PIAS1&lt;/a&gt; (protein inhibitor of activated &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13636276.html?nr=3&amp;amp;pmid=19136629&quot; title=&quot;PIAS1 is arginine methylated by PRMT1 in vitro as well as in vivo upon IFN treatment&quot;&gt;STAT1&lt;/a&gt;)
  8083.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1558953.html?nr=1&amp;amp;pmid=9724754&quot; title=&quot;there may exist a specific PIAS inhibitor in every STAT signaling pathway&quot;&gt;interaction&lt;/a&gt;.
  8084.    Homeostatic balance &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12475869.html?nr=6&amp;amp;pmid=17227821&quot; title=&quot;JAK/STAT mechanisms by which ICs regulate IFN-gamma activation of human monocytes&quot;&gt;antigen-driven&lt;/a&gt;
  8085.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13786537.html?nr=4&amp;amp;pmid=19622834&quot; title=&quot;(JAK-STAT) pathway that couples interferon-gamma signaling to the nucleus&quot;&gt;proinflammatory&lt;/a&gt;
  8086.    chemokines and cytokine immune &lt;br /&gt;
  8087. &lt;table cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; class=&quot;tr-caption-container&quot; style=&quot;float: right; margin-left: 0px; margin-right: 0px; text-align: left;&quot;&gt;&lt;tbody&gt;
  8088. &lt;tr&gt;&lt;td style=&quot;text-align: center;&quot;&gt;&lt;a href=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjEXpULxYB1M-XNUpNrISyQzmbIsPpJCukgdLpWI4TsRAapKwfSHHT2PRnw_6vauyLgpIujoIaUqqRBrfHmnugLh2ZzTUibldcBVdFG20zNsSullIc5MBkxc6bxbEEPizzHkiVsDg/s1600/dnaz1.png&quot; style=&quot;clear: right; margin-bottom: 1em; margin-left: auto; margin-right: auto;&quot;&gt;&lt;img border=&quot;0&quot; height=&quot;120&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjEXpULxYB1M-XNUpNrISyQzmbIsPpJCukgdLpWI4TsRAapKwfSHHT2PRnw_6vauyLgpIujoIaUqqRBrfHmnugLh2ZzTUibldcBVdFG20zNsSullIc5MBkxc6bxbEEPizzHkiVsDg/s200/dnaz1.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/td&gt;&lt;/tr&gt;
  8089. &lt;tr&gt;&lt;td class=&quot;tr-caption&quot; style=&quot;text-align: center;&quot;&gt;&lt;a href=&quot;https://picasaweb.google.com/lh/photo/W3Bi5vWpRxfstSFYMXzF-tMTjNZETYmyPJy0liipFm0?feat=directlink&quot; target=&quot;_blank&quot;&gt;Tyr701&lt;/a&gt; transmigration route Via 74.56&lt;/td&gt;&lt;/tr&gt;
  8090. &lt;/tbody&gt;&lt;/table&gt;
  8091. &lt;div style=&quot;text-align: justify;&quot;&gt;
  8092. responses, are linked to a form of
  8093.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10211366.html?nr=7&amp;amp;pmid=14963018&quot; title=&quot;MSK1 stimulated phosphorylation of STAT1 (Ser727) indirectly. a member of the RSK (ribosomal S6 kinase) family Rsk-2 is located at Xq28&quot;&gt;X&lt;/a&gt;-linked susceptibility, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1754756.html?nr=5&amp;amp;pmid=9989503&quot; title=&quot;N-Myc (and STAT) interactor Using the coiled-coil region of Stat5b as the bait in a yeast two-hybrid screen&quot;&gt;Nmi&lt;/a&gt; interacts with all STATs except &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1999448.html?nr=9&amp;amp;pmid=10464260&quot; title=&quot;similarity between human and mouse Stat2 may define the critical determinants for function&quot;&gt;Stat2&lt;/a&gt;, the (Stat) gene family has been highly conserved throughout evolution. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8278288.html?nr=10&amp;amp;pmid=10417824&quot; title=&quot;implicated in the transduction of signals for growth, reproduction, viral defense, and immune regulation&quot;&gt;Inherited&lt;/a&gt; impairment of the STAT1-dependent
  8094.    response to human &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9568304.html?nr=7&amp;amp;pmid=12388709&quot; title=&quot;V protein does not induce STAT degradation but instead inhibits IFN responses&quot;&gt;IFN&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12050661.html?nr=5&amp;amp;pmid=16624862&quot; title=&quot;unlike IFN-alpha receptors, activated IFN-gamma receptors rapidly become enriched in plasma membrane lipid microdomains&quot;&gt;alpha&lt;/a&gt;/&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12004957.html?nr=6&amp;amp;pmid=16571725&quot; title=&quot;the antiviral and inflammatory effects of IFNalpha/beta&quot;&gt;beta&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/15477481.html?nr=11&amp;amp;pmid=20937132&quot; title=&quot;resistance to IFN was associated with preservation of wild-type phenotype in the V protein&quot;&gt;environment&lt;/a&gt;
  8095.    between STAT1 and the protein &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/989268.html?nr=5&amp;amp;pmid=9135145&quot; title=&quot;The association is not a kinase-substrate interaction&quot;&gt;kinase&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12039823.html?nr=10&amp;amp;pmid=16628196&quot; title=&quot;hypothesizedSTAT1-SOCS1/TLR3 pathway regulatesa receptor for virus-associated double-stranded RNA, and triggers antiviral immune responses&quot;&gt;double&lt;/a&gt;-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8790943.html?nr=5&amp;amp;pmid=11278865&quot; title=&quot;Genetic experiments in yeast&quot;&gt;stranded&lt;/a&gt;
  8096.    &lt;a href=&quot;http://en.wikipedia.org/wiki/Double-stranded_RNA_viruses#The_Yeast_dsRNA_Virus_L-A&quot; title=&quot;broad-spectrum anti-virals could be synthesized that take advantage of this vulnerability of double-stranded RNA viruses&quot;&gt;RNA&lt;/a&gt;, are a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13224526.html?nr=10&amp;amp;pmid=17386941&quot; title=&quot;factors which bind DNA following post-translational modification&quot;&gt;double point&lt;/a&gt; mutation, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/16201204.html?nr=8&amp;amp;pmid=21762537&quot; title=&quot;miR-155 suppressed suppressor of cytokine signaling 1 (SOCS1) expression&quot;&gt;microRNA&lt;/a&gt;s &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14218312.html?nr=1&amp;amp;pmid=20098684&quot; title=&quot;tumor-suppressive functions of miRNA PLoS ONE (2010)&quot;&gt;suppressed&lt;/a&gt; virus-&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12039823.html?nr=11&amp;amp;pmid=16628196&quot; title=&quot;Toll-like receptor (TLR)3 is a receptor for virus-associated double-stranded RNA&quot;&gt;associated&lt;/a&gt; double-stranded RNA.&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13961754.html?nr=9&amp;amp;pmid=19553685&quot; title=&quot;Inactivation of mammalian target of rapamycin increases STAT1 interferon-gamma-sensitive genes involved in immunity and apoptosis&quot;&gt; Saccharomyces cerevisiae&lt;/a&gt;, control STAT1 &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9977872.html?nr=9&amp;amp;pmid=12807916&quot; title=&quot;anti-mTOR small interfering RNA, or rapamycin [?] each inhibited phosphorylation of STAT1&quot;&gt;mRNA&lt;/a&gt; nuclear content that &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10164894.html?nr=6&amp;amp;pmid=12855578&quot; title=&quot;(PIAS, protein inhibitor of activated STAT, 1) regulated through posttranslational modifications and through transacting proteins such as protein inhibitor of activated STAT1 (PIAS1)&quot;&gt;PIAS&lt;/a&gt; proteins promote, the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1859910.html?nr=3&amp;amp;pmid=9918120&quot; title=&quot;the extracellular signal-dependent nuclear import of Stat1 is mediated via complex&quot;&gt;nuclear pore&lt;/a&gt;-targeting of proteins that translocate into the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8805593.html?nr=1&amp;amp;pmid=11248027&quot; title=&quot;Stat1 recruits a group of nuclear proteins, among them MCM5 (minichromosome maintenance) and MCM3, for transcription activation&quot;&gt;nucleus&lt;/a&gt; and activate transcription in complex with mRNA (&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10481498.html?nr=6&amp;amp;pmid=15279700&quot; title=&quot;STAT activation and blocks antiviral IFN signaling. As the V proteins are important factors for host evasion&quot;&gt;V&lt;/a&gt;:
  8097.    (−)ssRNA viruses, in a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13961756.html?nr=2&amp;amp;pmid=19561067&quot; title=&quot;pharmacological inhibition of protein palmitoylation results in severe defects of IFN receptor endocytosis and signaling which results in a lack of efficient Stat1 activation&quot;&gt;form&lt;/a&gt; &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9159515.html?nr=8&amp;amp;pmid=11815625&quot; title=&quot;the raft-STAT signaling hypothesis&quot;&gt;deficient&lt;/a&gt; in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8388675.html?nr=4&amp;amp;pmid=10848598&quot; title=&quot;STAT1-DNA complexes were not detected in nuclear extracts of FA-C cells from Fanconi anemia (FA) group C (FA-C) patients&quot;&gt;DNA&lt;/a&gt; binding, enabling &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9202230.html?nr=1&amp;amp;pmid=11932384&quot; title=&quot;the N terminus of the missing STAT protein is essential. t V and STAT proteins interact physically in vitro and in vivo&quot;&gt;viruses&lt;/a&gt;
  8098.    to &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/10206341.html?nr=2&amp;amp;pmid=15113915&quot; title=&quot;Further, V protein interactions with cellular STAT1 is a prerequisite for STAT2 binding&quot;&gt;target&lt;/a&gt;-
  8099.    a Stat1 heterodimer, which lacks &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/1964912.html?nr=7&amp;amp;pmid=10446176&quot; title=&quot;(Stat1) signaling in human vascular smooth muscle and endothelial cells uPA activates the Janus kinase/signal transducers and activators&quot;&gt;p48&lt;/a&gt;
  8100.    a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9163426.html?nr=9&amp;amp;pmid=11909852&quot; title=&quot;bind to IFN regulatory factor-1 (IRF-1), but not to IFN-stimulated gene factor-3 (ISGF-3) binds to IRF-E/GAS/IRF-E(IGI) RNA sequence&quot;&gt;repressor&lt;/a&gt;
  8101.    region) to &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9163426.html?nr=9&amp;amp;pmid=11909852&quot; title=&quot;cellular resistance to IFNs and mycobacterial infection in humans. Thus, given the relative importance of STAT1&quot;&gt;mycobacterial&lt;/a&gt;
  8102.    disease (disseminated &lt;a href=&quot;http://omim.org/entry/600555#molecularGenetics&quot; title=&quot;bacille Calmette-Guerin&quot;&gt;BCG&lt;/a&gt; infection or &lt;a href=&quot;http://en.wikipedia.org/wiki/BCG_vaccine&quot; title=&quot;BCG is a vaccine against tuberculosis. The BCG vaccine was first used in humans in 1921&quot;&gt;vaccinated&lt;/a&gt;
  8103.    &lt;a href=&quot;http://omim.org/entry/209950#phenotypMap&quot; title=&quot;Phenotype Gene Relationships Mycobacterial infection, atypical, familial disseminated&quot;&gt;BCG&lt;/a&gt; locus: 2q32-37) that results in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12547777.html?nr=7&amp;amp;pmid=17942530&quot; title=&quot;greater basal activated nuclear STAT1 and STAT2 and greater basal ISG mRNA(ISRE) expression&quot;&gt;TYK2&lt;/a&gt;
  8104.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12226752.html?nr=6&amp;amp;pmid=16973548&quot; title=&quot;West Nile virus (WNV) was defective in its ability to disrupt IFN-induced JAK-STAT signaling, including the activation of Tyk2&quot;&gt;deficiency&lt;/a&gt;;
  8105.    in viral infection or other unidentified &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8719804.html?nr=13&amp;amp;pmid=11280796&quot; title=&quot;extremely low ISGF3 level after IFN-alpha treatment may be due to low Tyk2 expression&quot;&gt;defects&lt;/a&gt;.
  8106.    &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/21907.html?nr=8&amp;amp;pmid=2249773&quot; title=&quot;(ISRE), a conserved regulatory element of all ISGs, is the target for transcriptional activation by the positive regulator IFN-stimulated gene factor-3 (ISGF3)&quot;&gt;ISGF3&lt;/a&gt;
  8107.    binds to &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/14322053.html?nr=9&amp;amp;pmid=18218993&quot; title=&quot;hMPV infection prevented IFN-alpha-mediated transactivation of the interferon-stimulated response element (ISRE)&quot;&gt;ISRE&lt;/a&gt;
  8108.    (interferon-stimulated response element) where they (STAT proteins)
  8109.    and their &lt;/div&gt;
  8110. &lt;table cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; class=&quot;tr-caption-container&quot; style=&quot;float: right; margin-left: 0px; margin-right: 0px; text-align: left;&quot;&gt;&lt;tbody&gt;
  8111. &lt;tr&gt;&lt;td style=&quot;text-align: center;&quot;&gt;&lt;a href=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEimtZkUVfvlDVtSnF6oJ0HYbd2F-b5GWagY5QbfXaNI4ylZkf2cRze9GuzO17654H_qW4qrRkFOvFnVJitN2Bm4Fa9JCbe4MC0Bz5dCeWCW9bjmc8eOkmz_JaZyvLw33xILzHX2kQ/s1600/144pocket3png.png&quot; style=&quot;clear: left; margin-bottom: 1em; margin-left: auto; margin-right: auto;&quot;&gt;&lt;img border=&quot;0&quot; height=&quot;120&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEimtZkUVfvlDVtSnF6oJ0HYbd2F-b5GWagY5QbfXaNI4ylZkf2cRze9GuzO17654H_qW4qrRkFOvFnVJitN2Bm4Fa9JCbe4MC0Bz5dCeWCW9bjmc8eOkmz_JaZyvLw33xILzHX2kQ/s200/144pocket3png.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/td&gt;&lt;/tr&gt;
  8112. &lt;tr&gt;&lt;td class=&quot;tr-caption&quot; style=&quot;text-align: center;&quot;&gt;&lt;span class=&quot;gphoto-photocaption-caption&quot;&gt;&amp;nbsp;&lt;a href=&quot;https://picasaweb.google.com/lh/photo/FyQIH_FUcXWCsBfUDhuTJdMTjNZETYmyPJy0liipFm0?feat=directlink&quot; target=&quot;_blank&quot;&gt;Tyr701 note&lt;/a&gt; the two orange &lt;span style=&quot;background-color: orange;&quot;&gt;**&lt;/span&gt; tags &lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;
  8113. &lt;/tbody&gt;&lt;/table&gt;
  8114. &lt;div style=&quot;text-align: justify;&quot;&gt;
  8115. differences in &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12106183.html?nr=9&amp;amp;pmid=16698995&quot; title=&quot;levels of phosphorylated STAT1 and STAT2 and that of the ISGF3 complex&quot;&gt;IFN&lt;/a&gt;
  8116.    responsiveness (inducing a &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9492327.html?nr=10&amp;amp;pmid=12077266&quot; title=&quot;IRF-1 and IRF-7 may cooperate toward induction of IFN-alpha1/13 if infection persists and these factors are activated&quot;&gt;cell-mediated&lt;/a&gt;
  8117.    immunity) either act to or directly bind to &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12472875.html?nr=6&amp;amp;pmid=17351669&quot; title=&quot;STAT proteins displaying slightly different intrinsic DNA binding specificities&quot;&gt;DNA&lt;/a&gt;
  8118.    via signal transduction and activation of transcription after IFNG
  8119.    stimulation. &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/13477767.html?nr=2&amp;amp;pmid=18620071&quot; title=&quot;STAT3 counteracts inflammation and promotes cell survival/proliferation and immune tolerance&quot;&gt;STAT3&lt;/a&gt;
  8120.    location: 17q21.2 is not activated by IFN-gamma but component &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/99991.html?nr=5&amp;amp;pmid=7690989&quot; title=&quot;A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma.&quot;&gt;p91&lt;/a&gt;
  8121.    (IFN)-stimulated gene factor-3 known to be activated by JAKs the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/336904.html?nr=7&amp;amp;pmid=7657660&quot; title=&quot;Phosphorylation of purified Stat1 was necessary and sufficient for the acquisition of DNA binding activity&quot;&gt;Janus&lt;/a&gt;
  8122.    kinases, which couple ligands IGF, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9023867.html?nr=8&amp;amp;pmid=11594781&quot; title=&quot;interleukin-6 (IL-6)-induced tyrosine phosphorylation of Stat3&quot;&gt;IL6&lt;/a&gt;
  8123.    and LIF dependent on the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/377067.html?nr=3&amp;amp;pmid=7559477&quot; title=&quot;gp130 preferentially activated STAT1 and STAT3&quot;&gt;gp130&lt;/a&gt;-like
  8124.  
  8125.    leptin receptor &lt;a href=&quot;http://lnwme.blogspot.com/2011/11/tyrosine-protein-kinase-jak1.html&quot; title=&quot;activator of transcription, signal transducers and activators of transcription (STAT) pathway tyk, of STAT3 upstream kinases.&quot;&gt;(Obr)
  8126.  
  8127.  
  8128.  
  8129.      isoform&lt;/a&gt;, Stat3 gene C-terminal loop of the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8703735.html?nr=3&amp;amp;pmid=11226159&quot; title=&quot;STAT1 depends on SH2 and C-terminal domains that regulate Ser727&quot;&gt;SH2&lt;/a&gt; domain produced
  8130.    a molecule that dimerized (hetero- or homo&lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/8278288.html?nr=10&amp;amp;pmid=10417824&quot;&gt;dimer&lt;/a&gt;ize, and translocate to the nucleus) spontaneously, &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9157428.html?nr=8&amp;amp;pmid=11777927&quot; title=&quot;IFN gamma and oncostatin M Both activate DNA binding of STAT1 homodimers&quot;&gt;bound&lt;/a&gt;
  8131.    to &lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10458605&quot; title=&quot;substitution of two cysteine residues within the C-terminal loop of the SH2 domain of Stat3 produces a molecule that dimerizes spontaneously, binds to DNA, and activates transcription&quot;&gt;DNA&lt;/a&gt;.
  8132.    Both signal transducer and activator of transcription factor 1
  8133.    (STAT1) and &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/9094024.html?nr=2&amp;amp;pmid=11722592&quot; title=&quot;STAT1 and 3 formed stable heterodimers only in cell lines with constitutive STAT3 activation&quot;&gt;STAT3&lt;/a&gt; are activated in the &lt;a href=&quot;http://www.ihop-net.org/UniPub/iHOP/pm/12169417.html?nr=8&amp;amp;pmid=16897667&quot; title=&quot;liver disease frequently leads to cirrhosis and death&quot;&gt;liver&lt;/a&gt;. &lt;/div&gt;
  8134. &lt;/div&gt;
  8135. &lt;div style=&quot;text-align: justify;&quot;&gt;
  8136. &lt;table cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; class=&quot;tr-caption-container&quot; style=&quot;margin-left: auto; margin-right: auto; text-align: center;&quot;&gt;&lt;tbody&gt;
  8137. &lt;tr&gt;&lt;td style=&quot;text-align: center;&quot;&gt;&lt;a href=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhh3lrL-jkM0w7MH2xEkZ6NxwhcgeIbaeapudDGsmu6ELCgaugfBtWvordIrUSztXV0o-J3TM5fUShpih9rQe6i7tmHxFR_rc-1G1zsW8BG2dxAZaGax_Z2bH2qUG_2Yr0nZkYI4A/s1600/126.42tyr701svg.png&quot; imageanchor=&quot;1&quot; style=&quot;clear: left; margin-bottom: 1em; margin-left: auto; margin-right: auto;&quot;&gt;&lt;img border=&quot;0&quot; height=&quot;146&quot; src=&quot;https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhh3lrL-jkM0w7MH2xEkZ6NxwhcgeIbaeapudDGsmu6ELCgaugfBtWvordIrUSztXV0o-J3TM5fUShpih9rQe6i7tmHxFR_rc-1G1zsW8BG2dxAZaGax_Z2bH2qUG_2Yr0nZkYI4A/s200/126.42tyr701svg.png&quot; width=&quot;200&quot; /&gt;&lt;/a&gt;&lt;/td&gt;&lt;/tr&gt;
  8138. &lt;tr&gt;&lt;td class=&quot;tr-caption&quot; style=&quot;text-align: center;&quot;&gt;antigen-driven&amp;nbsp;&lt;a href=&quot;https://picasaweb.google.com/lh/photo/H65r-5m1RGUgDaNZV9qSuNMTjNZETYmyPJy0liipFm0?feat=directlink&quot; target=&quot;_blank&quot; title=&quot;when things go wrong&quot;&gt;proinflammatory&lt;/a&gt; immune responses in &#39;&lt;a href=&quot;http://lnwme.blogspot.com/2005/12/cult-of-dead-cow-revisited.html&quot; title=&quot;Immune Responses Induced in Cattle by Vaccination with a Recombinant Adenovirus Expressing Mycobacterial Antigen 85A and Mycobacterium bovis BCG.&quot;&gt;addition&lt;/a&gt;&#39; contribute to: &lt;a href=&quot;http://lnwme.blogspot.com/2010/09/forms-of-heparin-binding-epidermal.html&quot;&gt;&lt;img alt=&quot;science has forced me to engineer medical attention 4  &amp;quot;idiotypic vaccines &amp;amp; humanized methods&quot; src=&quot;http://scq.ubc.ca/sciencescouts/42medical.jpg&quot; style=&quot;border: 0px solid; height: 17px; width: 17px;&quot; title=&quot;science has forced me to engineer medical attention 4  &amp;quot;idiotypic vaccines &amp;amp; other humanized methods&quot; /&gt;&lt;/a&gt;&lt;a href=&quot;http://lnwme.blogspot.com/2010/09/forms-of-heparin-binding-epidermal.html&quot;&gt;&lt;/a&gt;&lt;/td&gt;&lt;/tr&gt;
  8139. &lt;/tbody&gt;&lt;/table&gt;
  8140. &lt;/div&gt;
  8141. &lt;/div&gt;&lt;div class=&quot;blogger-post-footer&quot;&gt;&lt;script type=&quot;text/javascript&quot;&gt;&lt;!--
  8142. google_ad_client=&quot;pub-9610428118332343&quot;;
  8143. google_ad_host=&quot;&quot;;
  8144. google_ad_width=200;
  8145. google_ad_height=90;
  8146. google_ad_format=&quot;728x15_0ads_al_s&quot;;
  8147. google_color_border=&quot;EEEECC&quot;;
  8148. google_color_bg=&quot;EEEECC&quot;;
  8149. google_color_link=&quot;445566&quot;;
  8150. google_color_url=&quot;445566&quot;;
  8151. google_color_text=&quot;333333&quot;;
  8152. //--&gt;&lt;/script&gt;
  8153. &lt;script type=&quot;text/javascript&quot;
  8154.  src=&quot;http://pagead2.googlesyndication.com/pagead/show_ads.js&quot;&gt;
  8155. &lt;/script&gt;&lt;/div&gt;</description><link>http://lnwme.blogspot.com/2011/11/stat1-signal-transducer-and-activator.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg6rZyJxL732BdNhc3Z7bYy-6T20Mm_EWSwKiOKmdsOsAcKKBFWDzrlBXEtrQQPyCp7uvWsHC5UpuIGuMFgxdIIlvASkHloKh53Gc_OzrVfztZ2s8InVHTED5yFdimP8dp7AuEi5Q/s72-c/1bf5+aligned+1yvl-svg-png%252Cpng.png" height="72" width="72"/><thr:total>1</thr:total></item></channel></rss>
Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda