This feed does not validate.
... 72" width="72"/><thr:total>0</thr:total><georss:featurename>15-167 Puni ...
^
... 32298 -154.89044666290283</georss:point><georss:box>19.5530975761323 -15 ...
^
In addition, interoperability with the widest range of feed readers could be improved by implementing the following recommendations.
<?xml version='1.0' encoding='UTF-8'?><rss xmlns:atom="http://www.w3.org/200 ...
^
<?xml version='1.0' encoding='UTF-8'?><rss xmlns:atom="http://www.w3.org/200 ...
^
line 277, column 0: (9 occurrences) [help]
<a href="https://www.blogger.com/blogger.g?blogID=14256471" ima ...
line 277, column 0: (50 occurrences) [help]
<a href="https://www.blogger.com/blogger.g?blogID=14256471" ima ...
line 6721, column 0: (103 occurrences) [help]
<span style="font-size: small;"><span data-mce-style=&quo ...
line 6917, column 0: (3 occurrences) [help]
Charter',Times,serif;" style="color: #333333; font-f ...
<tr><td style="text-align: center;"><a data-mce-hre ...
<tr><td class="tr-caption" style="text-align: center ...
... th="72"/><thr:total>1</thr:total></item></channel></rss>
^
<?xml version='1.0' encoding='UTF-8'?><rss xmlns:atom="http://www.w3.org/2005/Atom" xmlns:openSearch="http://a9.com/-/spec/opensearchrss/1.0/" xmlns:blogger="http://schemas.google.com/blogger/2008" xmlns:georss="http://www.georss.org/georss" xmlns:gd="http://schemas.google.com/g/2005" xmlns:thr="http://purl.org/syndication/thread/1.0" version="2.0"><channel><atom:id>tag:blogger.com,1999:blog-14256471</atom:id><lastBuildDate>Sun, 29 Dec 2024 08:18:19 +0000</lastBuildDate><category>p53</category><category>ECM extracellular matrix</category><category>Cervico-vaginal foetal fibronectin MMP1-2</category><category>Bcl-2</category><category>ZNFN1A1</category><category>PDZ</category><category>TGF-beta</category><category>pkc</category><category>TATA</category><category>BMP</category><category>CD11b</category><category>VSV-G</category><category>GPRs</category><category>NEIGHBOR OF BRCA1 GENE 1</category><category>POU</category><category>lamin</category><category>BCL2</category><category>CDC42</category><category>Ca(2+)</category><category>ERVK6</category><category>TROPO</category><category>Z-disc</category><category>MHC</category><category>Rho</category><category>acyl</category><category>ABI1</category><category>H2O2</category><category>Ribosomal protein S6</category><category>VP-16</category><category>p21ras</category><category>14-3-3</category><category>BTB</category><category>COPI</category><category>GABAergicAB</category><category>V(D)J</category><category>hnRPN</category><category>nmda</category><category>Arabidopsis</category><category>GH</category><category>GST glutathione</category><category>NADP</category><category>NFKB</category><category>SH3</category><category>beta2</category><category>dynein</category><category>pka</category><category>COP9</category><category>CpG island</category><category>ENO1</category><category>FUGU</category><category>GATA-1</category><category>IRE-BP</category><category>SNARE</category><category>TFIID</category><category>TXN</category><category>UO</category><category>WDR1</category><category>amyloid</category><category>caspase</category><category>microRNA</category><category>p300</category><category>ppar</category><category>ptk</category><category>CCR5</category><category>K-ras</category><category>MK-801</category><category>MYC</category><category>Mabs</category><category>RSS type H3</category><category>Rho kinase</category><category>TLR</category><category>TRANSFORMATION-RELATED PROTEIN 53 TRP53</category><category>citrate</category><category>phases S</category><category>syndecan-1</category><category>zbtb24</category><category>APC</category><category>Arp2/3</category><category>B23</category><category>CAG</category><category>CD45</category><category>CREB</category><category>Ferroportin</category><category>GOLGA2LY2</category><category>GSH glutathione</category><category>GnRH</category><category>H1</category><category>Hoxb</category><category>Janus</category><category>Kv1</category><category>O157:H7</category><category>Pima</category><category>SLCO1B1</category><category>SLCO6A1</category><category>VEGF</category><category>Xq13</category><category>e3B1</category><category>mRNPs</category><category>mapk</category><category>metallothionein</category><category>pusedopolio</category><category>ARNT</category><category>ART</category><category>BACH1</category><category>BCR</category><category>BDNF</category><category>Ca2+</category><category>FK506</category><category>HIF1</category><category>IDDM/VEP</category><category>IFNG</category><category>IgG</category><category>MDM2</category><category>NADPH</category><category>O1</category><category>PI3K</category><category>Protein-A</category><category>PtdIns</category><category>SLC40A1</category><category>Slc11a1</category><category>T3</category><category>TBP</category><category>TXNRD1</category><category>ggt</category><category>nucleotide 308</category><category>ssh unit</category><category>substance P</category><category>tyrosine hydroxylase</category><category>zymogen</category><category>5HT1</category><category>AMP</category><category>Autoantigens</category><category>Catalase</category><category>Cyclin T1/CDK9</category><category>DFKZp</category><category>GPCR</category><category>GPI</category><category>GSK3 beta</category><category>HLA-DQA</category><category>IgA</category><category>K+</category><category>MoAb</category><category>Myosin</category><category>PT</category><category>QTL</category><category>SOD1</category><category>SSCP</category><category>UDP</category><category>agouti</category><category>anthrax</category><category>chronome</category><category>epistatic</category><category>forskolin</category><category>laminin</category><category>pgr1</category><category>pol</category><category>rs1801282</category><category>sp1</category><category>theta</category><category>AP-1</category><category>BBB</category><category>BTK</category><category>CDK</category><category>CNC</category><category>COP1</category><category>CYP2B6</category><category>ERCC</category><category>G0 phase</category><category>G2</category><category>GLI3/ssh</category><category>HIV1</category><category>HLA-DR</category><category>HMG box</category><category>HMG1</category><category>HPRD</category><category>HSP90</category><category>IL6</category><category>Kir2.1</category><category>MC4R</category><category>MERLIN</category><category>MRE11</category><category>P450</category><category>PHD (plant homology domain)</category><category>PSMA</category><category>PWM pokeweed mitogen</category><category>Serial Endosymbiosis Theory</category><category>TGFB</category><category>TRX</category><category>TTTY testis-specific transcript</category><category>World Bank</category><category>capsase</category><category>chicken embryo</category><category>connexin</category><category>cytochrome b</category><category>ferrodoxin</category><category>gp160</category><category>morphogenesis</category><category>p120 GAP</category><category>phiX174</category><category>polymerase chain reaction</category><category>zero-sum</category><category>ASK1</category><category>ATRIP-RPA-ssDNA</category><category>B12</category><category>CART</category><category>CD4</category><category>CDC2</category><category>ERV</category><category>Epo</category><category>G6PD</category><category>Heterodimerize</category><category>IL1</category><category>IMP</category><category>IRE1</category><category>KDEL</category><category>KIAA0067</category><category>KLK2 kallikrein 2</category><category>LEF1</category><category>MAGUK</category><category>MAPT</category><category>MDR1 (multidrug resistance)</category><category>MID1</category><category>MK-167</category><category>MPP</category><category>NQO</category><category>NRF2</category><category>NS3</category><category>PCNA</category><category>RuBisCO</category><category>S100A6</category><category>SLC11A2</category><category>SLC18A2</category><category>SLC1A2</category><category>SLC25A4</category><category>SRrp508</category><category>SSCP single-stranded conformation polymorphism</category><category>Sec14p</category><category>Sec18p</category><category>TFR</category><category>TSP1</category><category>Tyr20</category><category>UGA</category><category>VAV</category><category>VGP</category><category>VMAT2</category><category>VSG</category><category>Van der Waal's</category><category>XRCC</category><category>base excision repair (BER)</category><category>brain natriuretic peptide (BNP)</category><category>case-control study</category><category>curcumin</category><category>cytochrome c</category><category>glycoprotein</category><category>miR-122 promoter</category><category>nephrin gene</category><category>phosphatidylinositol</category><category>tartrate</category><category>torpedo</category><category>variable (V)</category><category>1</category><category>ABC</category><category>ALPP</category><category>AMELX</category><category>ANOVA</category><category>BDNF (V66M)</category><category>BTC</category><category>CA1</category><category>CCL5</category><category>CCND</category><category>CXCL1</category><category>ESR1</category><category>Fibrillin</category><category>HEK-293</category><category>HRAS</category><category>HSPGS</category><category>HTT</category><category>IGH</category><category>KLF2</category><category>LIG4 SYNDROME</category><category>Lunatic fringe</category><category>MAP3K11</category><category>MLH1</category><category>MT state</category><category>NBR1</category><category>NF1</category><category>NFE2</category><category>NK4</category><category>Oct-4</category><category>PAX-6</category><category>PLA2</category><category>POL IOTA</category><category>S. pombe</category><category>SLC25A5</category><category>SLC31A1</category><category>STP1</category><category>Spy</category><category>TCR</category><category>TNFS</category><category>TRF</category><category>TTN</category><category>YWHAZ</category><category>YY1</category><category>axis type I -II hypothesis</category><category>catecholamine</category><category>chi square</category><category>coitus interruptus COI</category><category>cytokenesis</category><category>dyad</category><category>glutamate side chain</category><category>neanderthalensis</category><category>pg</category><category>25D(3)</category><category>508</category><category>ACCEPTOR 1</category><category>AMPA</category><category>ANT</category><category>APOB</category><category>Artemis</category><category>Aspergillus niger</category><category>BCM</category><category>C reactive protein (CRP)</category><category>C-X-C</category><category>C. elegans</category><category>CDH1</category><category>CFP</category><category>CMV</category><category>COL2A1</category><category>COX-2</category><category>COX2</category><category>Caveman</category><category>CpG MTase</category><category>DA-1</category><category>DBH</category><category>DDR low-carb</category><category>DSB</category><category>ERK1</category><category>EST</category><category>Emiliania Huxleyi</category><category>GDNF</category><category>GIT1</category><category>GRB10</category><category>IGFBP3</category><category>IL3</category><category>IL5</category><category>IL8</category><category>IPA</category><category>IRP</category><category>ITGA</category><category>ITO/IPA</category><category>ITPR1</category><category>Intrachromosomal epistasis</category><category>MDMX</category><category>MEN2B</category><category>Multipoint AT theta</category><category>NEMO</category><category>NR3C2</category><category>Neural Computation</category><category>Ondine Curse</category><category>PAF</category><category>PGN</category><category>PHD-type</category><category>PSA-LM</category><category>Pol eta</category><category>RPS6</category><category>SACM1L</category><category>SCN9A</category><category>SLC19A2</category><category>SLC25A12</category><category>SLC2A4</category><category>SLC38A3</category><category>SLC6A4</category><category>SLE</category><category>SLY1</category><category>SULT1A1</category><category>T200</category><category>T4</category><category>TTAGGG</category><category>U937</category><category>UGT1A1</category><category>UPD</category><category>USF2</category><category>USH</category><category>Viscum album</category><category>WISP</category><category>[protection of telomeres 1] POT1</category><category>amylin</category><category>beta3</category><category>cAMP</category><category>cI protein</category><category>caffeine</category><category>cdt1</category><category>chaperonin</category><category>chimera</category><category>epigallocatechin</category><category>epigenetic</category><category>genetic interaction</category><category>gp45</category><category>hERbeta</category><category>micro villi</category><category>neologism</category><category>nucleotide excision repair (NER)</category><category>peroxiredoxin</category><category>polymorphisms</category><category>relative risk (RR)</category><category>self-notself</category><category>steroid X receptor</category><category>sticky wicket</category><category>trithorax-related protein</category><category>video-game</category><category>Экстраюмор</category><category>(TTAGGG)12</category><category>13 polymorphisms</category><category>13 polymorphisms</category><category>1q31</category><category>47 XXY</category><category>5=HT1</category><category>ABT 200</category><category>AGT</category><category>AHS</category><category>AIDS/HIV</category><category>ANP</category><category>ARF</category><category>ARTN</category><category>ATR</category><category>BRD8</category><category>Best disease</category><category>Big Blue</category><category>CA125</category><category>CACNA1G</category><category>CD34</category><category>CD36</category><category>CDPX2</category><category>CFTR</category><category>CSF2</category><category>CTGF</category><category>D10Mit148</category><category>D8Mit113</category><category>D8Mit85</category><category>DNA fingerprinting</category><category>DSS</category><category>E26</category><category>ERP</category><category>European Russia</category><category>FAD</category><category>Fhit</category><category>G</category><category>G-CSF</category><category>GALT</category><category>GCG</category><category>GCNF</category><category>GFP</category><category>GLO1</category><category>GOS</category><category>GRX-glutaredoxin</category><category>GSR</category><category>GSTT1</category><category>GZMA</category><category>Galphaq</category><category>Geminin</category><category>HERV</category><category>HFE4</category><category>HLAHLA-DQA</category><category>HPRT</category><category>HSL</category><category>IAP intracisternal A-particle</category><category>IDN</category><category>IGEM</category><category>IQ motif</category><category>IQ motifs</category><category>ITO</category><category>Inositol</category><category>KG-1</category><category>KIAA0434</category><category>KIAA1407</category><category>Kunitz-type genes</category><category>Ligation-mediated PCR</category><category>MAGI2</category><category>MARVEL</category><category>MDS Miller-Dieker syndrome</category><category>MIB1</category><category>MTHFR</category><category>Methadone</category><category>Mitf</category><category>NCAM</category><category>NCBI</category><category>NCK-associated protein 1</category><category>NOGO</category><category>NUCKS</category><category>OCD</category><category>ODC</category><category>OPN</category><category>OSCAR</category><category>OT system</category><category>OTC</category><category>P2Y</category><category>PCR/SSCP</category><category>PEVK</category><category>PFC</category><category>PGR153</category><category>PHGDH</category><category>POLQ</category><category>PRSS1</category><category>PSMC</category><category>PSMD1</category><category>PSMD6</category><category>PTTG1</category><category>PZ</category><category>Pdgfra</category><category>RAD30</category><category>RANTES</category><category>RET</category><category>RIIID</category><category>RSS</category><category>RTN4R</category><category>Rho kinase MDS stop</category><category>RhoA-19N</category><category>S. cerevisiae</category><category>SAC1</category><category>SET domain</category><category>SFRS1</category><category>SLC17A4</category><category>SLC25A16 in autism</category><category>SLC25A21</category><category>SLC27A5</category><category>SMS</category><category>SNM</category><category>SSC [Shamanic State of Consciousness]</category><category>STK-4</category><category>Self/Nonself</category><category>Swiss Cheese</category><category>TCF</category><category>TEM-8</category><category>TERF1</category><category>TNF308</category><category>TNM</category><category>TNSF</category><category>TRIO</category><category>TU 502</category><category>TrkB</category><category>Trotskyism</category><category>V-ERB-A</category><category>VDCC</category><category>VHL</category><category>WARS</category><category>WWP1</category><category>ZFPM1</category><category>ZO-1</category><category>antithrombin III</category><category>autophosphorylate</category><category>behavior order modifier BDM</category><category>betaAR</category><category>cathepsin B</category><category>classcal</category><category>cysteinyl leukotriene receptors</category><category>dNTP and 2'- 3'-ddNTP</category><category>eigen</category><category>env</category><category>fuzzy logic</category><category>g3p</category><category>glutathione-GSH</category><category>macropain</category><category>mitofusin</category><category>molecule (iv) and (nt)</category><category>murimac</category><category>octamer</category><category>p16INK4a</category><category>p73</category><category>photonic devices</category><category>phylogenic</category><category>proliferating cell nuclear antigen</category><category>reverse transcription</category><category>rs6784095</category><category>seven domains of the (ISC)2 SSCP</category><category>short tandem repeat</category><category>slc4a1</category><category>snaps</category><category>tetraspanin</category><category>tpi</category><category>tryptophan hydroxylase</category><category>valence</category><category>variable region (Vh)</category><category>vertical growth phase (VGP)</category><category>xxx</category><category>yin-yang model</category><category>(GST)/GABARAP</category><category>(GSTT1)</category><category>(Y20TRF23)</category><category>1 2 3-bpg</category><category>13-4-4</category><category>188</category><category>2-aminoadipic acid (AAA)</category><category>3pg</category><category>47</category><category>677CT</category><category>A</category><category>ACY1</category><category>AHSA1</category><category>AID</category><category>AMPD</category><category>AMV</category><category>APEH</category><category>APOBEC3G</category><category>ASPM</category><category>AT</category><category>ATR [?]</category><category>Ameliorate</category><category>AnPRT</category><category>Axin</category><category>BAFF</category><category>BCDO</category><category>BFP</category><category>BH3</category><category>BR3</category><category>BSN</category><category>Balbiani ring 3</category><category>C-terminal extension (CTE)</category><category>C. albicans</category><category>CA150</category><category>CALLA</category><category>CATCH 22</category><category>CAZ</category><category>CCA</category><category>CCHF</category><category>CD54</category><category>CHILD</category><category>CHML</category><category>COI gene</category><category>COS7</category><category>CTF7</category><category>CTLA-4</category><category>Chondrodysplasia punctata (CPD)</category><category>D2</category><category>DAT</category><category>DHAP</category><category>DNMT3B</category><category>DXS1047</category><category>Dark Site</category><category>Dresden</category><category>EAAT2</category><category>EORTC</category><category>ERG</category><category>ESCO1</category><category>European Transition Project</category><category>F(ab)2</category><category>F8A1</category><category>FKHR</category><category>FLIP</category><category>FOG</category><category>Fascin1</category><category>Fenton reaction</category><category>GABARAP</category><category>GABRQ gamma-aminobutyric acid</category><category>GABT</category><category>GCCR-PHA</category><category>GMCSF</category><category>GST3</category><category>Glg1</category><category>HAAO</category><category>HBB</category><category>HES</category><category>HOMO/LUMO</category><category>HP1 defensin</category><category>IFCC</category><category>IGHJ</category><category>INTERLEUKIN 12</category><category>ITI</category><category>KIAA0999</category><category>KIAA1677</category><category>L-dopa</category><category>LAT</category><category>LFNG</category><category>LIMD1</category><category>LIMK1</category><category>LIPE</category><category>LTP</category><category>LY294002</category><category>LYT10</category><category>MAG</category><category>MAXENT</category><category>MCM</category><category>MCM2-7</category><category>MFP</category><category>MFS</category><category>MICE</category><category>MIRN</category><category>MLR</category><category>MME</category><category>MMSET</category><category>MP</category><category>MPZ</category><category>MSF</category><category>MSN</category><category>Microcephalin</category><category>NAHR</category><category>NEP</category><category>NRTK</category><category>NURD</category><category>NcoI</category><category>Ngn2</category><category>O-chi-1</category><category>ODR</category><category>OMPG</category><category>ORC</category><category>ORCCs</category><category>Octet</category><category>Omenn syndrome</category><category>P453T</category><category>P50RhoGAP</category><category>PBL-SCID</category><category>PCLO</category><category>PCR</category><category>PETC</category><category>PHM</category><category>PKR</category><category>PLIN</category><category>PO protein</category><category>POH</category><category>PRKAA1</category><category>PRKCL1</category><category>PSA</category><category>PSI</category><category>PSP-I/PSP-II</category><category>PSYOP</category><category>PTS</category><category>PWM</category><category>Phosphoramidon</category><category>Plb2p</category><category>R39C</category><category>RAB</category><category>RANKL</category><category>RASA</category><category>RNR-Ribonucleotide reductase</category><category>RPE^%</category><category>RRS</category><category>RSD1 (recessive suppressor of secretory defect) protein</category><category>RSTS</category><category>Rnomics</category><category>RushIT KIDS</category><category>S12</category><category>SCCP</category><category>SCID</category><category>SCR</category><category>SERT</category><category>SETDB1</category><category>SFO subfornical organ</category><category>SHGC-34099</category><category>SLC12A9</category><category>SLC38A4</category><category>SLSLC25A16 in autism</category><category>SPTLC1</category><category>SULF1</category><category>Secys- selenocysteine</category><category>Stalinist purge</category><category>T</category><category>T7</category><category>TAT</category><category>TBARS</category><category>TGN</category><category>TGR-selenodiglutathione reductase</category><category>TJP</category><category>TSR</category><category>TT</category><category>TTV</category><category>TWEAK</category><category>TcpA</category><category>Triosephosphate isomerase</category><category>Tyrosyl-tRNA</category><category>UGT</category><category>V44M</category><category>VDAC</category><category>VDT</category><category>VGT</category><category>VLCFA</category><category>VNTR</category><category>VRS Virchow-Robin spaces</category><category>Vpr</category><category>WAIS-R</category><category>WASP</category><category>WBBLL</category><category>Wim van Eck</category><category>XIAP</category><category>XPG</category><category>XXY</category><category>ZP2</category><category>ZPZ</category><category>aaRS</category><category>adPOE</category><category>and C complex</category><category>and M</category><category>anthranilate</category><category>anti-TRF1</category><category>asperigellez</category><category>atp</category><category>beta-globin</category><category>blood brain barrier</category><category>bovine genome</category><category>cgp-3466</category><category>chemokine receptor</category><category>cpn60_TCP1</category><category>cross-linking</category><category>cub</category><category>cubitus interruptus (cI protein)</category><category>cytochrome f</category><category>detective story</category><category>eeg</category><category>embden-meyerhof</category><category>exinct</category><category>exon junction complex</category><category>framework region 3</category><category>gait</category><category>gapc</category><category>gapdh</category><category>gigaxonin</category><category>hBD-1 (BDNF)</category><category>hCSFs</category><category>hGSTO1-1</category><category>hUPC2</category><category>high mobility group</category><category>ibogaine</category><category>karyology</category><category>lasp-1</category><category>mOR-EG</category><category>methylglyoxal</category><category>monomers</category><category>multiple system atrophy (MSA)</category><category>mushroom bodies (MBs)</category><category>nad</category><category>oracle</category><category>oxidized glutathione reductase-GSSG</category><category>p23</category><category>p70S6K</category><category>p85</category><category>pSB1A2</category><category>pd</category><category>pgk</category><category>pimonidazole</category><category>pinyin</category><category>polygenic</category><category>praja-1</category><category>repulsion range</category><category>rhodphsin</category><category>riboflavin</category><category>rp-l13</category><category>runga kutta</category><category>s-nitrosylation</category><category>securin</category><category>serendipitous</category><category>siah1</category><category>slurp</category><category>stdev</category><category>synteny</category><category>teenage suicide</category><category>thiolltransferase-TTase</category><category>thyroxine</category><category>transthyretin</category><category>two-state theory</category><category>universal automaton</category><category>weirdest</category><category>Γkji = Γijk</category><category>ΔΓd/Γd</category><title>VackvSuG</title><description></description><link>http://lnwme.blogspot.com/</link><managingEditor>noreply@blogger.com (mark brenneman)</managingEditor><generator>Blogger</generator><openSearch:totalResults>1075</openSearch:totalResults><openSearch:startIndex>1</openSearch:startIndex><openSearch:itemsPerPage>25</openSearch:itemsPerPage><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-4986984642022292062</guid><pubDate>Sun, 10 Apr 2016 03:24:00 +0000</pubDate><atom:updated>2016-04-18T07:48:17.633-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">DHAP</category><category domain="http://www.blogger.com/atom/ns#">g3p</category><category domain="http://www.blogger.com/atom/ns#">G6PD</category><category domain="http://www.blogger.com/atom/ns#">methylglyoxal</category><category domain="http://www.blogger.com/atom/ns#">tpi</category><category domain="http://www.blogger.com/atom/ns#">Triosephosphate isomerase</category><title>TRIOSEPHOSPHATE ISOMERASE (TPI) A DIMERIC GLYCOLYTIC ENZYME AS A MODEL OF TIM-BARREL ACTIVE-SITE STRUCTURAL AND CHEMICAL ASPECTS IN THE MONOMER LOOP REGION'S REVERSIBLE CATALYTIC REACTION.</title><description><div align="justify" style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in; text-align: justify;">
Triosephosphate
isomerase (TPI, EC <a href="http://www.ncbi.nlm.nih.gov/pubmed?cmd=PureSearch&amp;term=5.3.1.1[EC%2FRN%20Number]">5.3.1.1</a>)
(§,
<a href="http://www.ihop-net.org/UniPub/iHOP/gs/92808.html?ID=88530" target="_blank">‡</a>) is essential to glycolysis, catalyzes the fifth step in the
glycolysis pathway the reversible conversion of dihydroxyacetone
phosphate (DHAP) into glyceraldehyde-3-phosphate. TPI is a homodimer
formed by two identical dimeric molecules of a single structural
locus : <a href="http://www.ncbi.nlm.nih.gov/protein/P60174">12p13.31</a>.
TPI has only 1 functional gene with a molecular mass of 29 kDa, that
after refinement are products of a distinct <a href="http://www.ncbi.nlm.nih.gov/pubmed/2550787">single</a>
structural locus. The variant phenotype of identical subunits are
expressed in both red cells and circulating <a href="http://www.ncbi.nlm.nih.gov/pubmed/7294020">lymphocytes</a>,
catalyzing the interconversion of one of the two products breakdown
by <a href="http://www.ncbi.nlm.nih.gov/pubmed/14762718">reversible</a>
conversion. The TPI substrate by <a href="http://www.ncbi.nlm.nih.gov/pubmed/23909928">deprotonation</a>
the transition state reaction of dihydroxyacetone phosphate (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17424909">DHAP</a>)
substrate yields one product of the glycolytic pathway, is a <a href="http://www.ncbi.nlm.nih.gov/pubmed/17444661">trend</a>*
(Kcat) that persists creating the initial complex
microcompartmentation of TPI to give (<a href="http://www.ncbi.nlm.nih.gov/pubmed/3365378/">G3P</a>)
glyceraldehyde-3-phosphate which seems to be the <a href="http://www.ncbi.nlm.nih.gov/pubmed/26570983">isomerase</a>*
activity, release is slower than its conversion to DHAP in normal
and TPI deficient cells. <a href="http://www.ncbi.nlm.nih.gov/pubmed/21839742">TIM</a>
with its natural substrates has <a href="http://www.ncbi.nlm.nih.gov/pubmed/25383217">not
been</a>
(<a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207401/#sec2title">•</a>)
crystalized<a href="http://www.ncbi.nlm.nih.gov/pubmed/16503298">**</a>.
TPI is a dimeric enzyme and contains 7 exons interrupted by six
introns.</div>
<blockquote>
<br /></blockquote>
<div align="justify" style="line-height: 100%; margin-bottom: 0in;">
</div>
<blockquote>
<div align="justify" style="line-height: 100%; margin-bottom: 0in;">
<a href="https://picasaweb.google.com/lh/photo/JEoq9MsxeOqtrOfy-5SKhke5AaBNy2u1ktIcw5STY3E?feat=directlink">
<img align="left" alt="monomers" border="0" height="145" name="Image3" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhQnTjh7TAPVthBESca2aLu-yHyJDLLZFWZ-XB92XIupzA2PKw6m0b3M3cBsRDfWBm7ackpLz_AjeXPBjwN_onfxg_EPGGShYaOgdwW4ZskQpBo1zXZRJju008orCctYthH7DsCfw/s800-Ic42/image7.png" width="238" />
</a>
The crystallographic structure of (HsTPI) human triosephosphate
isomerase PDB:1HTI is one dimer per asymmetric unit subunit 1 and
subunit 2 are in the open and closed conformations in the
3-dimensional asymmetric space group P 2(1) which is specific to the
Monoclinic with minimization on the entire structure in the presence
of substrate analogues and its surrounding residues supporting
possible regions targeted for drug design.
</div>
<div align="justify" style="line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;">
<br /></div>
</blockquote>
<div align="justify" style="line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;">
<br /></div>
<div align="justify" style="line-height: 100%; margin-bottom: 0in;">
TPI
deficiency (TPID) a disorder of glycolysis, occurring in haplotypes
of specific alleles heterogeneous to clinical <a href="http://www.ncbi.nlm.nih.gov/pubmed/2876430">TPI</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/8503454">deficiency</a>,
with a rare homozygous <a href="http://www.ncbi.nlm.nih.gov/pubmed/9338582">deficiency</a>
the resulting <a href="http://www.ncbi.nlm.nih.gov/pubmed/12023819">genetic</a>
defect is the cause of a null variant incompatible with <a href="http://www.ncbi.nlm.nih.gov/pubmed/7628118">life</a>
by abnormally high <a href="http://www.ncbi.nlm.nih.gov/pubmed/14559119">levels</a>
of <a href="http://www.ncbi.nlm.nih.gov/pubmed/12509510">DHAP</a>
which degrades spontaneously into the toxic (<a href="http://www.ncbi.nlm.nih.gov/pubmed/22902706">MG</a>)
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19786097">methylglyoxal</a>,
due to <a href="http://www.ncbi.nlm.nih.gov/pubmed/22574817">deamidation</a>
of asparagine (Asn<a href="http://www.ncbi.nlm.nih.gov/pubmed/3740839">15-71</a>)
to <a href="http://www.ncbi.nlm.nih.gov/pubmed/25884638">form</a>
aspartic and glutamic acid. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19686666">Loop
6</a>
plays a role in preventing the breakdown yield of <a href="http://www.ncbi.nlm.nih.gov/pubmed/22813930">methylglyoxal</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/12454456">fMG</a>)
one of the of the three products of enzyme-bound enediol(ate)
<a href="http://www.ncbi.nlm.nih.gov/pubmed/14563846">phosphate</a>,
towards <a href="http://www.ncbi.nlm.nih.gov/pubmed/15166315">elimination</a>
of (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19348462">fMG</a>)
inorganic phosphate. TPI deficiency is due to the common aberrant
dimerization (or the dissociation into inactive monomers) of mutation
TPI <a href="http://www.ncbi.nlm.nih.gov/pubmed/18510744">1591C</a>,
encoding a Glu<a href="http://www.ncbi.nlm.nih.gov/pubmed/8931952">104</a>-to-Asp
(glutamate-to-aspartate) substitution in the TPI <a href="http://www.ncbi.nlm.nih.gov/pubmed/17183658">variant</a>
found in cases of hemolytic anemia <a href="http://www.ncbi.nlm.nih.gov/pubmed/16086671">coupled</a>
with <a href="http://www.ncbi.nlm.nih.gov/pubmed/9871806">neurodegeneration</a>,
the Glu<a href="http://www.ncbi.nlm.nih.gov/pubmed/10916682">104</a>-to-Asp
substitution is the most <a href="http://www.ncbi.nlm.nih.gov/pubmed/20374271">common</a>
disease allele inherited, when compared to wild-type TPI's <a href="http://www.ncbi.nlm.nih.gov/pubmed/8745400">three</a>
(residues from the same <a href="http://www.ncbi.nlm.nih.gov/pubmed/20694739">subunit</a>)
similar but not identical interactions between the inhibitor and
catalytic residues, Glu <a href="http://www.ncbi.nlm.nih.gov/pubmed/23560625">167</a>
(or <a href="http://www.ncbi.nlm.nih.gov/pubmed/21671330">165</a>)
forms a stable dimer and provides the <a href="http://www.ncbi.nlm.nih.gov/pubmed/21633986">rationale</a>
for production of structurally normal enzyme in humans, the E<a href="http://www.ncbi.nlm.nih.gov/pubmed/23966267">104</a>D
mutation, provides the <a href="http://www.ncbi.nlm.nih.gov/pubmed/26870617">amyloid-resistant</a>
structure of human triosephosphate isomerase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/18562316">HsTPI</a>).
<a href="http://www.ncbi.nlm.nih.gov/pubmed/24056040">Water</a>-protein
molecules <a href="http://www.ncbi.nlm.nih.gov/pubmed/18562316">join</a>
two catalytically active monomers which is only in its dimeric form,
as <a href="http://www.ncbi.nlm.nih.gov/pubmed/24564410">monomers</a>
of TIM are not functional. Within a hydrophobic catalytic <a href="http://www.ncbi.nlm.nih.gov/pubmed/10916682">pocket</a>
of the native enzymes the binding and catalysis of TPIs in
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10655478">hemolysates</a>,
bind to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/9850739">red
cell</a>
membrane. Molecular modeling using the human crystal structure of
<a href="http://www.ncbi.nlm.nih.gov/pubmed/23023928">TPI</a>
was performed to determine how these mutations could affect enzyme
structure and function. The Amyloid <a href="http://www.ncbi.nlm.nih.gov/pubmed/26870617">secondary</a>
structure autoepitopes <a href="http://www.ncbi.nlm.nih.gov/pubmed/15146421">antigen</a>-driven
mechanism works toward recovery of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/1849541">anti</a>-triosephosphate
isomerase mutant TPI <a href="http://www.ncbi.nlm.nih.gov/pubmed/12051920">peptide</a>**
antigens. This is the <a href="http://www.ncbi.nlm.nih.gov/pubmed/25092608">scheme</a>
that allows function-enhancing stability most significantly, the
catalysis for deprotonation of DHAP or vice-versa GAP substrates of
the TIM-barrel relative to TPI toward turnover of two-part substrate
glycolaldehyde / phosphite dianion {GA + HPO32* the transition state
for this enolising enzyme substrate pieces.} Km/<a href="http://www.ncbi.nlm.nih.gov/pubmed/17444661">obsd</a>*
group of the whole GAP substrate and <a href="http://www.ncbi.nlm.nih.gov/pubmed/10194358">H95</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/8591044">loop 4</a>)
is also optimal for small mutational changes in or reflects its
compatibility with amino acid residues which stabilizes the
<a href="http://www.ncbi.nlm.nih.gov/pubmed/2204418">enediolate</a>
intermediate (<a href="http://www.ncbi.nlm.nih.gov/pubmed/24825099">GA/HPO</a>)
activity from change in the products <a href="http://www.ncbi.nlm.nih.gov/pubmed/3025454">scheme</a>
(a proton transfer <a href="http://www.ncbi.nlm.nih.gov/pubmed/24699188">mechanism</a>)
<a href="http://www.ncbi.nlm.nih.gov/pubmed/24825099">DHAP/G3P</a>
or interconversion of these intermediates.
</div>
<blockquote class="tr_bq">
<div align="justify" style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<a href="https://picasaweb.google.com/lh/photo/KD_Xyv_CQmi2EFdIbuYC5Ee5AaBNy2u1ktIcw5STY3E?feat=directlink">
<img align="left" alt="dhap-g3p" border="0" height="200" name="Image2" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjkNz7aBSpEHfWJDrJoV-72AdDTVfXhu4RkJQ37gYFPYhH-Ctlu8htO7hPrHABuVauvjR4Bd3SWkd2sbLRq-3F8hEq5ylVMgcTVU0yMqZWitBXauVgr-9__4cBmnNJ6IMXGP-qqWg/s512-Ic42/image6.png" width="200" />
</a>
<br />
<div align="justify" style="line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;">
<br /></div>
Closed (activated for catalysis) of optimal WT (TPI) molecular
modeling PDB 1HTI_B using the human crystal structure of TPI human
triosephosphate isomerase (HsTPI) conformation 1hti_b, calculated to
the incidence residue Water-protein molecules and the protein cage
that interacts within a hydrophobic catalytic pocket isolated and
examined which coded for human triose-phosphate isomerase. [EC:
5.3.1.1]….</blockquote>
<br />
<div align="justify" style="line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;">
<br /></div>
<div style="text-align: justify;">
The
active flexible site loop must <a href="http://www.ncbi.nlm.nih.gov/pubmed/12627960">open</a>
before product <a href="http://www.ncbi.nlm.nih.gov/pubmed/8061610">release</a>,
unliganded in trypanosomal <a href="http://www.ncbi.nlm.nih.gov/pubmed/18298085">Tb</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/21533154">TIM</a>
glycerol phosphate ester to liganded <a href="http://www.ncbi.nlm.nih.gov/pubmed/1880808">Glu167</a>
in the catalytic cycle and the enzymes substrate transition state
between <a href="http://www.ncbi.nlm.nih.gov/pubmed/24318986">open
and closed</a>
to protect the substrate for the turnover of DHAP and G3P (GAP) the
natural substrates, and inhibiting the formation of a <a href="http://www.ncbi.nlm.nih.gov/pubmed/19686666">toxic</a>
by-product in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/2185832">absence</a>
of this equilibration reactions between dihydroxyacetone phosphate
and glyceraldehyde 3-phosphate (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15001364">G3P</a>)
enzymes by mutations that impair biosynthesis transforming competent
cells, in the presence of an <a href="http://www.ncbi.nlm.nih.gov/pubmed/24745552">auxotrophic</a>
effect with these differences generated for an inability of the host
organism to synthesize an <a href="http://www.ncbi.nlm.nih.gov/pubmed/24406631">essential</a>
compound during glycolysis in Tb-TIM. Trypanosomal-TIM is a
glycolytic enzyme essential for the parasite <a href="http://www.ncbi.nlm.nih.gov/pubmed/25829097">survival</a>
that causes <a href="http://www.ncbi.nlm.nih.gov/pubmed/26190635">Chagas</a>*
disease, in this study <a href="http://www.ncbi.nlm.nih.gov/pubmed/19733070">G.
bellum</a>
from the genus related Geraniaceae and its phenolic compound are
leads which generates an unstable <a href="http://www.ncbi.nlm.nih.gov/pubmed/24699188">epimer</a>
of an enzyme <a href="https://www.ncbi.nlm.nih.gov/pubmed/10346950">Geranin</a>
A-containing changes resulting from <a href="http://www.ncbi.nlm.nih.gov/pubmed/17763928">ligand</a>
adducts in the active site to capture in addition a <a href="http://www.ncbi.nlm.nih.gov/pubmed/9556344/">source</a>
of <a href="http://www.ncbi.nlm.nih.gov/pubmed/18757725">frustration</a>
that becomes more favourable. <a href="http://www.ncbi.nlm.nih.gov/pubmed/21939233">Glycolaldehyde</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/23909928">GA</a>)
the simplest sugar-related molecules uptake of a proton by Glu167
preserves the small effect for inhibition by PGA (transition-state
analog) <a href="http://www.ncbi.nlm.nih.gov/pubmed/7599123">relative
to</a>
substrate, G3P produces a triosephosphate isomerase with wild-type
activity, <a href="http://www.ncbi.nlm.nih.gov/pubmed/17336327">loop
6</a>
adopts the "closed" <a href="http://www.ncbi.nlm.nih.gov/pubmed/22409228">desolvated</a>&nbsp;
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/26206330" target="_blank">+</a>) conformation to <a href="http://www.ncbi.nlm.nih.gov/pubmed/20951028">facilitate</a>
completion of catalysis by the formation of the › <a href="http://www.ncbi.nlm.nih.gov/pubmed/20481463">Michaelis-Menten</a>
complex (on the ‹ <a href="http://www.ncbi.nlm.nih.gov/pubmed/16953564/">micros-ms</a>
› time scale) utilization yields further corrected calculations
with corresponding (slower Kcat) <a href="http://www.ncbi.nlm.nih.gov/pubmed/15369325/">motional</a>
rates*
Km. Increase's are discussed in the context of the significance
(Enzyme kinetics\Kcat) and may be estimated where the
'single-substrate' is locked in a protein cage <a href="http://www.ncbi.nlm.nih.gov/pubmed/11419952">probably</a>&nbsp; because of an <a href="http://www.ncbi.nlm.nih.gov/pubmed/21905108">active</a>
reaction site (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12454456">loop
6</a>)
movement to the transition state for deprotonation; which are the
on-average opened (substrate binding and release) and closed
(activated for catalysis) of both monomers optimal WT (wild type) TIM
conformations. <a href="http://www.ncbi.nlm.nih.gov/pubmed/20822141">Lys-12</a>
‹ is expected to interact with both centers, where the enediol
intermediate along with the catalytic <a href="http://www.ncbi.nlm.nih.gov/pubmed/1967829">glutamate</a>
base and <a href="http://www.ncbi.nlm.nih.gov/pubmed/2007138/">histidine-95</a>
the catalytic electrophile stabalizes the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8952501">reversible</a>
reaction intermediate that polarizes the substrate <a href="http://www.ncbi.nlm.nih.gov/pubmed/22409228">DHAP</a>
in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/7869733">Michaelis</a>
complex. Interconversion spans the <a href="http://www.ncbi.nlm.nih.gov/pubmed/12522213">C-terminal</a>
end of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/22615547">eight
β</a>-strands.
For catalysis to occur <a href="http://www.ncbi.nlm.nih.gov/pubmed/7577950">likley</a>
a low pKa value transition from DHAP - for the enolase reaction
enzyme enhancement '<a href="https://www.ncbi.nlm.nih.gov/pubmed/2043623">relative
to</a>
the nonenzymatic reaction - (Bound <a href="http://www.ncbi.nlm.nih.gov/pubmed/20235230">PGH</a>
- phosphoglycolohydroxamate mimics the (closed form) negative
polarization (<a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2253277/#kursula-etal-2001">•</a>)
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8130195">charge</a>••,
while <a href="http://www.ncbi.nlm.nih.gov/pubmed/12522213">PGA</a>
(2-phosphoglycolate) the positively charged residues in the two
active conformation sites.) is similar for the two conformers' in the
<a href="http://www.ncbi.nlm.nih.gov/pubmed/25463631">closed</a>
conformation, on <a href="http://www.ncbi.nlm.nih.gov/pubmed/20694739">ligand</a>
binding interacting with the reactive end's (<a href="http://www.ncbi.nlm.nih.gov/pubmed/26870617">β</a>)
the deprotonated substrate-bound structures to be protonated by a
single-base (Glu-<a href="http://www.ncbi.nlm.nih.gov/pubmed/22583393">165</a>)
proton transfer^ mechanism.</div>
<br />
<blockquote class="tr_bq">
<a href="https://picasaweb.google.com/lh/photo/3XkL_VFNaI1loFdY6MjM9Ue5AaBNy2u1ktIcw5STY3E?feat=directlink">
<img align="left" alt="philo" border="0" height="195" name="Image1" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjv3qKtY5wFOf-aztvA_PqfenzoICK2tSSNgQxmL84TFMfiK4vOdQl4F_NemZBtY15RSqWvpOH-tO6oJvgW4EdpZLkt6lpxasX8GZrTfdYU-ozOf5yWRZq453q3uXpcyBi9HvIQ-g/s512-Ic42/16b.png" width="200" />
</a>
<br />
<div align="justify" style="line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;">
<br /></div>
<div align="justify" style="line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;">
Structure of human triose phosphate isomerase at the positions of
introns in homologous TPI genes from a number of phylogenetically
diverse species. The introns motif are identified as calculated in
phylogeny. <br />
Phylogenetic trees constructed on the basis of
sequence comparisons for triosephosphate isomerases analysis, TIM
sequences were constructed based phylogeny with similarity, to those
adopting the same structural fold of interest from different species
for the taxonomic groups and the K13M mutations involvement in the
<a href="http://www.ncbi.nlm.nih.gov/protein/P60174">human</a>
triosephosphate isomerase gene <a href="http://www.ncbi.nlm.nih.gov/pubmed/11054297" target="_blank">family</a>...
</div>
</blockquote>
<div align="justify" style="line-height: 100%; margin-bottom: 0in; margin-left: 0.49in;">
<br /></div>
<br />
<div style="text-align: justify;">
Interactions
in the loop regions combine the effects of His95 and Lys13 for Glu165
(loop <a href="http://www.ncbi.nlm.nih.gov/pubmed/21553855">4, 1</a>,
and 6) the three crucial catalytic residues in triose phosphate
isomerase, <a href="http://www.ncbi.nlm.nih.gov/pubmed/15840824">all</a>
form the <a href="http://www.ncbi.nlm.nih.gov/pubmed/20481463">enediol</a> intermediate necessary for the interconversion reaction catalyzed by
TIM resulting in the natural substrates G3P formation. The introns
motif are identified as calculated in <a href="http://www.ncbi.nlm.nih.gov/pubmed/9037042">phylogenic
motifs</a>.
Poorly conserved residues as targets for <a href="http://www.ncbi.nlm.nih.gov/pubmed/23894402">specific</a>••
drug design are expected when compared to (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15840824">TPI</a>)
Triosephosphate isomerase (•). Catalytic residues of the
phylogenetic relationship pathways obtained by sequence based methods
of specific key amino acids can than be calculated to the incidence
residues and other TIMs which may influence the (human) HsTPI
equilibrium.
</div>
<br />
<a href="https://www.blogger.com/blogger.g?blogID=14256471" imageanchor="1" style="clear: right; float: right; margin-bottom: 1em; margin-left: 1em;"></a><a href="https://www.blogger.com/blogger.g?blogID=14256471" imageanchor="1" style="clear: right; float: right; margin-bottom: 1em; margin-left: 1em;"></a><a href="https://www.blogger.com/blogger.g?blogID=14256471" imageanchor="1" style="clear: right; float: right; margin-bottom: 1em; margin-left: 1em;"></a><a href="https://www.blogger.com/blogger.g?blogID=14256471" imageanchor="1" style="clear: right; float: right; margin-bottom: 1em; margin-left: 1em;"></a><a href="https://www.blogger.com/blogger.g?blogID=14256471" imageanchor="1" style="clear: right; float: right; margin-bottom: 1em; margin-left: 1em;"></a><a href="https://www.blogger.com/blogger.g?blogID=14256471" imageanchor="1" style="clear: right; float: right; margin-bottom: 1em; margin-left: 1em;"></a><br /><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2016/04/triosephosphate-isomerase-tpi-dimeric.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhQnTjh7TAPVthBESca2aLu-yHyJDLLZFWZ-XB92XIupzA2PKw6m0b3M3cBsRDfWBm7ackpLz_AjeXPBjwN_onfxg_EPGGShYaOgdwW4ZskQpBo1zXZRJju008orCctYthH7DsCfw/s72-c-Ic42/image7.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-7424117003350595023</guid><pubDate>Fri, 20 Nov 2015 17:35:00 +0000</pubDate><atom:updated>2015-11-20T07:39:48.889-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">1 2 3-bpg</category><category domain="http://www.blogger.com/atom/ns#">3pg</category><category domain="http://www.blogger.com/atom/ns#">atp</category><category domain="http://www.blogger.com/atom/ns#">cgp-3466</category><category domain="http://www.blogger.com/atom/ns#">embden-meyerhof</category><category domain="http://www.blogger.com/atom/ns#">g3p</category><category domain="http://www.blogger.com/atom/ns#">gait</category><category domain="http://www.blogger.com/atom/ns#">gapc</category><category domain="http://www.blogger.com/atom/ns#">gapdh</category><category domain="http://www.blogger.com/atom/ns#">nad</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">pgk</category><category domain="http://www.blogger.com/atom/ns#">rp-l13</category><category domain="http://www.blogger.com/atom/ns#">s-nitrosylation</category><category domain="http://www.blogger.com/atom/ns#">siah1</category><category domain="http://www.blogger.com/atom/ns#">tpi</category><title>Non-Phosphorylating And Phosphorylating Oxidoreductase Glyceraldehyde-3-Phosphate Dehydrogenase As Part Of A Structure-Based Design In Glycolysis As The Glycolytic Protein G3PD.</title><description>Glyceraldehyde-3-phosphate
dehydrogenase (EC 1.2.1.12) <a href="http://www.ncbi.nlm.nih.gov/pubmed/15770658">GAPDH</a><span class="sdendnoteanc"><sup>1</sup></span>/G3PD,
is located in band 12p13.31; related to both <a href="http://www.ncbi.nlm.nih.gov/pubmed/23620736">glycolysis</a><span class="sdendnoteanc"><sup>2</sup></span>
and <a href="http://www.ncbi.nlm.nih.gov/biosystems/198814">gluconeogenesis</a>-pathways.
G3PD catalyzes reversible oxidative phosphorylation of inorganic
phosphate and <a href="http://www.ncbi.nlm.nih.gov/pubmed/25176140">nicotinamide</a><span class="sdendnoteanc"><sup>3</sup></span>
adenine dinucleotide (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16510976">NAD</a>)<span class="sdendnoteanc"><sup>4</sup></span>
converting in glycolysis the glycolytic protein <a href="http://www.ncbi.nlm.nih.gov/pubmed/10407139">GAPDH</a><span class="sdendnoteanc"><sup>5</sup></span>
in which adenosine-triphosphate (<a href="http://www.ncbi.nlm.nih.gov/pubmed/6273495">ATP</a>)<span class="sdendnoteanc"><sup>6</sup></span>
is generated when phosphoglycerate kinase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9308888">PGK</a>)<span class="sdendnoteanc"><sup>7</sup></span>
is produced in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8075252">GAPDH</a><span class="sdendnoteanc"><sup>8</sup></span>-catalyzed
reaction. These intermediate metabolites (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19937139">aldolase</a><span class="sdendnoteanc"><sup>9</sup></span>,
triose-<a href="http://www.ncbi.nlm.nih.gov/pubmed/10677844">phosphate</a><span class="sdendnoteanc"><sup>10</sup></span>-isomerase
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/21905108">TPI</a>)<span class="sdendnoteanc"><sup>11</sup></span>)
catalyze the Glycolysis reactions, in the sequence of the ten
enzyme-catalyzed <a href="http://www.ncbi.nlm.nih.gov/pubmed/6460465">Embden</a><span class="sdendnoteanc"><sup>12</sup></span>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/176725">Meyerhof</a><span class="sdendnoteanc"><sup>13</sup></span>
reactions in the metabolic pathway. Converting phosphoglycerate
mutase 1 (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21424281">PGM</a>)<span class="sdendnoteanc"><sup>14</sup></span>
catalyzing the internal steps by <a href="http://www.ncbi.nlm.nih.gov/pubmed/3548716">2,3-BPG</a><span class="sdendnoteanc"><sup>15</sup></span>
phosphatase to form by converting D-glyceraldehyde 3-phosphate (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11205159">G3P</a>)<span class="sdendnoteanc"><sup>16</sup></span>
into 1,3-bisphosphoglycerate (1,3-<a href="http://www.ncbi.nlm.nih.gov/pubmed/20164570">BPG</a>)<span class="sdendnoteanc"><sup>17</sup></span>
from its role as 3-Phosphoglyceric acid (3PG) in glycolysis as the
glycolytic protein <a href="http://www.ncbi.nlm.nih.gov/pubmed/10407139">GAPDH</a><span class="sdendnoteanc"><sup>18</sup></span>
that catalyzes the first step (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19542219">G3P</a><span class="sdendnoteanc"><sup>19</sup></span>
into <a href="http://www.uniprot.org/uniprot/P04406">1,3-BPG</a>) of
the pathway. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16927206">Plant</a><span class="sdendnoteanc"><sup>20</sup></span>
cells contain several reactions of <a href="http://www.ncbi.nlm.nih.gov/pubmed/12885964">photosynthesis</a><span class="sdendnoteanc"><sup>21</sup></span>
participating in glycolysis and the <a href="http://www.ncbi.nlm.nih.gov/pubmed/24282406">Calvin-Benson</a><span class="sdendnoteanc"><sup>22</sup></span>
cycle signaling pathways in plants (cytosolic-<a href="http://www.ncbi.nlm.nih.gov/pubmed/23569110">GAPC</a><span class="sdendnoteanc"><sup>23</sup></span>
(Arabidopsis <a href="http://www.ncbi.nlm.nih.gov/pubmed/23749990">thaliana</a>)<span class="sdendnoteanc"><sup>24</sup></span>
functions in <a href="http://www.ncbi.nlm.nih.gov/pubmed/24282406">plant</a><span class="sdendnoteanc"><sup>25</sup></span>
cells.) its final byproduct is also another Glyceraldehyde-3-P. GAPDH
is a <a href="http://www.ncbi.nlm.nih.gov/pubmed/6498188">band 3</a><span class="sdendnoteanc"><sup>26</sup></span>
protein that associates with the <a href="http://www.ncbi.nlm.nih.gov/pubmed/1590432">cytoplasmic</a><span class="sdendnoteanc"><sup>27</sup></span>
face of human <a href="http://www.ncbi.nlm.nih.gov/pubmed/25196942">erythrocyte</a><span class="sdendnoteanc"><sup>28</sup></span>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/17714694">RBC</a>)<span class="sdendnoteanc"><sup>29</sup></span>
membranes. The cytoplasmic GAPDH exists primarily as a <a href="http://www.ncbi.nlm.nih.gov/pubmed/10677844">tetrameric</a><span class="sdendnoteanc"><sup>30</sup></span>
isoform, 4 identical <a href="http://www.ncbi.nlm.nih.gov/pubmed/19022411">37
kDa</a><span class="sdendnoteanc"><sup>31</sup></span>
subunits. By subcellular translocation <a href="http://www.ncbi.nlm.nih.gov/pubmed/22388977">GAPDH</a><span class="sdendnoteanc"><sup>32</sup></span>
participates in nuclear events [In nuclear membrane the <a href="http://www.ncbi.nlm.nih.gov/pubmed/20727968">vesicular</a>*<span class="sdendnoteanc"><sup>33</sup></span>
tubular cluster <a href="http://www.ncbi.nlm.nih.gov/pubmed/22957700">fractions</a><span class="sdendnoteanc"><sup>34</sup></span>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/15485821">VTC</a>s)<span class="sdendnoteanc"><sup>35</sup></span>
- anterograde transport or <a href="http://www.ncbi.nlm.nih.gov/pubmed/10592347">retrograde</a><span class="sdendnoteanc"><sup>36</sup></span>
membrane transport <a href="http://www.ncbi.nlm.nih.gov/pubmed/11724794">complexes</a><span class="sdendnoteanc"><sup>37</sup></span>
between the intermediates, these are the <a href="http://www.ncbi.nlm.nih.gov/pubmed/14570876">Golgi</a><span class="sdendnoteanc"><sup>38</sup></span>
complex and the endoplasmic reticulum (<a href="http://www.ncbi.nlm.nih.gov/pubmed/18620527">ER</a>)<span class="sdendnoteanc"><sup>39</sup></span>,
in the nucleus a function is lost in disease* that exploits this
process.], this a change to a <a href="http://www.ncbi.nlm.nih.gov/pubmed/12829261">non</a>-cytosolic<span class="sdendnoteanc"><sup>40</sup></span>
localization due to the signal transduction pathways (considering
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9571030">Lm</a><span class="sdendnoteanc"><sup>41</sup></span>GAPG
<a href="http://www.ncbi.nlm.nih.gov/pubmed/7578111">L</a>.<span class="sdendnoteanc"><sup>42</sup></span>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10200252">mexicana</a><span class="sdendnoteanc"><sup>43</sup></span>-like
functions.) involved in <a href="http://www.ncbi.nlm.nih.gov/pubmed/25417112">s-nitrosylase</a><span class="sdendnoteanc"><sup>44</sup></span>
activity that mediates, governed by the equilibrium between four
cysteine residues (<a href="http://www.ncbi.nlm.nih.gov/pubmed/23749990">nitrosylation</a><span class="sdendnoteanc"><sup>45</sup></span>
and denitrosylation <a href="http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=rs3211600#locus">reactions</a>)<span class="sdendnoteanc"><sup>46</sup></span>,
inhibition of GAPDH nuclear translocation, as a <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766228/#B28">basis</a><span class="sdendnoteanc"><sup>47</sup></span>
for its <a href="http://www.ncbi.nlm.nih.gov/pubmed/16510976">multifunctional</a><span class="sdendnoteanc"><sup>48</sup></span>
activities relating to the extraglycolytic functions of GAPDH.
Nuclear <a href="http://www.ncbi.nlm.nih.gov/pubmed/17540167">GAPDH</a><span class="sdendnoteanc"><sup>49</sup></span>
promotes glucose metabolism to <a href="http://www.ncbi.nlm.nih.gov/pubmed/21895736">sustain</a><span class="sdendnoteanc"><sup>50</sup></span>
cellular <a href="http://www.ncbi.nlm.nih.gov/pubmed/2394733">ATP</a><span class="sdendnoteanc"><sup>51</sup></span>
levels, or potentially by inhibiting <a href="http://www.ncbi.nlm.nih.gov/pubmed/18552833">targets</a><span class="sdendnoteanc"><sup>52</sup></span>
of <a href="http://www.ncbi.nlm.nih.gov/pubmed/25391652">p300</a><span class="sdendnoteanc"><sup>53</sup></span>/CBP
such as <a href="http://www.ncbi.nlm.nih.gov/pubmed/19940145">p53</a><span class="sdendnoteanc"><sup>54</sup></span>
dependent phosphorylation. Nitric oxide synthase or neuronal NOS (
involved in cellular and human <a href="http://www.ncbi.nlm.nih.gov/pubmed/19628630">intracellular</a><span class="sdendnoteanc"><sup>55</sup></span>
nuclei <a href="http://www.ncbi.nlm.nih.gov/pubmed/22851448">events</a><span class="sdendnoteanc"><sup>56</sup></span>,
in addition to the cytoplasm) could generate <a href="http://www.ncbi.nlm.nih.gov/pubmed/24362262">nitric
oxide</a><span class="sdendnoteanc"><sup>57</sup></span>
(NO). GAPDH has <a href="http://www.ncbi.nlm.nih.gov/pubmed/17613523">four</a><a href="http://www.ncbi.nlm.nih.gov/pubmed/17613523">
cysteine</a><span class="sdendnoteanc"><sup>58</sup></span>
residues which are associated with S-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15951807">nitrosylation</a><span class="sdendnoteanc"><sup>59</sup></span>-yielding
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18552833">NOS</a><span class="sdendnoteanc"><sup>60</sup></span>-GAPDH
which “recruited” its glycolysis <a href="http://www.ncbi.nlm.nih.gov/pubmed/3170585">subunit</a><span class="sdendnoteanc"><sup>61</sup></span>
from the <a href="http://www.ncbi.nlm.nih.gov/pubmed/24662796">three</a><span class="sdendnoteanc"><sup>63</sup></span>
molecular axes translocation roles (S-<a href="http://www.ncbi.nlm.nih.gov/pubmed/25581756">thiolation</a><span class="sdendnoteanc"><sup>64</sup></span>,
S-nitrosylation or <a href="http://www.ncbi.nlm.nih.gov/pubmed/19837666">aggregated</a><span class="sdendnoteanc"><sup>65</sup></span>
enzymes (Cys-<a href="http://www.ncbi.nlm.nih.gov/pubmed/25196942">152</a><span class="sdendnoteanc"><sup>66</sup></span>
and nearby <a href="http://www.ncbi.nlm.nih.gov/pubmed/24662796">156</a><span class="sdendnoteanc"><sup>67</sup></span>
converted into a '<a href="http://www.ncbi.nlm.nih.gov/pubmed/25086035/">cross-linked</a><span class="sdendnoteanc"><sup>68</sup></span>
soluble' states)), and (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20972425">SNO</a><span class="sdendnoteanc"><sup>69</sup></span>-GAPDH)
nitrosylated <a href="http://www.ncbi.nlm.nih.gov/pubmed/25347796">S-nitrosoglutathione</a><span class="sdendnoteanc"><sup>70</sup></span>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/7573405">GSNO</a>)<span class="sdendnoteanc"><sup>71</sup></span>
the active site cysteine residue in GAPDH at its <a href="http://www.ncbi.nlm.nih.gov/pubmed/16574384">Cys
150</a><span class="sdendnoteanc"><sup>72</sup></span>
residue that binds to Siah1 (seven in absentia homolog 1) acquisition
and the translocation of GAPDH into the nucleus, and denitrosylation
using a combination of approaches, including <a href="http://www.ncbi.nlm.nih.gov/pubmed/22847419">G3P</a><span style="font-family: &quot;liberation&quot; serif , serif;"><span class="sdendnoteanc"><sup>73 </sup></span></span>.
And NADPH may play a role in (VTC) <a href="http://www.ncbi.nlm.nih.gov/pubmed/16492755">vesicle</a><span class="sdendnoteanc"><sup>74</sup></span>
function. The complex would function in the apoptosis <a href="http://www.ncbi.nlm.nih.gov/pubmed/15951807">cascade</a><span class="sdendnoteanc"><sup>75</sup></span>
by its molecules translocation, this <a href="http://www.ncbi.nlm.nih.gov/pubmed/24953302">may</a><span class="sdendnoteanc"><sup>76</sup></span>
depend on lysine <a href="http://www.ncbi.nlm.nih.gov/pubmed/20601085">227</a><span class="sdendnoteanc"><sup>77</sup></span>
in the human <a href="http://www.ncbi.nlm.nih.gov/pubmed/22534308">GAPDH</a><span class="sdendnoteanc"><sup>78</sup></span>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/16633896">Siah</a><span class="sdendnoteanc"><sup>79</sup></span>
interaction to another intracellular <a href="http://www.ncbi.nlm.nih.gov/pubmed/21979951">position</a><span class="sdendnoteanc"><sup>80</sup></span>
induced by <a href="http://www.ncbi.nlm.nih.gov/pubmed/20601085">apoptotic</a><span class="sdendnoteanc"><sup>81</sup></span>
stimuli, augments <a href="http://www.ncbi.nlm.nih.gov/pubmed/25391652">p300</a><span class="sdendnoteanc"><sup>82</sup></span>/CREB
binding protein (CBP)-<a href="http://www.ncbi.nlm.nih.gov/pubmed/19607794">associated</a><span class="sdendnoteanc"><sup>83</sup></span>
acetylation of nuclear proteins. 'Engineering the cofactor
(GAPDH-(Lys) <a href="http://www.ncbi.nlm.nih.gov/pubmed/18552833">K160R</a><span class="sdendnoteanc"><sup>84</sup></span>-K227A)
availability <a href="http://www.ncbi.nlm.nih.gov/pubmed/26022259">prevents</a><span class="sdendnoteanc"><sup>85</sup></span>
activation of p300/CBP that interferes with GAPDH-Siah1
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16391220">binding</a>'<span class="sdendnoteanc"><sup>86</sup></span>-prevents
the ternary (GAPDH-Siah1) complex associations translocation; that
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16510976">CGP-3466</a><span class="sdendnoteanc"><sup>87</sup></span>
can <a href="http://www.ncbi.nlm.nih.gov/pubmed/10617673">reduce</a>
independently with both <a href="http://www.ncbi.nlm.nih.gov/pubmed/12893257">cofactors</a><span class="sdendnoteanc"><sup>88</sup></span>.
Dysregulation of protein S-nitrosylation (S-<a href="http://www.ncbi.nlm.nih.gov/pubmed/20675567">nitrosocysteine</a><span class="sdendnoteanc"><sup>89</sup></span>
- <a href="http://www.ncbi.nlm.nih.gov/pubmed/22771119">247</a>) by
lipopolysaccharide (LPS) is associated with <a href="http://www.ncbi.nlm.nih.gov/pubmed/17072346">pathological</a><span class="sdendnoteanc"><sup>90</sup></span>
conditions which contributes to disease phenotype, where GAPDH
protects ribosomal protein <a href="http://www.uniprot.org/uniprot/P04406#interaction">RP</a><span class="sdendnoteanc"><sup>91</sup></span>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/22771119">L13a</a><span class="sdendnoteanc"><sup>92</sup></span>
from degradation, <a href="http://www.ncbi.nlm.nih.gov/pubmed/23071094">L13a</a><span class="sdendnoteanc"><sup>93</sup></span>
and <a href="http://genome.ucsc.edu/cgi-bin/hgGene?hgg_gene=uc001qop.2&amp;hgg_prot=P04406&amp;hgg_chrom=chr12&amp;hgg_start=6643584&amp;hgg_end=6647537&amp;hgg_type=knownGene&amp;db=hg19&amp;hgsid=438543837_AECMyFtGZFgrGOiB3w6xFsAeYUoL#links">GAPDH</a><span class="sdendnoteanc"><sup>94</sup></span>
forms a functional <a href="http://www.uniprot.org/uniprot/P04406">GAIT</a><span class="sdendnoteanc"><sup>95</sup></span>
complex. One of the functions of GAPDH proteins role in <a href="http://www.ncbi.nlm.nih.gov/pubmed/10740219">glycolysis</a><span class="sdendnoteanc"><sup>96</sup></span>
in relation to <a href="http://www.ncbi.nlm.nih.gov/pubmed/8451199">DNA</a><span class="sdendnoteanc"><sup>97</sup></span>
synthesis is nuclear accumulation associated by the <a href="http://www.ncbi.nlm.nih.gov/pubmed/7540026">NAD</a><span class="sdendnoteanc"><sup>98</sup></span>(+)-dependent
s-<a href="http://www.ncbi.nlm.nih.gov/pubmed/10037463">nitrosylation</a><span class="sdendnoteanc"><sup>99</sup></span>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/1924305">denitrosylation</a><span class="sdendnoteanc"><sup>01</sup></span>
reactions both of these isforms are <a href="http://www.ncbi.nlm.nih.gov/pubmed/12369930">distinct</a><span class="sdendnoteanc"><sup>02</sup></span>
parallel to the uracil DNA glycosylase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9343699">UDG</a>)<span class="sdendnoteanc"><sup>03</sup></span>
gene in <a href="http://www.ncbi.nlm.nih.gov/pubmed/9705330">mitochondria</a><span class="sdendnoteanc"><sup>04</sup></span>
and in the nucleus is N-terminally processed is the 37-kDa <a href="http://www.ncbi.nlm.nih.gov/pubmed/19246543">subunit</a><span class="sdendnoteanc"><sup>05</sup></span>
of the (<a href="http://www.ncbi.nlm.nih.gov/pubmed/3027061">GAPDH</a>)<span class="sdendnoteanc"><sup>06</sup></span>
glyceraldehyde-3-phosphate dehydrogenase protein. This enzyme is an
example of <a href="http://www.ncbi.nlm.nih.gov/pubmed/23134369">moonlighting</a>
protein which is validated and <a href="http://www.ncbi.nlm.nih.gov/pubmed/24858725">replaced</a><span class="sdendnoteanc"><sup>07</sup></span>
by alternative reference genes that link (in their nuclear forms) on
the <a href="http://www.ncbi.nlm.nih.gov/pubmed/24282406">multifunctional</a><span class="sdendnoteanc"><sup>08</sup></span>
properties of the enzyme <a href="http://www.ncbi.nlm.nih.gov/pubmed/25581756">GAPDH</a><span class="sdendnoteanc"><sup>09</sup></span>
known as a key enzyme in glycolysis that contributes to a number of
diverse cellular functions <a href="http://www.ncbi.nlm.nih.gov/pubmed/11205159">unrelated</a><span class="sdendnoteanc"><sup>00</sup></span>
to <a href="http://www.ncbi.nlm.nih.gov/pubmed/12657368">glycolysis</a><span class="sdendnoteanc"><sup>001</sup></span>
depending upon its subcellular location. GAPDH is a key enzyme in
glycolysis the most commonly used expression is as a <a href="http://www.ncbi.nlm.nih.gov/pubmed/15769908">housekeeping</a><span class="sdendnoteanc"><sup>002</sup></span>
gene.<br />
<br />
<br />
<a href="https://picasaweb.google.com/lh/photo/nS9zjx0-GUosSqtiwRX1VSeGf7vmrxo6xdmGnNnfdm8?feat=directlink"><img align="left" alt="GAPDH-Siah1" border="0" height="115" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiuFzGs9HneTnSY8w96jVhaQKm7BsL-SSfwjC8UTEEbDCnCaT7ffN71I2ltbQnlEEl3gSiAG5NJVMoVZyEktxoqDl-ZMMQcNmIz6BC4JhbVJNRlWYW0B0v889-HS6jwEhoyokbYhg/s800-Ic42/Siah1-GAPDH4A.png" width="200" /></a>Cytotoxic
stimuli [1a.] or Programmed cell death, via nitric oxide generation,
lead to the binding of GAPDH from its usual tetrameric form to a
dimeric form, to the protein Siah1 [1.] intracellular G-3-P [2.]
substrate [3.] protects GAPDH from S-nitrosylation [4.]. The
GAPDH-Siah interaction depends on lysine <a href="http://www.phosphosite.org/siteAction.do?id=35072">227</a>
[5.], in human GAPDH that interacts with a large groove [6.] of the
Siah1 dimer, that connects the GAPDH dimer to PGK in the cytoplasm.
<a href="https://picasaweb.google.com/lh/photo/Ku7bovf8w120kI5ZYKGxidMTjNZETYmyPJy0liipFm0?feat=directlink"><img align="right" alt="figure7" border="0" height="198" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhRQRSZ6ooR0mCZFluRgwqSP5yvcmOybP68QnC_W2jW0tTIpHfA6o-PN9JPEvWToUPjoLJlwUcsqIT8wFngBrgC5kzcyDBlkP5Ydzcz36nRIb2VsqrqS5ZZnY5X77VgphexMhOb3Q/s512-Ic42/i8uf-R1a1a.png" width="200" /></a>The
S-nitrosylation
[7.,8.] abolishes catalytic activity and confers upon GAPDH the
ability to bind to Siah [9.]. (GAPDH) is physiologically nitrosylated
at its Cys 150 residue. GAPDH (SNO-GAPDH) [10.] binds to Siah1 [11.]
by forming a protein complex. In the nucleus [12.] GAPDH is
acetylated at Lys 160 [13.] and binds to the protein
acetyltransferase p300/CBP. Under these conditions siah-1 formed a
complex with GAPDH (PDB:4O63) and localized in the nucleus of Müller
cells [14.]. GAPDH mutants [15.] that cannot bind Siah1 prevents
translocation [16.] to the nucleus to elicit neurotoxicity [17.] and
cell apoptosis.<br />
[1a.] <a href="http://www.ncbi.nlm.nih.gov/pubmed/16492755">16492755</a>,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8769851">8769851</a><span class="sdendnoteanc"><sup>003</sup></span>
[1.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/16391220">16391220</a>,
[2.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/19542219">19542219</a>,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/22534308">22534308</a>,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/3350006">3350006</a><span class="sdendnoteanc"><sup>004</sup></span>,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19937139">19937139</a>,
[3.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/22847419">22847419</a>,
[4.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/15951807">15951807</a>,
[5.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/20601085">20601085</a>,
[6.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/16510976">16510976</a>,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20392205">20392205</a><span class="sdendnoteanc"><sup>005</sup></span>,
[7.,8.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/22817468">22817468</a><span class="sdendnoteanc"><sup>006</sup></span>,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16505364">16505364</a><span class="sdendnoteanc"><sup>007</sup></span>,
[9.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/16633896">16633896</a>,
[10.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/16574384">16574384</a>,
[11.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/20972425">20972425</a>,
[12.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/19607794">19607794</a>,
[13.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/18552833">18552833</a>,
[14.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/19940145">19940145</a>,
[15.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/23027902,22534308">23027902</a><span class="sdendnoteanc"><sup>008</sup></span>,
[16.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/24362262">24362262</a>,
[17.]<a href="http://www.ncbi.nlm.nih.gov/pubmed/16492755">16492755</a>.
<br />
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br />
<br />
<a href="https://picasaweb.google.com/lh/photo/_A2Mtj-soPfQruYIryTzZdMTjNZETYmyPJy0liipFm0?feat=directlink"><img align="left" alt="H placental GAPDH" border="0" height="181" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgyVpTuO6nOL1TmgnY4IE3OmoHbIzUFdOgcebzS8gCHMcN4kPb2SkQuQlkvU0G1nvI4w8QPJNJl9riR25ZeQmvK_6VC2UBmo_r5xZd5K3Hd6xp2ysbKfKLRHujy6SmsyYjHSfjiYQ/s512-Ic42/1U8F-2feh__.pdb.png" width="200" /></a>Analysis
of CGP-3466 Docking (NAD) to Human Placental GAPDH which decreases
the synthesis of pro-apoptotic proteins is N-terminally
PMID:10677844, processed to which a Rossmann NAD(P) binding fold as
seen in figure 1 is a C-terminal domain as seen on this <a href="http://pfam.xfam.org/family/PF02800">page</a>,
PMID:10617673, 26022259, 16510976 ...The structure is also used to
build a model of the complex between GAPDH and the E3 ubiquitin
ligase Siah1. (Purple Ribbon-1U8F_Q Figure 1.)</div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in;">
</div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br />
<a href="https://picasaweb.google.com/lh/photo/gYTLHoTpfyMTaOMlEymbD9MTjNZETYmyPJy0liipFm0?feat=directlink"><img align="left" alt="(Figure 3.) Glycolysis and Glyconeogenesis" border="0" height="194" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiZ4hLHHyVVnpJSUVoHsUYbg6IwvM9F4TnSqqe81_8nGuF-v5vsyls1Su_ArDTgr6ncyKwR7yzR9hPFuRYr8XBSTQhDxImg99hiOPQoIUo1-JBWiLQwivyl_gTD3JGqU1qKpoc_qg/s387-Ic42/Glycolysis%252520and%252520Glyconeogenesis1.PNG" width="200" /></a>In
the GAPDH-catalyzed reaction these intermediate metabolites
(aldolase, triose-phosphate-isomerase Glycolysis and Glyconeogenesis
(TPI)) catalyze the Glycolysis reactions, in the sequence of the ten
enzyme-catalyzed Embden-Meyerhof reactions in the&nbsp; metabolic
pathway. Converting phosphoglycerate mutase 1 (PGM) catalyzing the
internal steps by 2,3-BPG phosphatase to form by converting
D-glyceraldehyde 3-phosphate g3p(G3P) into 1,3-bisphosphoglycerate
(1,3-BPG) from its role as 3-Phosphoglyceric acid (3PG) in glycolysis
as the glycolytic protein GAPDH that catalyzes the first step (G3P
into 1,3-BPG) of the pathway.
</div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br />
<br />
<a href="https://picasaweb.google.com/lh/photo/35oSmQ5UgbOgyHiWBc20_NMTjNZETYmyPJy0liipFm0?feat=directlink"><img align="left" alt="(Figure 4.) GAPDH homotetramer" border="0" height="105" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhEz_4JyLl4vQWAW9eyBDTCB_NqsXncjXVfW03dIsDXhUqDyAe6iz58VhrTzHqF2RzdDTX520GKayl7jk3MFyT8ac9CJz5F5Q4zp75jKJSIQPSVskujUVzK0eSruhUxMIunVak6dw/s459-Ic42/trans.electron-microscopy-gapdh25086035.PNG" width="100" /></a>GAPDH
homotetramer was studied as represented an assembly of repeating
spherical units that harbored a distinct birefringent crystal
structure to the optic axis for the p polarization, also (r axis)
discernible via transmission electron microscopy. of the relative
amount of soluble monomeric GAPDH to G3P in the binding pocket of the
NAD(+)-binding site residue located at the active site linked to
GAPDH in Figures 5 and 6. PMID:10407144<span class="sdendnoteanc"><sup>009</sup></span>,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/25086035">25086035</a>.</div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br />
<br />
<a href="https://picasaweb.google.com/lh/photo/_x_BJ7G2ZOmoNuccN4414NMTjNZETYmyPJy0liipFm0?feat=directlink"><img align="left" alt="g3p" border="0" height="120" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg0BYLD8AxsPmh1O4PCg5LHJhVAeEAvb4ZvoG7FXvn58cEEBvnZrQFRbIsuECyqhRcjcY7mDworMJ068vqmPJjwTFfNb7ELq6XIHHJg4-tUqlfls5Fl-z_8STDSetGdkD-vBMlHpg/s800-Ic42/g3p.png" width="200" /></a>Another
model building studie indicates that a structure obtained where
glyceraldehyde 3-phosphate PDB:3CMC_Q binds in the P(s) pocket of the
natural substrate G3P phosphorylating GAPDH (PDB:1U8F_Q) at the
catalytic cysteine residue site. To define the conditions suitable
for affinity for the cosubstrate, the isolation and accumulation of
the intermediate metabolites per G3P monomer found in Figure 8 of the
equivalent Glc-3-P structure in the binding pocket of the
NAD(+)-binding site residue located at the active site linked to
GAPDH. PMID:<a href="http://www.ncbi.nlm.nih.gov/pubmed/19542219">19542219</a>,
22534308</div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br />
<br />
<a href="https://picasaweb.google.com/lh/photo/oe8EpWPKQWyOVCAJeNrlztMTjNZETYmyPJy0liipFm0?feat=directlink"><img align="left" alt="APO/STP" border="0" height="120" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjt7k-U0zY5okbr5QYXqmFLZlTZy7qFW9VXOL8BSHhDijhyphenhyphenpGBHbMoCWxdb0jsKWnPzRcvqTtLxJmBg0MB8zm6Lgqlr4PX_bqbh-YkKNfoj4H8i-y3sgivR-1dfoAB8FB6H9urbPQ/s800-Ic42/g3p-waters4.png" width="200" /></a>Correctly
known binding sites on ((GAPD/NAD)) structures, polar spheres of the
binding catalytic pocket that corresponds to G3P (glyceraldehyde
3-phosphate) aligned to the holographical structure nonbounded
spheres (salmon color), these apoenzymes together with the
cofactor(s) Cys 151, 152 which corresponds as below the Ps pocket of
G3P, on the Green ribbon required for cofactor activity. Together
with eliminated crystallographic waters and other possible spheres,
these are at least one atom of a amino acid residue in contact with
at least one alpha sphere of one binding pocket on the holo protein
NAD structure 1U8F_Q needed to align holo and apo structures included
in this data set with G3P (PDB:3CMC_Q) was tested only on holo
structure (NAD), obtained via Pea Green spheres aligned to 1U8F_Q
ribbons/ligand structure which provide structural recognition
insights into the biological 1U8F-Q assembly this includes 29
asymmetric units of its dimeric form, along the tetrameric 1U8F
biological forms axis. PMID:9461340<span class="sdendnoteanc"><sup>010</sup></span></div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br />
<br />
<a href="https://picasaweb.google.com/lh/photo/k_OdRgrK6WfD02qjzkA56dMTjNZETYmyPJy0liipFm0?feat=directlink"><img align="left" alt="siah1-pdb:4i7d_g3pd-pdb:1u8f" border="0" height="235" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjfCY076TFx1zFpOStuPlxVFRPqD0CC2mSumNGV6mINDAk-xCARTCE79f5OEamCCs-gnSzI3dxoXVqbYGr2q-y57zxXMQ2Q6cP5gsQAOLIQ_inR6GpGnoihAaSRU1X7NDIoHdzttA/s512-Ic42/1u8f-4i7d-graph.PNG" width="200" /></a>(Figure
8.) These are the results without the liquid chromatography coupled
mass spectrometer, that are known 3D products by two-dimensional
sequence analyses with the STRAP alignment tools data sets and which
may have any effect on the functions of further analysis involved in
more ordered results than this study attempts to show, of the
analysis that may be included are identified separated into multiple
gradients here in these paired graphs. Therefore in the present work
to uncover the exact coincidence of 1U8F_R and 4I7D_C, the 3D
coordinates of GAPDH (PDB:1U8F_Q) to the protein Siah1 4I7D were not
presenting when subjected to STRAP&nbsp; alignment this apparent
discrepancy (Figure 1.) was partially resolved by a (Figure 7)
rendering from a more reactive native GAPDH_R homotetramer model.
</div>
<div style="line-height: 100%; margin-bottom: 0in;">
<br /></div>
<br />
<br />
References:<br />
<br />
<a name='more'></a><br /><br />
<div id="sdendnote1">
<div class="sdendnote">
<span class="sdendnotesym">1</span>:
Baker BY, Shi W, Wang B, Palczewski K. High-resolution crystal
structures of<br />
the photoreceptor glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) with three and<br />
four-bound NAD molecules.
Protein Sci. 2014 Nov;23(11):1629-39. doi:<br />
10.1002/pro.2543.
Epub 2014 Sep 25. PubMed PMID: 25176140; PubMed Central PMCID:
<br />
PMC4241113.
</div>
</div>
<div id="sdendnote2">
<div class="sdendnote">
<span class="sdendnotesym">2</span>:
Wang D, Moothart DR, Lowy DR, Qian X. The expression
of<br />
glyceraldehyde-3-phosphate dehydrogenase associated cell
cycle (GACC) genes<br />
correlates with cancer stage and poor
survival in patients with solid tumors.<br />
PLoS One. 2013 Apr
19;8(4):e61262. doi: 10.1371/journal.pone.0061262. Print
2013.<br />
PubMed PMID: 23620736; PubMed Central PMCID: PMC3631177.
</div>
</div>
<div id="sdendnote3">
<div class="sdendnote">
<span class="sdendnotesym">3</span>:
Jenkins JL, Tanner JJ. High-resolution structure of
human<br />
D-glyceraldehyde-3-phosphate dehydrogenase. Acta
Crystallogr D Biol Crystallogr. <br />
2006 Mar;62(Pt 3):290-301.
Epub 2006 Feb 22. PubMed PMID: 16510976.
</div>
</div>
<div id="sdendnote4">
<div class="sdendnote">
<span class="sdendnotesym">4</span>:
Sirover MA. New nuclear functions of the glycolytic
protein,<br />
glyceraldehyde-3-phosphate dehydrogenase, in mammalian
cells. J Cell Biochem.<br />
2005 May 1;95(1):45-52. Review. PubMed
PMID: 15770658.
</div>
</div>
<div id="sdendnote5">
<div class="sdendnote">
<span class="sdendnotesym">5</span>:
Sirover MA. New insights into an old protein: the functional
diversity of<br />
mammalian glyceraldehyde-3-phosphate
dehydrogenase. Biochim Biophys Acta. 1999<br />
Jul
13;1432(2):159-84. Review. PubMed PMID: 10407139.
</div>
</div>
<div id="sdendnote6">
<div class="sdendnote">
<span class="sdendnotesym">6</span>:
Mercer RW, Dunham PB. Membrane-bound ATP fuels the Na/K pump.
Studies on<br />
membrane-bound glycolytic enzymes on inside-out
vesicles from human red cell<br />
membranes. J Gen Physiol. 1981
Nov;78(5):547-68. PubMed PMID: 6273495; PubMed<br />
Central PMCID:
PMC2228637.
</div>
</div>
<div id="sdendnote7">
<div class="sdendnote">
<span class="sdendnotesym">7</span>:
Fokina KV, Dainyak MB, Nagradova NK, Muronetz VI. A study on the
complexes<br />
between human erythrocyte enzymes participating in
the conversions of<br />
1,3-diphosphoglycerate. Arch Biochem
Biophys. 1997 Sep 15;345(2):185-92. PubMed<br />
PMID: 9308888.
</div>
</div>
<div id="sdendnote8">
<div class="sdendnote">
<span class="sdendnotesym">8</span>:
Ashmarina LI, Muronets VI, Nagradova NK. [Glycolytic enzymes in
human<br />
erythrocytes: association of glyceraldehyde-3-phosphate
dehydrogenase with<br />
3-phosphoglycerate kinase]. Biokhimiia. 1994
Jun;59(6):873-80. Russian. PubMed<br />
PMID: 8075252.
</div>
</div>
<div id="sdendnote9">
<div class="sdendnote">
<span class="sdendnotesym">9</span>:
Jang M, Kang HJ, Lee SY, Chung SJ, Kang S, Chi SW, Cho S, Lee SC,
Lee CK, Park<br />
BC, Bae KH, Park SG. Glyceraldehyde-3-phosphate, a
glycolytic intermediate, plays<br />
a key role in controlling cell
fate via inhibition of caspase activity. Mol<br />
Cells. 2009 Dec
31;28(6):559-63. doi: 10.1007/s10059-009-0151-7. Epub 2009 Nov<br />
19.
PubMed PMID: 19937139.
</div>
</div>
<div id="sdendnote10">
<div class="sdendnote">
<span class="sdendnotesym">10</span>:
Liaud MF, Lichtlé C, Apt K, Martin W, Cerff R.
Compartment-specific isoforms<br />
of TPI and GAPDH are imported
into diatom mitochondria as a fusion protein:<br />
evidence in favor
of a mitochondrial origin of the eukaryotic glycolytic pathway.<br />
Mol
Biol Evol. 2000 Feb;17(2):213-23. PubMed PMID: 10677844.
</div>
</div>
<div id="sdendnote11">
<div class="sdendnote">
<span class="sdendnotesym">11</span>:
Forlemu NY, Njabon EN, Carlson KL, Schmidt ES, Waingeh VF, Thomasson
KA. Ionic<br />
strength dependence of F-actin and glycolytic enzyme
associations: a Brownian<br />
dynamics simulations approach.
Proteins. 2011 Oct;79(10):2813-27. doi:<br />
10.1002/prot.23107.
Epub 2011 Aug 22. PubMed PMID: 21905108; PubMed Central<br />
PMCID:
PMC3179185.
</div>
</div>
<div id="sdendnote12">
<div class="sdendnote">
<span class="sdendnotesym">12</span>:
Vaca G, Medina C, Wunsch C, Garcia-Cruz D, Sanchez-Corona J,
Gonzalez-Quiroga <br />
G, Cantu JM. A simple screening procedure for
glucose phosphate isomerase,<br />
phosphofructokinase, aldolase and
glyceraldehyde-3-phosphate dehydrogenase<br />
deficiencies. Ann
Genet. 1981;24(4):251-3. PubMed PMID: 6460465.
</div>
</div>
<div id="sdendnote13">
<div class="sdendnote">
<span class="sdendnotesym">13</span>:
Bruns GA, Gerald PS. Human glyceraldehyde-3-phosphate dehydrogenase
in<br />
man-rodent somatic cell hybrids. Science. 1976 Apr
2;192(4234):54-6. PubMed PMID:<br />
176725.
</div>
</div>
<div id="sdendnote14">
<div class="sdendnote">
<span class="sdendnotesym">14</span>:
Miyamae Y, Han J, Sasaki K, Terakawa M, Isoda H, Shigemori
H.<br />
3,4,5-tri-O-caffeoylquinic acid inhibits amyloid β-mediated
cellular toxicity on <br />
SH-SY5Y cells through the upregulation of
PGAM1 and G3PDH. Cytotechnology. 2011<br />
Mar;63(2):191-200. doi:
10.1007/s10616-011-9341-1. Epub 2011 Mar 19. PubMed PMID:<br />
21424281;
PubMed Central PMCID: PMC3080471.
</div>
</div>
<div id="sdendnote15">
<div class="sdendnote">
<span class="sdendnotesym">15</span>:
Roche E, Knecht E, Grisolía S. 2,3-Bisphosphoglycerate
protects mitochondrial <br />
and cytosolic proteins from proteolytic
inactivation. Biochem Biophys Res Commun.<br />
1987 Feb
13;142(3):680-7. PubMed PMID: 3548716.
</div>
</div>
<div id="sdendnote16">
<div class="sdendnote">
<span class="sdendnotesym">16</span>:
Tatton WG, Chalmers-Redman RM, Elstner M, Leesch W, Jagodzinski FB,
Stupak DP,<br />
Sugrue MM, Tatton NA. Glyceraldehyde-3-phosphate
dehydrogenase in<br />
neurodegeneration and apoptosis signaling. J
Neural Transm Suppl.<br />
2000;(60):77-100. Review. PubMed PMID:
11205159.
</div>
</div>
<div id="sdendnote17">
<div class="sdendnote">
<span class="sdendnotesym">17</span>:
Butterfield DA, Hardas SS, Lange ML. Oxidatively
modified<br />
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and
Alzheimer's disease: many<br />
pathways to neurodegeneration. J
Alzheimers Dis. 2010;20(2):369-93. doi:<br />
10.3233/JAD-2010-1375.
Review. PubMed PMID: 20164570; PubMed Central PMCID:<br />
PMC2922983.
</div>
</div>
<div id="sdendnote18">
<div class="sdendnote">
<span class="sdendnotesym">18</span>:
Sirover MA. New insights into an old protein: the functional
diversity of<br />
mammalian glyceraldehyde-3-phosphate
dehydrogenase. Biochim Biophys Acta. 1999<br />
Jul
13;1432(2):159-84. Review. PubMed PMID: 10407139.
</div>
</div>
<div id="sdendnote19">
<div class="sdendnote">
<span class="sdendnotesym">19</span>:
Frayne J, Taylor A, Cameron G, Hadfield AT. Structure of insoluble
rat sperm<br />
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) via
heterotetramer formation<br />
with Escherichia coli GAPDH reveals
target for contraceptive design. J Biol Chem.<br />
2009 Aug
21;284(34):22703-12. doi: 10.1074/jbc.M109.004648. Epub 2009 Jun
19.<br />
PubMed PMID: 19542219; PubMed Central PMCID: PMC2755679.
</div>
</div>
<div id="sdendnote20">
<div class="sdendnote">
<span class="sdendnotesym">20</span>:
Rius SP, Casati P, Iglesias AA, Gomez-Casati DF. Characterization of
an<br />
Arabidopsis thaliana mutant lacking a cytosolic
non-phosphorylating<br />
glyceraldehyde-3-phosphate dehydrogenase.
Plant Mol Biol. 2006 Aug;61(6):945-57. <br />
PubMed PMID: 16927206.
</div>
</div>
<div id="sdendnote21">
<div class="sdendnote">
<span class="sdendnotesym">21</span>:
Harper JT, Keeling PJ. Nucleus-encoded,
plastid-targeted<br />
glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) indicates a single origin for<br />
chromalveolate plastids.
Mol Biol Evol. 2003 Oct;20(10):1730-5. Epub 2003 Jul 28.<br />
PubMed
PMID: 12885964.
</div>
</div>
<div id="sdendnote22">
<div class="sdendnote">
<span class="sdendnotesym">22</span>:
Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant
cytoplasmic<br />
GAPDH: redox post-translational modifications and
moonlighting properties. Front <br />
Plant Sci. 2013 Nov 12;4:450.
doi: 10.3389/fpls.2013.00450. eCollection 2013.<br />
Review. PubMed
PMID: 24282406; PubMed Central PMCID: PMC3824636.
</div>
</div>
<div id="sdendnote23">
<div class="sdendnote">
<span class="sdendnotesym">23</span>:
Vescovi M, Zaffagnini M, Festa M, Trost P, Lo Schiavo F, Costa A.
Nuclear<br />
accumulation of cytosolic glyceraldehyde-3-phosphate
dehydrogenase in<br />
cadmium-stressed Arabidopsis roots. Plant
Physiol. 2013 May;162(1):333-46. doi:<br />
10.1104/pp.113.215194.
Epub 2013 Apr 8. PubMed PMID: 23569110; PubMed Central<br />
PMCID:
PMC3641213.
</div>
</div>
<div id="sdendnote24">
<div class="sdendnote">
<span class="sdendnotesym">24</span>:
Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier
N, Lemaire <br />
SD, Trost P. Mechanisms of nitrosylation and
denitrosylation of cytoplasmic<br />
glyceraldehyde-3-phosphate
dehydrogenase from Arabidopsis thaliana. J Biol Chem. <br />
2013 Aug
2;288(31):22777-89. doi: 10.1074/jbc.M113.475467. Epub 2013 Jun
7.<br />
PubMed PMID: 23749990; PubMed Central PMCID: PMC3829362.
</div>
</div>
<div id="sdendnote25">
<div class="sdendnote">
<span class="sdendnotesym">25</span>:
Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant
cytoplasmic<br />
GAPDH: redox post-translational modifications and
moonlighting properties. Front <br />
Plant Sci. 2013 Nov 12;4:450.
doi: 10.3389/fpls.2013.00450. eCollection 2013.<br />
Review. PubMed
PMID: 24282406; PubMed Central PMCID: PMC3824636.
</div>
</div>
<div id="sdendnote26">
<div class="sdendnote">
<span class="sdendnotesym">26</span>:
Kelley GE, Winzor DJ. Quantitative characterization of the
interactions of<br />
aldolase and glyceraldehyde-3-phosphate
dehydrogenase with erythrocyte membranes.<br />
Biochim Biophys Acta.
1984 Nov 21;778(1):67-73. PubMed PMID: 6498188.
</div>
</div>
<div id="sdendnote27">
<div class="sdendnote">
<span class="sdendnotesym">27</span>:
Ercolani L, Brown D, Stuart-Tilley A, Alper SL. Colocalization of
GAPDH and<br />
band 3 (AE1) proteins in rat erythrocytes and kidney
intercalated cell membranes.<br />
Am J Physiol. 1992 May;262(5 Pt
2):F892-6. PubMed PMID: 1590432.
</div>
</div>
<div id="sdendnote28">
<div class="sdendnote">
<span class="sdendnotesym">28</span>:
Rinalducci S, Marrocco C, Zolla L. Thiol-based regulation
of<br />
glyceraldehyde-3-phosphate dehydrogenase in blood
bank-stored red blood cells: a <br />
strategy to counteract
oxidative stress. Transfusion. 2015 Mar;55(3):499-506.<br />
doi:
10.1111/trf.12855. Epub 2014 Sep 4. PubMed PMID: 25196942.
</div>
</div>
<div id="sdendnote29">
<div class="sdendnote">
<span class="sdendnotesym">29</span>:
Omodeo-Salè F, Cortelezzi L, Riva E, Vanzulli E, Taramelli D.
Modulation of<br />
glyceraldehyde 3 phosphate dehydrogenase activity
and tyr-phosphorylation of Band<br />
3 in human erythrocytes treated
with ferriprotoporphyrin IX. Biochem Pharmacol.<br />
2007 Nov
1;74(9):1383-9. Epub 2007 Jul 17. PubMed PMID: 17714694.
</div>
</div>
<div id="sdendnote30">
<div class="sdendnote">
<span class="sdendnotesym">30</span>:
Liaud MF, Lichtlé C, Apt K, Martin W, Cerff R.
Compartment-specific isoforms<br />
of TPI and GAPDH are imported
into diatom mitochondria as a fusion protein:<br />
evidence in favor
of a mitochondrial origin of the eukaryotic glycolytic pathway.<br />
Mol
Biol Evol. 2000 Feb;17(2):213-23. PubMed PMID: 10677844.
</div>
</div>
<div id="sdendnote31">
<div class="sdendnote">
<span class="sdendnotesym">31</span>:
Park J, Han D, Kim K, Kang Y, Kim Y. O-GlcNAcylation
disrupts<br />
glyceraldehyde-3-phosphate dehydrogenase homo-tetramer
formation and mediates its<br />
nuclear translocation. Biochim
Biophys Acta. 2009 Feb;1794(2):254-62.
doi:<br />
10.1016/j.bbapap.2008.10.003. Epub 2008 Oct 31. PubMed
PMID: 19022411.
</div>
</div>
<div id="sdendnote32">
<div class="sdendnote">
<span class="sdendnotesym">32</span>:
Sirover MA. Subcellular dynamics of multifunctional protein
regulation:<br />
mechanisms of GAPDH intracellular translocation. J
Cell Biochem. 2012<br />
Jul;113(7):2193-200. doi: 10.1002/jcb.24113.
Review. PubMed PMID: 22388977;<br />
PubMed Central PMCID:
PMC3350569.
</div>
</div>
<div id="sdendnote33">
<div class="sdendnote">
<span class="sdendnotesym">33</span>:
Tristan C, Shahani N, Sedlak TW, Sawa A. The diverse functions of
GAPDH: views<br />
from different subcellular compartments. Cell
Signal. 2011 Feb;23(2):317-23. doi:<br />
10.1016/j.cellsig.2010.08.003.
Epub 2010 Aug 19. Review. PubMed PMID: 20727968;<br />
PubMed Central
PMCID: PMC3084531.
</div>
</div>
<div id="sdendnote34">
<div class="sdendnote">
<span class="sdendnotesym">34</span>:
Hannibal L, Collins D, Brassard J, Chakravarti R, Vempati R, Dorlet
P,<br />
Santolini J, Dawson JH, Stuehr DJ. Heme binding properties
of<br />
glyceraldehyde-3-phosphate dehydrogenase. Biochemistry. 2012
Oct<br />
30;51(43):8514-29. doi: 10.1021/bi300863a. Epub 2012 Oct
15. PubMed PMID:<br />
22957700; PubMed Central PMCID: PMC3549054.
</div>
</div>
<div id="sdendnote35">
<div class="sdendnote">
<span class="sdendnotesym">35</span>:
Tisdale EJ, Kelly C, Artalejo CR. Glyceraldehyde-3-phosphate
dehydrogenase<br />
interacts with Rab2 and plays an essential role
in endoplasmic reticulum to Golgi<br />
transport exclusive of its
glycolytic activity. J Biol Chem. 2004 Dec<br />
24;279(52):54046-52.
Epub 2004 Oct 14. PubMed PMID: 15485821.
</div>
</div>
<div id="sdendnote36">
<div class="sdendnote">
<span class="sdendnotesym">36</span>:
Comer AM, Gibbons HM, Qi J, Kawai Y, Win J, Lipski J. Detection of
mRNA<br />
species in bulbospinal neurons isolated from the rostral
ventrolateral medulla<br />
using single-cell RT-PCR. Brain Res Brain
Res Protoc. 1999 Dec;4(3):367-77.<br />
PubMed PMID: 10592347.
</div>
</div>
<div id="sdendnote37">
<div class="sdendnote">
<span class="sdendnotesym">37</span>:
Tisdale EJ. Glyceraldehyde-3-phosphate dehydrogenase is
phosphorylated by<br />
protein kinase Ciota /lambda and plays a role
in microtubule dynamics in the<br />
early secretory pathway. J Biol
Chem. 2002 Feb 1;277(5):3334-41. Epub 2001 Nov<br />
27. PubMed PMID:
11724794.
</div>
</div>
<div id="sdendnote38">
<div class="sdendnote">
<span class="sdendnotesym">38</span>:
Tisdale EJ. Rab2 interacts directly with atypical protein kinase C
(aPKC)<br />
iota/lambda and inhibits aPKCiota/lambda-dependent
glyceraldehyde-3-phosphate<br />
dehydrogenase phosphorylation. J
Biol Chem. 2003 Dec 26;278(52):52524-30. Epub<br />
2003 Oct 21.
PubMed PMID: 14570876.
</div>
</div>
<div id="sdendnote39">
<div class="sdendnote">
<span class="sdendnotesym">39</span>:
Bryksin AV, Laktionov PP. Role of glyceraldehyde-3-phosphate
dehydrogenase in <br />
vesicular transport from golgi apparatus to
endoplasmic reticulum. Biochemistry<br />
(Mosc). 2008
Jun;73(6):619-25. Review. PubMed PMID: 18620527.
</div>
</div>
<div id="sdendnote40">
<div class="sdendnote">
<span class="sdendnotesym">40</span>:
Mazzola JL, Sirover MA. Subcellular localization of
human<br />
glyceraldehyde-3-phosphate dehydrogenase is independent
of its glycolytic<br />
function. Biochim Biophys Acta. 2003 Jun
20;1622(1):50-6. PubMed PMID: 12829261.
</div>
</div>
<div id="sdendnote41">
<div class="sdendnote">
<span class="sdendnotesym">41</span>:
Kim H, Hol WG. Crystal structure of Leishmania mexicana
glycosomal<br />
glyceraldehyde-3-phosphate dehydrogenase in a new
crystal form confirms the<br />
putative physiological active site
structure. J Mol Biol. 1998 Apr<br />
24;278(1):5-11. PubMed PMID:
9571030.
</div>
</div>
<div id="sdendnote42">
<div class="sdendnote">
<span class="sdendnotesym">42</span>:
Kim H, Feil IK, Verlinde CL, Petra PH, Hol WG. Crystal structure of
glycosomal<br />
glyceraldehyde-3-phosphate dehydrogenase from
Leishmania mexicana: implications<br />
for structure-based drug
design and a new position for the inorganic phosphate<br />
binding
site. Biochemistry. 1995 Nov 21;34(46):14975-86. PubMed PMID:
7578111.
</div>
</div>
<div id="sdendnote43">
<div class="sdendnote">
<span class="sdendnotesym">43</span>:
Aronov AM, Suresh S, Buckner FS, Van Voorhis WC, Verlinde CL,
Opperdoes FR,<br />
Hol WG, Gelb MH. Structure-based design of
submicromolar, biologically active<br />
inhibitors of trypanosomatid
glyceraldehyde-3-phosphate dehydrogenase. Proc Natl <br />
Acad Sci U
S A. 1999 Apr 13;96(8):4273-8. PubMed PMID: 10200252; PubMed
Central<br />
PMCID: PMC16322.
</div>
</div>
<div id="sdendnote44">
<div class="sdendnote">
<span class="sdendnotesym">44</span>:
Jia J, Arif A, Terenzi F, Willard B, Plow EF, Hazen SL, Fox
PL.<br />
Target-selective protein S-nitrosylation by sequence motif
recognition. Cell.<br />
2014 Oct 23;159(3):623-34. doi:
10.1016/j.cell.2014.09.032. Epub 2014 Oct 16.<br />
PubMed PMID:
25417112; PubMed Central PMCID: PMC4243042.
</div>
</div>
<div id="sdendnote45">
<div class="sdendnote">
<span class="sdendnotesym">45</span>:
Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier
N, Lemaire <br />
SD, Trost P. Mechanisms of nitrosylation and
denitrosylation of cytoplasmic<br />
glyceraldehyde-3-phosphate
dehydrogenase from Arabidopsis thaliana. J Biol Chem. <br />
2013 Aug
2;288(31):22777-89. doi: 10.1074/jbc.M113.475467. Epub 2013 Jun
7.<br />
PubMed PMID: 23749990; PubMed Central PMCID: PMC3829362.
</div>
</div>
<div id="sdendnote46">
<div class="sdendnote">
<span class="sdendnotesym">46</span>:
Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A,
Sampas N,<br />
Bruhn L, Shendure J; 1000 Genomes Project, Eichler
EE. Diversity of human copy<br />
number variation and multicopy
genes. Science. 2010 Oct 29;330(6004):641-6. doi:
<br />
10.1126/science.1197005. PubMed PMID: 21030649; PubMed Central
PMCID: PMC3020103.
</div>
</div>
<div id="sdendnote47">
<div class="sdendnote">
<span class="sdendnotesym">47</span>:
Phadke MS, Krynetskaia NF, Mishra AK, Krynetskiy E. Glyceraldehyde
3-phosphate<br />
dehydrogenase depletion induces cell cycle arrest
and resistance to<br />
antimetabolites in human carcinoma cell
lines. J Pharmacol Exp Ther. 2009<br />
Oct;331(1):77-86. doi:
10.1124/jpet.109.155671. Epub 2009 Jul 23. PubMed PMID:<br />
19628630;
PubMed Central PMCID: PMC2766228.
</div>
</div>
<div id="sdendnote48">
<div class="sdendnote">
<span class="sdendnotesym">48</span>:
Jenkins JL, Tanner JJ. High-resolution structure of
human<br />
D-glyceraldehyde-3-phosphate dehydrogenase. Acta
Crystallogr D Biol Crystallogr. <br />
2006 Mar;62(Pt 3):290-301.
Epub 2006 Feb 22. PubMed PMID: 16510976.
</div>
</div>
<div id="sdendnote49">
<div class="sdendnote">
<span class="sdendnotesym">49</span>:
Rathmell JC, Kornbluth S. Filling a GAP(DH) in caspase-independent
cell death.<br />
Cell. 2007 Jun 1;129(5):861-3. PubMed PMID:
17540167; PubMed Central PMCID:<br />
PMC2592604.
</div>
</div>
<div id="sdendnote50">
<div class="sdendnote">
<span class="sdendnotesym">50</span>:
Nicholls C, Li H, Liu JP. GAPDH: a common enzyme with uncommon
functions. Clin<br />
Exp Pharmacol Physiol. 2012 Aug;39(8):674-9.
doi:<br />
10.1111/j.1440-1681.2011.05599.x. Review. PubMed PMID:
21895736.
</div>
</div>
<div id="sdendnote51">
<div class="sdendnote">
<span class="sdendnotesym">51</span>:
Lachaal M, Berenski CJ, Kim J, Jung CY. An ATP-modulated specific
association <br />
of glyceraldehyde-3-phosphate dehydrogenase with
human erythrocyte glucose<br />
transporter. J Biol Chem. 1990 Sep
15;265(26):15449-54. PubMed PMID: 2394733.
</div>
</div>
<div id="sdendnote52">
<div class="sdendnote">
<span class="sdendnotesym">52</span>:
Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B,
Dawson<br />
TM, Dawson VL, Snyder SH, Sawa A. Nitric oxide-induced
nuclear GAPDH activates<br />
p300/CBP and mediates apoptosis. Nat
Cell Biol. 2008 Jul;10(7):866-73. doi:<br />
10.1038/ncb1747. Epub
2008 Jun 15. PubMed PMID: 18552833; PubMed Central
PMCID:<br />
PMC2689382.
</div>
</div>
<div id="sdendnote53">
<div class="sdendnote">
<span class="sdendnotesym">53</span>:
Tristan CA, Ramos A, Shahani N, Emiliani FE, Nakajima H, Noeh CC,
Kato Y,<br />
Takeuchi T, Noguchi T, Kadowaki H, Sedlak TW, Ishizuka
K, Ichijo H, Sawa A. Role <br />
of apoptosis signal-regulating
kinase 1 (ASK1) as an activator of the GAPDH-Siah1<br />
stress-signaling
cascade. J Biol Chem. 2015 Jan 2;290(1):56-64.
doi:<br />
10.1074/jbc.M114.596205. Epub 2014 Nov 12. PubMed PMID:
25391652; PubMed Central <br />
PMCID: PMC4281757.
</div>
</div>
<div id="sdendnote54">
<div class="sdendnote">
<span class="sdendnotesym">54</span>:
Yego EC, Mohr S. siah-1 Protein is necessary for high
glucose-induced<br />
glyceraldehyde-3-phosphate dehydrogenase
nuclear accumulation and cell death in<br />
Muller cells. J Biol
Chem. 2010 Jan 29;285(5):3181-90. doi:<br />
10.1074/jbc.M109.083907.
Epub 2009 Nov 23. PubMed PMID: 19940145; PubMed Central <br />
PMCID:
PMC2823464.
</div>
</div>
<div id="sdendnote55">
<div class="sdendnote">
<span class="sdendnotesym">55</span>:
Phadke MS, Krynetskaia NF, Mishra AK, Krynetskiy E. Glyceraldehyde
3-phosphate<br />
dehydrogenase depletion induces cell cycle arrest
and resistance to<br />
antimetabolites in human carcinoma cell
lines. J Pharmacol Exp Ther. 2009<br />
Oct;331(1):77-86. doi:
10.1124/jpet.109.155671. Epub 2009 Jul 23. PubMed PMID:<br />
19628630;
PubMed Central PMCID: PMC2766228.
</div>
</div>
<div id="sdendnote56">
<div class="sdendnote">
<span class="sdendnotesym">56</span>:
Seidler NW. Functional diversity. Adv Exp Med Biol. 2013;985:103-47.
doi:<br />
10.1007/978-94-007-4716-6_4. Review. PubMed PMID:
22851448.
</div>
</div>
<div id="sdendnote57">
<div class="sdendnote">
<span class="sdendnotesym">57</span>:
Li T, Liu M, Feng X, Wang Z, Das I, Xu Y, Zhou X, Sun Y, Guan KL,
Xiong Y, Lei<br />
QY. Glyceraldehyde-3-phosphate dehydrogenase is
activated by lysine 254<br />
acetylation in response to glucose
signal. J Biol Chem. 2014 Feb<br />
7;289(6):3775-85. doi:
10.1074/jbc.M113.531640. Epub 2013 Dec 21. PubMed PMID:<br />
24362262;
PubMed Central PMCID: PMC3916574.
</div>
</div>
<div id="sdendnote58">
<div class="sdendnote">
<span class="sdendnotesym">58</span>:
Nakajima H, Amano W, Fujita A, Fukuhara A, Azuma YT, Hata F, Inui T,
Takeuchi <br />
T. The active site cysteine of the proapoptotic
protein<br />
glyceraldehyde-3-phosphate dehydrogenase is essential
in oxidative stress-induced<br />
aggregation and cell death. J Biol
Chem. 2007 Sep 7;282(36):26562-74. Epub 2007<br />
Jul 5. PubMed
PMID: 17613523.
</div>
</div>
<div id="sdendnote59">
<div class="sdendnote">
<span class="sdendnotesym">59</span>:
Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y,
Takahashi M, Cheah<br />
JH, Tankou SK, Hester LD, Ferris CD, Hayward
SD, Snyder SH, Sawa A.<br />
S-nitrosylated GAPDH initiates apoptotic
cell death by nuclear translocation<br />
following Siah1 binding.
Nat Cell Biol. 2005 Jul;7(7):665-74. Epub 2005 Jun 12.<br />
PubMed
PMID: 15951807.
</div>
</div>
<div id="sdendnote60">
<div class="sdendnote">
<span class="sdendnotesym">60</span>:
Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B,
Dawson<br />
TM, Dawson VL, Snyder SH, Sawa A. Nitric oxide-induced
nuclear GAPDH activates<br />
p300/CBP and mediates apoptosis. Nat
Cell Biol. 2008 Jul;10(7):866-73. doi:<br />
10.1038/ncb1747. Epub
2008 Jun 15. PubMed PMID: 18552833; PubMed Central
PMCID:<br />
PMC2689382.
</div>
</div>
<div id="sdendnote61">
<div class="sdendnote">
<span class="sdendnotesym">61</span>:
Ercolani L, Florence B, Denaro M, Alexander M. Isolation and
complete sequence<br />
of a functional human
glyceraldehyde-3-phosphate dehydrogenase gene. J Biol Chem.<br />
1988
Oct 25;263(30):15335-41. PubMed PMID: 3170585.
</div>
</div>
<div id="sdendnote62">
<div class="sdendnote">
<span class="sdendnotesym">63</span>:
Rodacka A, Gerszon J, Puchała M. [The biological significance
of oxidative<br />
modifications of cysteine residues in proteins
illustrated with the example of<br />
glyceraldehyde-3-phosphate
dehydrogenase]. Postepy Hig Med Dosw (Online). 2014<br />
Mar
12;68:280-90. Review. Polish. PubMed PMID: 24662796.
</div>
</div>
<div id="sdendnote63">
<div class="sdendnote">
<span class="sdendnotesym">64</span>:
Hildebrandt T, Knuesting J, Berndt C, Morgan B, Scheibe R. Cytosolic
thiol<br />
switches regulating basic cellular functions: GAPDH as an
information hub? Biol<br />
Chem. 2015 May;396(5):523-37. doi:
10.1515/hsz-2014-0295. PubMed PMID: 25581756.
</div>
</div>
<div id="sdendnote64">
<div class="sdendnote">
<span class="sdendnotesym">65</span>:
Nakajima H, Amano W, Kubo T, Fukuhara A, Ihara H, Azuma YT, Tajima
H, Inui T, <br />
Sawa A, Takeuchi T. Glyceraldehyde-3-phosphate
dehydrogenase aggregate formation <br />
participates in oxidative
stress-induced cell death. J Biol Chem. 2009 Dec<br />
4;284(49):34331-41.
doi: 10.1074/jbc.M109.027698. Epub 2009 Oct 16. PubMed PMID:
<br />
19837666; PubMed Central PMCID: PMC2797201.
</div>
</div>
<div id="sdendnote65">
<div class="sdendnote">
<span class="sdendnotesym">66</span>:
Rinalducci S, Marrocco C, Zolla L. Thiol-based regulation
of<br />
glyceraldehyde-3-phosphate dehydrogenase in blood
bank-stored red blood cells: a <br />
strategy to counteract
oxidative stress. Transfusion. 2015 Mar;55(3):499-506.<br />
doi:
10.1111/trf.12855. Epub 2014 Sep 4. PubMed PMID: 25196942
</div>
</div>
<div id="sdendnote66">
<div class="sdendnote">
<span class="sdendnotesym">67</span>:
Rodacka A, Gerszon J, Puchała M. [The biological significance
of oxidative<br />
modifications of cysteine residues in proteins
illustrated with the example of<br />
glyceraldehyde-3-phosphate
dehydrogenase]. Postepy Hig Med Dosw (Online). 2014<br />
Mar
12;68:280-90. Review. Polish. PubMed PMID: 24662796.
</div>
</div>
<div id="sdendnote67">
<div class="sdendnote">
<span class="sdendnotesym">68</span>:
Samson AL, Knaupp AS, Kass I, Kleifeld O, Marijanovic EM, Hughes VA,
Lupton<br />
CJ, Buckle AM, Bottomley SP, Medcalf RL. Oxidation of an
exposed methionine<br />
instigates the aggregation of
glyceraldehyde-3-phosphate dehydrogenase. J Biol<br />
Chem. 2014 Sep
26;289(39):26922-36. doi: 10.1074/jbc.M114.570275. Epub 2014 Aug<br />
1.
PubMed PMID: 25086035; PubMed Central PMCID: PMC4175333.
</div>
</div>
<div id="sdendnote68">
<div class="sdendnote">
<span class="sdendnotesym">69</span>:
Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law
L, Hester<br />
LD, Snyder SH. GAPDH mediates nitrosylation of
nuclear proteins. Nat Cell Biol.<br />
2010 Nov;12(11):1094-100. doi:
10.1038/ncb2114. Epub 2010 Oct 24. PubMed PMID:<br />
20972425;
PubMed Central PMCID: PMC2972384.
</div>
</div>
<div id="sdendnote69">
<div class="sdendnote">
<span class="sdendnotesym">70</span>:
Kohr MJ, Murphy E, Steenbergen C. Glyceraldehyde-3-phosphate
dehydrogenase<br />
acts as a mitochondrial trans-S-nitrosylase in
the heart. PLoS One. 2014 Oct<br />
27;9(10):e111448. doi:
10.1371/journal.pone.0111448. eCollection 2014. PubMed<br />
PMID:
25347796; PubMed Central PMCID: PMC4210263.
</div>
</div>
<div id="sdendnote70">
<div class="sdendnote">
<span class="sdendnotesym">71</span>:
Padgett CM, Whorton AR. S-nitrosoglutathione reversibly inhibits
GAPDH by<br />
S-nitrosylation. Am J Physiol. 1995 Sep;269(3 Pt
1):C739-49. PubMed PMID:<br />
7573405.
</div>
</div>
<div id="sdendnote71">
<div class="sdendnote">
<span class="sdendnotesym">72</span>:
Hara MR, Cascio MB, Sawa A. GAPDH as a sensor of NO stress. Biochim
Biophys<br />
Acta. 2006 May;1762(5):502-9. Epub 2006 Mar 9. Review.
PubMed PMID: 16574384.
</div>
</div>
<div id="sdendnote72">
<div class="sdendnote">
<span class="sdendnotesym">73 </span>:
Nicholls C, Pinto AR, Li H, Li L, Wang L, Simpson R, Liu
JP.<br />
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induces
cancer cell senescence<br />
by interacting with telomerase RNA
component. Proc Natl Acad Sci U S A. 2012 Aug <br />
14;109(33):13308-13.
doi: 10.1073/pnas.1206672109. Epub 2012 Jul 30. PubMed
PMID:<br />
22847419; PubMed Central PMCID: PMC3421169.
</div>
</div>
<div id="sdendnote73">
<div class="sdendnote">
<span class="sdendnotesym">74</span>:
Bae BI, Hara MR, Cascio MB, Wellington CL, Hayden MR, Ross CA, Ha
HC, Li XJ,<br />
Snyder SH, Sawa A. Mutant huntingtin: nuclear
translocation and cytotoxicity<br />
mediated by GAPDH. Proc Natl
Acad Sci U S A. 2006 Feb 28;103(9):3405-9. Epub 2006<br />
Feb 21.
PubMed PMID: 16492755; PubMed Central PMCID: PMC1413934.
</div>
</div>
<div id="sdendnote74">
<div class="sdendnote">
<span class="sdendnotesym">75</span>:
Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y,
Takahashi M, Cheah<br />
JH, Tankou SK, Hester LD, Ferris CD, Hayward
SD, Snyder SH, Sawa A.<br />
S-nitrosylated GAPDH initiates apoptotic
cell death by nuclear translocation<br />
following Siah1 binding.
Nat Cell Biol. 2005 Jul;7(7):665-74. Epub 2005 Jun 12.<br />
PubMed
PMID: 15951807.
</div>
</div>
<div id="sdendnote75">
<div class="sdendnote">
<span class="sdendnotesym">76</span>:
Bommareddy RR, Chen Z, Rappert S, Zeng AP. A de novo NADPH
generation pathway <br />
for improving lysine production of
Corynebacterium glutamicum by rational design <br />
of the coenzyme
specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab<br />
Eng.
2014 Sep;25:30-7. doi: 10.1016/j.ymben.2014.06.005. Epub 2014 Jun
19. PubMed<br />
PMID: 24953302.
</div>
</div>
<div id="sdendnote76">
<div class="sdendnote">
<span class="sdendnotesym">77</span>:
Ventura M, Mateo F, Serratosa J, Salaet I, Carujo S, Bachs O, Pujol
MJ.<br />
Nuclear translocation of glyceraldehyde-3-phosphate
dehydrogenase is regulated by<br />
acetylation. Int J Biochem Cell
Biol. 2010 Oct;42(10):1672-80. doi:<br />
10.1016/j.biocel.2010.06.014.
Epub 2010 Jun 25. PubMed PMID: 20601085.
</div>
</div>
<div id="sdendnote77">
<div class="sdendnote">
<span class="sdendnotesym">78</span>:
Lee SY, Kim JH, Jung H, Chi SW, Chung SJ, Lee CK, Park BC, Bae KH,
Park SG.<br />
Glyceraldehyde-3-phosphate, a glycolytic intermediate,
prevents cells from<br />
apoptosis by lowering S-nitrosylation of
glyceraldehyde-3-phosphate<br />
dehydrogenase. J Microbiol
Biotechnol. 2012 Apr;22(4):571-3. PubMed PMID:<br />
22534308.
</div>
</div>
<div id="sdendnote78">
<div class="sdendnote">
<span class="sdendnotesym">79</span>:
Hara MR, Snyder SH. Nitric oxide-GAPDH-Siah: a novel cell death
cascade. Cell <br />
Mol Neurobiol. 2006 Jul-Aug;26(4-6):527-38. Epub
2006 Apr 22. Review. PubMed<br />
PMID: 16633896.
</div>
</div>
<div id="sdendnote79">
<div class="sdendnote">
<span class="sdendnotesym">80</span>:
Huang Q, Lan F, Zheng Z, Xie F, Han J, Dong L, Xie Y, Zheng F. Akt2
kinase<br />
suppresses glyceraldehyde-3-phosphate dehydrogenase
(GAPDH)-mediated apoptosis in<br />
ovarian cancer cells via
phosphorylating GAPDH at threonine 237 and decreasing<br />
its
nuclear translocation. J Biol Chem. 2011 Dec 9;286(49):42211-20.
doi:<br />
10.1074/jbc.M111.296905. Epub 2011 Oct 6. PubMed PMID:
21979951; PubMed Central<br />
PMCID: PMC3234938.
</div>
</div>
<div id="sdendnote80">
<div class="sdendnote">
<span class="sdendnotesym">81</span>:
Ventura M, Mateo F, Serratosa J, Salaet I, Carujo S, Bachs O, Pujol
MJ.<br />
Nuclear translocation of glyceraldehyde-3-phosphate
dehydrogenase is regulated by<br />
acetylation. Int J Biochem Cell
Biol. 2010 Oct;42(10):1672-80. doi:<br />
10.1016/j.biocel.2010.06.014.
Epub 2010 Jun 25. PubMed PMID: 20601085.
</div>
</div>
<div id="sdendnote81">
<div class="sdendnote">
<span class="sdendnotesym">82</span>:
Tristan CA, Ramos A, Shahani N, Emiliani FE, Nakajima H, Noeh CC,
Kato Y,<br />
Takeuchi T, Noguchi T, Kadowaki H, Sedlak TW, Ishizuka
K, Ichijo H, Sawa A. Role <br />
of apoptosis signal-regulating
kinase 1 (ASK1) as an activator of the GAPDH-Siah1<br />
stress-signaling
cascade. J Biol Chem. 2015 Jan 2;290(1):56-64.
doi:<br />
10.1074/jbc.M114.596205. Epub 2014 Nov 12. PubMed PMID:
25391652; PubMed Central <br />
PMCID: PMC4281757.
</div>
</div>
<div id="sdendnote82">
<div class="sdendnote">
<span class="sdendnotesym">83</span>:
Sen N, Hara MR, Ahmad AS, Cascio MB, Kamiya A, Ehmsen JT, Agrawal N,
Hester L,<br />
Doré S, Snyder SH, Sawa A. GOSPEL: a
neuroprotective protein that binds to GAPDH <br />
upon
S-nitrosylation. Neuron. 2009 Jul 16;63(1):81-91.
doi:<br />
10.1016/j.neuron.2009.05.024. Erratum in: Neuron. 2009 Sep
10;63(5):709.<br />
Aggrawal, Nishant [corrected to Agrawal,
Nishant]. PubMed PMID: 19607794; PubMed <br />
Central PMCID:
PMC2758064.
</div>
</div>
<div id="sdendnote83">
<div class="sdendnote">
<span class="sdendnotesym">84</span>:
Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B,
Dawson<br />
TM, Dawson VL, Snyder SH, Sawa A. Nitric oxide-induced
nuclear GAPDH activates<br />
p300/CBP and mediates apoptosis. Nat
Cell Biol. 2008 Jul;10(7):866-73. doi:<br />
10.1038/ncb1747. Epub
2008 Jun 15. PubMed PMID: 18552833; PubMed Central
PMCID:<br />
PMC2689382.
</div>
</div>
<div id="sdendnote84">
<div class="sdendnote">
<span class="sdendnotesym">85</span>:
Harraz MM, Snyder SH. Nitric Oxide-GAPDH Transcriptional Signaling
Mediates<br />
Behavioral Actions of Cocaine. CNS Neurol Disord Drug
Targets. 2015;14(6):757-63.<br />
PubMed PMID: 26022259.
</div>
</div>
<div id="sdendnote85">
<div class="sdendnote">
<span class="sdendnotesym">86</span>:
Sedlak TW, Snyder SH. Messenger molecules and cell death:
therapeutic<br />
implications. JAMA. 2006 Jan 4;295(1):81-9. PubMed
PMID: 16391220.
</div>
</div>
<div id="sdendnote86">
<div class="sdendnote">
<span class="sdendnotesym">87</span>:
Jenkins JL, Tanner JJ. High-resolution structure of
human<br />
D-glyceraldehyde-3-phosphate dehydrogenase. Acta
Crystallogr D Biol Crystallogr. <br />
2006 Mar;62(Pt 3):290-301.
Epub 2006 Feb 22. PubMed PMID: 16510976.
</div>
</div>
<div id="sdendnote87">
<div class="sdendnote">
<span class="sdendnotesym">88</span>:
Arutyunova EI, Danshina PV, Domnina LV, Pleten AP, Muronetz VI.
Oxidation of<br />
glyceraldehyde-3-phosphate dehydrogenase enhances
its binding to nucleic acids.<br />
Biochem Biophys Res Commun. 2003
Aug 1;307(3):547-52. PubMed PMID: 12893257.
</div>
</div>
<div id="sdendnote88">
<div class="sdendnote">
<span class="sdendnotesym">89</span>:
Broniowska KA, Hogg N. Differential mechanisms of inhibition
of<br />
glyceraldehyde-3-phosphate dehydrogenase by S-nitrosothiols
and NO in cellular<br />
and cell-free conditions. Am J Physiol Heart
Circ Physiol. 2010<br />
Oct;299(4):H1212-9. doi:
10.1152/ajpheart.00472.2010. Epub 2010 Jul 30. PubMed<br />
PMID:
20675567; PubMed Central PMCID: PMC2957357.
</div>
</div>
<div id="sdendnote89">
<div class="sdendnote">
<span class="sdendnotesym">90</span>:
Tarze A, Deniaud A, Le Bras M, Maillier E, Molle D, Larochette N,
Zamzami N,<br />
Jan G, Kroemer G, Brenner C. GAPDH, a novel
regulator of the pro-apoptotic<br />
mitochondrial membrane
permeabilization. Oncogene. 2007 Apr 19;26(18):2606-20.<br />
Epub
2006 Oct 30. PubMed PMID: 17072346.
</div>
</div>
<div id="sdendnote90">
<div class="sdendnote">
<span class="sdendnotesym">91</span>:
Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA,
Weisswange I,<br />
Mansfeld J, Buchholz F, Hyman AA, Mann M. A Human
Interactome in Three<br />
Quantitative Dimensions Organized by
Stoichiometries and Abundances. Cell. 2015<br />
Oct
22;163(3):712-23. doi: 10.1016/j.cell.2015.09.053. Epub 2015 Oct 22.
PubMed<br />
PMID: 26496610.
</div>
</div>
<div id="sdendnote91">
<div class="sdendnote">
<span class="sdendnotesym">92</span>:
Jia J, Arif A, Willard B, Smith JD, Stuehr DJ, Hazen SL, Fox PL.
Protection of<br />
extraribosomal RPL13a by GAPDH and dysregulation
by S-nitrosylation. Mol Cell.<br />
2012 Aug 24;47(4):656-63. doi:
10.1016/j.molcel.2012.06.006. Epub 2012 Jul 5.<br />
PubMed PMID:
22771119; PubMed Central PMCID: PMC3635105.
</div>
</div>
<div id="sdendnote92">
<div class="sdendnote">
<span class="sdendnotesym">93</span>:
Arif A, Chatterjee P, Moodt RA, Fox PL. Heterotrimeric GAIT complex
drives<br />
transcript-selective translation inhibition in murine
macrophages. Mol Cell Biol.<br />
2012 Dec;32(24):5046-55. doi:
10.1128/MCB.01168-12. Epub 2012 Oct 15. PubMed<br />
PMID: 23071094;
PubMed Central PMCID: PMC3510535.
</div>
</div>
<div id="sdendnote93">
<div class="sdendnote">
<span class="sdendnotesym">94</span>:
Carmona P, Rodríguez-Casado A, Molina M. Conformational
structure and binding <br />
mode of glyceraldehyde-3-phosphate
dehydrogenase to tRNA studied by Raman and CD <br />
spectroscopy.
Biochim Biophys Acta. 1999 Jul 13;1432(2):222-33. PubMed
PMID:<br />
10407144.
</div>
</div>
<div id="sdendnote94">
<div class="sdendnote">
<span class="sdendnotesym">95</span>:
Arif A, Chatterjee P, Moodt RA, Fox PL. Heterotrimeric GAIT complex
drives<br />
transcript-selective translation inhibition in murine
macrophages. Mol Cell Biol.<br />
2012 Dec;32(24):5046-55. doi:
10.1128/MCB.01168-12. Epub 2012 Oct 15. PubMed<br />
PMID: 23071094;
PubMed Central PMCID: PMC3510535.
</div>
</div>
<div id="sdendnote95">
<div class="sdendnote">
<span class="sdendnotesym">96</span>:
Berry MD, Boulton AA. Glyceraldehyde-3-phosphate dehydrogenase and
apoptosis. <br />
J Neurosci Res. 2000 Apr 15;60(2):150-4. Review.
PubMed PMID: 10740219.
</div>
</div>
<div id="sdendnote96">
<div class="sdendnote">
<span class="sdendnotesym">97</span>:
Mansur NR, Meyer-Siegler K, Wurzer JC, Sirover MA. Cell cycle
regulation of<br />
the glyceraldehyde-3-phosphate
dehydrogenase/uracil DNA glycosylase gene in<br />
normal human
cells. Nucleic Acids Res. 1993 Feb 25;21(4):993-8. PubMed
PMID:<br />
8451199; PubMed Central PMCID: PMC309234.
</div>
</div>
<div id="sdendnote97">
<div class="sdendnote">
<span class="sdendnotesym">98</span>:
Brüne B, Lapetina EG. Protein thiol modification of
glyceraldehyde-3-phosphate<br />
dehydrogenase as a target for nitric
oxide signaling. Genet Eng (N Y).<br />
1995;17:149-64. Review.
PubMed PMID: 7540026.
</div>
</div>
<div id="sdendnote98">
<div class="sdendnote">
<span class="sdendnotesym">99</span>:
Saunders PA, Chen RW, Chuang DM. Nuclear translocation
of<br />
glyceraldehyde-3-phosphate dehydrogenase isoforms during
neuronal apoptosis. J<br />
Neurochem. 1999 Mar;72(3):925-32. PubMed
PMID: 10037463.
</div>
</div>
<div id="sdendnote99">
<div class="sdendnote">
<span class="sdendnotesym">01</span>:
Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK, Sirover MA.
A human<br />
nuclear uracil DNA glycosylase is the 37-kDa subunit
of<br />
glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci
U S A. 1991 Oct<br />
1;88(19):8460-4. PubMed PMID: 1924305; PubMed
Central PMCID: PMC52528.
</div>
</div>
<div id="sdendnote100">
<div class="sdendnote">
<span class="sdendnotesym">02</span>:
Caradonna S, Muller-Weeks S. The nature of enzymes involved in
uracil-DNA<br />
repair: isoform characteristics of proteins
responsible for nuclear and<br />
mitochondrial genomic integrity.
Curr Protein Pept Sci. 2001 Dec;2(4):335-47.<br />
Review. PubMed
PMID: 12369930.
</div>
</div>
<div id="sdendnote101">
<div class="sdendnote">
<span class="sdendnotesym">03</span>:
Köhler T, Rost AK, Remke H. Calibration and storage of DNA
competitors used<br />
for contamination-protected competitive PCR.
Biotechniques. 1997 Oct;23(4):722-6.<br />
PubMed PMID: 9343699.
</div>
</div>
<div id="sdendnote102">
<div class="sdendnote">
<span class="sdendnotesym">04</span>:
Muller-Weeks S, Mastran B, Caradonna S. The nuclear isoform of the
highly<br />
conserved human uracil-DNA glycosylase is an Mr 36,000
phosphoprotein. J Biol<br />
Chem. 1998 Aug 21;273(34):21909-17.
PubMed PMID: 9705330.
</div>
</div>
<div id="sdendnote103">
<div class="sdendnote">
<span class="sdendnotesym">05</span>:
Backlund M, Paukku K, Daviet L, De Boer RA, Valo E, Hautaniemi S,
Kalkkinen N,<br />
Ehsan A, Kontula KK, Lehtonen JY.
Posttranscriptional regulation of angiotensin<br />
II type 1
receptor expression by glyceraldehyde 3-phosphate
dehydrogenase.<br />
Nucleic Acids Res. 2009 Apr;37(7):2346-58. doi:
10.1093/nar/gkp098. Epub 2009 Feb<br />
26. PubMed PMID: 19246543;
PubMed Central PMCID: PMC2673440.
</div>
</div>
<div id="sdendnote104">
<div class="sdendnote">
<span class="sdendnotesym">06</span>:
Allen RW, Trach KA, Hoch JA. Identification of the 37-kDa protein
displaying a<br />
variable interaction with the erythroid cell
membrane as<br />
glyceraldehyde-3-phosphate dehydrogenase. J Biol
Chem. 1987 Jan 15;262(2):649-53.<br />
PubMed PMID: 3027061.
</div>
</div>
<div id="sdendnote105">
<div class="sdendnote">
<span class="sdendnotesym">07</span>:
Cummings M, Sarveswaran J, Homer-Vanniasinkam S, Burke D, Orsi
NM.<br />
Glyceraldehyde-3-phosphate dehydrogenase is an
inappropriate housekeeping gene<br />
for normalising gene expression
in sepsis. Inflammation. 2014 Oct;37(5):1889-94. <br />
doi:
10.1007/s10753-014-9920-3. PubMed PMID: 24858725.
</div>
</div>
<div id="sdendnote106">
<div class="sdendnote">
<span class="sdendnotesym">08</span>:
Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant
cytoplasmic<br />
GAPDH: redox post-translational modifications and
moonlighting properties. Front <br />
Plant Sci. 2013 Nov 12;4:450.
doi: 10.3389/fpls.2013.00450. eCollection 2013.<br />
Review. PubMed
PMID: 24282406; PubMed Central PMCID: PMC3824636.
</div>
</div>
<div id="sdendnote107">
<div class="sdendnote">
<span class="sdendnotesym">09</span>:
Hildebrandt T, Knuesting J, Berndt C, Morgan B, Scheibe R. Cytosolic
thiol<br />
switches regulating basic cellular functions: GAPDH as an
information hub? Biol<br />
Chem. 2015 May;396(5):523-37. doi:
10.1515/hsz-2014-0295. PubMed PMID: 25581756.
</div>
</div>
<div id="sdendnote108">
<div class="sdendnote">
<span class="sdendnotesym">00</span>:
Tatton WG, Chalmers-Redman RM, Elstner M, Leesch W, Jagodzinski FB,
Stupak DP,<br />
Sugrue MM, Tatton NA. Glyceraldehyde-3-phosphate
dehydrogenase in<br />
neurodegeneration and apoptosis signaling. J
Neural Transm Suppl.<br />
2000;(60):77-100. Review. PubMed PMID:
11205159.
</div>
</div>
<div id="sdendnote109">
<div class="sdendnote">
<span class="sdendnotesym">001</span>:
Ishitani R, Tajima H, Takata H, Tsuchiya K, Kuwae T, Yamada M,
Takahashi H,<br />
Tatton NA, Katsube N. Proapoptotic protein
glyceraldehyde-3-phosphate<br />
dehydrogenase: a possible site of
action of antiapoptotic drugs. Prog<br />
Neuropsychopharmacol Biol
Psychiatry. 2003 Apr;27(2):291-301. Review. PubMed<br />
PMID:
12657368.
</div>
</div>
<div id="sdendnote110">
<div class="sdendnote">
<span class="sdendnotesym">002</span>:
Barber RD, Harmer DW, Coleman RA, Clark BJ. GAPDH as a housekeeping
gene:<br />
analysis of GAPDH mRNA expression in a panel of 72 human
tissues. Physiol<br />
Genomics. 2005 May 11;21(3):389-95. Epub 2005
Mar 15. PubMed PMID: 15769908.
</div>
</div>
<div id="sdendnote111">
<div class="sdendnote">
<span class="sdendnotesym">003</span>:
Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM.
Evidence<br />
that glyceraldehyde-3-phosphate dehydrogenase is
involved in age-induced<br />
apoptosis in mature cerebellar neurons
in culture. J Neurochem. 1996<br />
Mar;66(3):928-35. PubMed PMID:
8769851.
</div>
</div>
<div id="sdendnote112">
<div class="sdendnote">
<span class="sdendnotesym">004</span>:
Kvassman J, Pettersson G, Ryde-Pettersson U. Mechanism
of<br />
glyceraldehyde-3-phosphate transfer from aldolase to
glyceraldehyde-3-phosphate<br />
dehydrogenase. Eur J Biochem. 1988
Mar 1;172(2):427-31. PubMed PMID: 3350006.
</div>
</div>
<div id="sdendnote113">
<div class="sdendnote">
<span class="sdendnotesym">005</span>:
Tomokuni Y, Goryo K, Katsura A, Torii S, Yasumoto K, Kemnitz K,
Takada M,<br />
Fukumura H, Sogawa K. Loose interaction between
glyceraldehyde-3-phosphate<br />
dehydrogenase and phosphoglycerate
kinase revealed by fluorescence resonance<br />
energy
transfer-fluorescence lifetime imaging microscopy in living cells.
FEBS J.<br />
2010 Mar;277(5):1310-8. doi:
10.1111/j.1742-4658.2010.07561.x. PubMed PMID:<br />
20392205.
</div>
</div>
<div id="sdendnote114">
<div class="sdendnote">
<span class="sdendnotesym">006</span>:
Li C, Feng JJ, Wu YP, Zhang GY. Cerebral ischemia-reperfusion
induces GAPDH<br />
S-nitrosylation and nuclear translocation.
Biochemistry (Mosc). 2012<br />
Jun;77(6):671-8. doi:
10.1134/S0006297912060156. PubMed PMID: 22817468.
</div>
</div>
<div id="sdendnote115">
<div class="sdendnote">
<span class="sdendnotesym">007</span>:
Hara MR, Thomas B, Cascio MB, Bae BI, Hester LD, Dawson VL, Dawson
TM, Sawa A,<br />
Snyder SH. Neuroprotection by pharmacologic
blockade of the GAPDH death cascade. <br />
Proc Natl Acad Sci U S A.
2006 Mar 7;103(10):3887-9. Epub 2006 Feb 27. PubMed<br />
PMID:
16505364; PubMed Central PMCID: PMC1450161.
</div>
</div>
<div id="sdendnote116">
<div class="sdendnote">
<span class="sdendnotesym">008</span>:
Lee SB, Kim CK, Lee KH, Ahn JY. S-nitrosylation of B23/nucleophosmin
by GAPDH <br />
protects cells from the SIAH1-GAPDH death cascade. J
Cell Biol. 2012 Oct<br />
1;199(1):65-76. doi: 10.1083/jcb.201205015.
PubMed PMID: 23027902; PubMed Central<br />
PMCID: PMC3461512.
</div>
</div>
<div id="sdendnote117">
<div class="sdendnote">
<span class="sdendnotesym">009</span>:
Carmona P, Rodríguez-Casado A, Molina M. Conformational
structure and binding <br />
mode of glyceraldehyde-3-phosphate
dehydrogenase to tRNA studied by Raman and CD <br />
spectroscopy.
Biochim Biophys Acta. 1999 Jul 13;1432(2):222-33. PubMed
PMID:<br />
10407144.
</div>
</div>
<div id="sdendnote118">
<div class="sdendnote">
<span class="sdendnotesym">010</span>:
Habenicht A. The non-phosphorylating glyceraldehyde-3-phosphate
dehydrogenase:<br />
biochemistry, structure, occurrence and
evolution. Biol Chem. 1997<br />
Dec;378(12):1413-9. Review. PubMed
PMID: 9461340.
</div>
</div>
<br /><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2015/11/non-phosphorylating-and-phosphorylating.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiuFzGs9HneTnSY8w96jVhaQKm7BsL-SSfwjC8UTEEbDCnCaT7ffN71I2ltbQnlEEl3gSiAG5NJVMoVZyEktxoqDl-ZMMQcNmIz6BC4JhbVJNRlWYW0B0v889-HS6jwEhoyokbYhg/s72-c-Ic42/Siah1-GAPDH4A.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-6084082500403236037</guid><pubDate>Sun, 14 Jun 2015 18:09:00 +0000</pubDate><atom:updated>2015-06-14T08:11:17.689-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">Catalase</category><category domain="http://www.blogger.com/atom/ns#">FAD</category><category domain="http://www.blogger.com/atom/ns#">G6PD</category><category domain="http://www.blogger.com/atom/ns#">glutathione-GSH</category><category domain="http://www.blogger.com/atom/ns#">GRX-glutaredoxin</category><category domain="http://www.blogger.com/atom/ns#">GSH glutathione</category><category domain="http://www.blogger.com/atom/ns#">GSR</category><category domain="http://www.blogger.com/atom/ns#">GST glutathione</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">peroxiredoxin</category><category domain="http://www.blogger.com/atom/ns#">riboflavin</category><category domain="http://www.blogger.com/atom/ns#">thiolltransferase-TTase</category><category domain="http://www.blogger.com/atom/ns#">TRX</category><title>CHANGES IN GLUTATHIONE AND GLUTATHIONE REDUCTASE POSITIONING GLUTATHIONE-S-TRANSFERASE AS A FUNCTION OF CELL CONCENTRATION WITH ENZYME ACTIVITIES FOUND TO INFLUENCE BEHAVIOR.</title><description><div style="text-align: justify;">
Glutathione reductase (GSR, GR) locus in the chromosomal region
8p21.1, (EC <a href="http://www.uniprot.org/uniprot/P00390">1.8.1.7</a>)-(§,
<a href="http://www.ihop-net.org/UniPub/iHOP/gs/88857.html?ID=92936">‡</a>)
is a protein-<a href="http://www.ncbi.nlm.nih.gov/pubmed/21235352">S-glutathionylation</a>,
as a (<a href="http://www.ncbi.nlm.nih.gov/UniGene/clust.cgi?ORG=Hs&amp;CID=271510">human</a>)
<a href="http://www.ncbi.nlm.nih.gov/protein/NP_000628.2">Mitochondrial</a>
localization of hGSR and its associated enzymes cellular
thiol/disulfides S-Glutathione reductase (GSR) which is the
importance of significance in <a href="http://www.ncbi.nlm.nih.gov/pubmed/15998254">reversible</a>
thiol modifications which&nbsp; regenerates reduced glutathione (<a href="http://www.ncbi.nlm.nih.gov/pubmed/6697994">GSH</a>) and <a href="http://www.ncbi.nlm.nih.gov/pubmed/9151953">GSSG</a> to the
reduced form found in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8626496">obvious</a>
structural properties of glutathione reductase. The redox <a href="http://www.ncbi.nlm.nih.gov/pubmed/9245898">regulating</a>
enzymes relationship with <a href="http://www.ncbi.nlm.nih.gov/pubmed/9593640">TTase</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12958160">thioltransferase</a>)
activity with the ratio of the activities of G3PD, as the <a href="http://www.ncbi.nlm.nih.gov/pubmed/16212239">mechanism</a>
(of cellular repair) 'differs' (gssg-g6pg) according to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/10843779">type</a> of
reducing glutathionylated mixed disulfide, including
protein-S-S-glutathione (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9360985">PSSG</a>), GSR <a href="http://www.ncbi.nlm.nih.gov/pubmed/9245898">reduces</a>
(PSSG) modified by <a href="http://www.ncbi.nlm.nih.gov/pubmed/11878824">thiolation</a>
to a <a href="http://www.ncbi.nlm.nih.gov/pubmed/2171674">normal</a>
level in human lens epithelial (HLE) cells. This may have <a href="http://www.ncbi.nlm.nih.gov/pubmed/22010840"> implications</a>
in stress- and <a href="http://www.ncbi.nlm.nih.gov/pubmed/21235352">aging-related</a>
pathologies in <a href="http://www.ncbi.nlm.nih.gov/pubmed/14670008">astrocytes</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/7663973">granule</a>
cells, <a href="http://www.ncbi.nlm.nih.gov/pubmed/23201762">demonstrated</a>
by comparable <a href="http://www.ncbi.nlm.nih.gov/pubmed/3970966">mitochondria</a>/cytosolic
concentrations of its thiol proteins, where a mitochondrial leader
sequence (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10708558">cDNA</a>)
is <a href="http://www.ncbi.nlm.nih.gov/pubmed/8651901">present</a>
in the gene structure of human GSR and may be the Cytoplasmic
Isoform (derivative or inhibitor formed) of&nbsp; mitochondrial <a href="http://www.ncbi.nlm.nih.gov/pubmed/24876913">dysfunction</a>
that contains the <a href="http://www.ncbi.nlm.nih.gov/pubmed/6822532">catalytic</a>
cysteine revealing a possible therapeutic strategy/<a href="http://www.ncbi.nlm.nih.gov/pubmed/9151953">target</a>, also
indicating transiently accumulated inhibitor proteins modified by
thiolation (cysteine catalytic subunits) compounds that inhibit
these (re)activation processes (hGSR) with its structure-based <a href="http://www.ncbi.nlm.nih.gov/pubmed/8626496">prosthetic</a>
group (<a href="http://www.ncbi.nlm.nih.gov/pubmed/3656429">FAD</a>)
cofactor is common because of the levels of cysteine available; are
mitochondria/cytosolic concentrations that the Glutathione
reductases reversible thiol modifications which catalyzes the
reduction of GSSG to GSH the natural GR <a href="http://www.ncbi.nlm.nih.gov/pubmed/19668867?dopt=AbstractPlus">substrate</a>
is dependent on the <a href="http://www.ncbi.nlm.nih.gov/pubmed/24120751">NADPH</a>:<a href="http://www.ncbi.nlm.nih.gov/pubmed/18638483">GS-SG</a>
ratio.<br />
<a href="https://picasaweb.google.com/100787464692550241934/GlutathioneReductase?authkey=Gv1sRgCJ2Siuz-pJDp9gE#"><img align="right" alt="PDB Id: 3DK9" border="0" height="230" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj6P26a91JxT5UV_pt1DnatY-WR9AWNv9_2lfwbof_ZVfnp3u0scSHQgDPNUoTZv0a8A0GQp0X8ZCHVc5QMaEog2DsvM25alwgpNHFzJq15r4R2MOYMStVVq67xOidSNSatRihRlw/s640/3dk9.png" width="300" /></a> Cys58 and Cys63 represent the enzyme's <a href="http://www.ncbi.nlm.nih.gov/pubmed/7032915">results</a> seen
as the <a href="http://www.ncbi.nlm.nih.gov/pubmed/12826156">reductive</a>
(GSH) Cys-58 and <a href="http://www.ncbi.nlm.nih.gov/pubmed/9393673">oxidative</a>
(GSSG) Cys-<a href="http://www.ncbi.nlm.nih.gov/pubmed/9546215">63</a>
is the relationship of these two enzymes, His<a href="http://www.ncbi.nlm.nih.gov/pubmed/2585516">467</a>' is seen
to interact with Cys63 more optimally and Cys-58 produces the second
GSH <a href="http://www.ncbi.nlm.nih.gov/pubmed/6822532">intermediate</a>
molecule of the reaction is the reduced glutathione-to-oxidized
glutathione ratio (<a href="http://www.ncbi.nlm.nih.gov/pubmed/6697994">GSH/GS-SG</a>)
when compared to the substrate free form correlated with (FAD) the <a href="http://www.ncbi.nlm.nih.gov/pubmed/18638483">flavin
compounds</a>, flow from NADPH to the substrate GSSG <a href="http://www.ncbi.nlm.nih.gov/pubmed/2404494">via flavin</a>.
The <a href="http://www.ncbi.nlm.nih.gov/pubmed/9508091">reducing
equivalents</a> needed for regeneration of GSH are provided by <a href="http://www.ncbi.nlm.nih.gov/pubmed/16887253">NADPH</a>. The
enzyme has <a href="http://www.ncbi.nlm.nih.gov/pubmed/21308351">affinity</a>
for flavin adenine dinucleotide (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11514662">FAD</a>) the <a href="http://www.ncbi.nlm.nih.gov/pubmed/9393673">prosthetic</a>
group of GR, and maintains high levels of reduced glutathione&nbsp;
(<a href="http://www.ncbi.nlm.nih.gov/protein/AAF37573.1">Cytoplasmic</a>
Isoform: Produced by <a href="http://www.uniprot.org/uniprot/P00390#P00390-2">alternative
initiation</a> of isoform <a href="http://www.ncbi.nlm.nih.gov/pubmed/?term=15998254">Mitochondrial</a>
homodimer, <a href="http://www.ncbi.nlm.nih.gov/pubmed/16910673">derivative</a>
or <a href="http://www.ncbi.nlm.nih.gov/pubmed/9151953">inhibitor</a>
formed from the GSR Pyridine, <a href="http://www.ncbi.nlm.nih.gov/pubmed?linkname=cdd_pubmed&amp;from_uid=251571">dimerisation</a>
domain.) in the cytosol. Glutathione reductase (GR) plays a key role
in maintaining either a <a href="http://www.ncbi.nlm.nih.gov/pubmed/9593640">thiol</a> group
or a nonprotein <a href="http://www.ncbi.nlm.nih.gov/pubmed/7062348">sulfhydryl</a>
group (<a href="http://www.ncbi.nlm.nih.gov/pubmed/7062348">NPS</a>)
form of GSH, and potential for <a href="http://www.ncbi.nlm.nih.gov/pubmed/8944550">thioredoxin</a>
and <a href="https://www.blogger.com/null">glutathione</a> systems, as <a href="http://www.ncbi.nlm.nih.gov/pubmed/14960309">thioredoxin</a>
dose not require <a href="http://www.ncbi.nlm.nih.gov/pubmed/8944550">GSH</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/18408002">GR</a> for
catalytic activity. Glutathione reductase (GR) <a href="http://www.ncbi.nlm.nih.gov/pubmed/19806191">utilizes</a>
NADPH <a href="http://www.ncbi.nlm.nih.gov/pubmed/17952457">produced</a>
by <a href="http://www.ncbi.nlm.nih.gov/pubmed/3426963">G6PDH</a>
(glucose-6-phosphate dehydrogenase) enzyme activities, and enzyme
glutathione reductase (GR) <a href="http://www.ncbi.nlm.nih.gov/pubmed/9367667">represents</a>
the erythrocyte glutathione-reducing system (<a href="http://www.ncbi.nlm.nih.gov/pubmed/8786703">GRS</a>), of the
GSH pathway to oxidation and inactivation in the activity of GSH <a href="http://www.ncbi.nlm.nih.gov/pubmed/3757268">peroxidase</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/12370859">GSH
reductase</a>. Expression of the regulatory <a href="http://www.ncbi.nlm.nih.gov/pubmed/18607771">subunit</a> of
<a href="http://www.ncbi.nlm.nih.gov/pubmed/6146350">gamma</a>-glutamylcysteine
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18312938">synthetase</a>/<a href="http://www.ncbi.nlm.nih.gov/pubmed/16946404">ligase</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12111865">GCL</a>)
catalyzes the first and rate-limiting step in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/6146350">production</a>
of the cellular (GSH) glutathione. Dietary <a href="http://www.ncbi.nlm.nih.gov/pubmed/5794396">riboflavin</a>
(Vitamin <a href="http://www.ncbi.nlm.nih.gov/pubmed/23116402">B2</a>)
intake produces its active essential coenzyme flavin forms,
riboflavin <a href="http://www.ncbi.nlm.nih.gov/pubmed/19169240">mononucleotide</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/12595258">FMN</a>) and
flavin adenine dinucleotide (<a href="http://www.ncbi.nlm.nih.gov/pubmed/3582603">FAD</a>) of
glutathione reductase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/7417521">GR</a><a href="https://www.blogger.com/null">), or
the GR</a> activity <a href="http://www.ncbi.nlm.nih.gov/pubmed/5822598">correlated</a>
with red-cell <a href="http://www.ncbi.nlm.nih.gov/pubmed/21338251">flavin</a>
compounds.When both <a href="http://www.ncbi.nlm.nih.gov/pubmed/24120751">GSSG</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/11924113">NADP(+)</a>
substrates and products are present, glutathione reductase (GR) is a enzyme required for
the conversion in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/2412075110459841">presence</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/9508091">absence</a> of flavin adenine
dinucleotide (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17554778">FAD</a>), glutathione reductase (GR) is an obligatory <a href="http://www.ncbi.nlm.nih.gov/pubmed/11514662">FAD</a>-containing homodimer. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11087537">GSSG</a> via
glutathione reductase (GR) <a href="http://www.ncbi.nlm.nih.gov/pubmed/24120751">regenerates</a> reduced glutathione which is
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19049979">essential</a> for antioxidant defense. The flavoenzyme glutathione
reductase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19806191">GR</a>)
reduces 'oxidized glutathione' (GSSG) back to GSH, also involving
<a href="http://www.ncbi.nlm.nih.gov/pubmed/23770363">glutamate</a>-cysteine ligase and <a href="http://www.ncbi.nlm.nih.gov/pubmed/17206382">modulatory</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/15513322">GCL</a>)-can
be <a href="http://www.ncbi.nlm.nih.gov/pubmed/24557597">upregulated</a> ∉ as the cellular <a href="http://www.ncbi.nlm.nih.gov/pubmed/19408115">GSH</a> system,
indicating <a href="http://www.ncbi.nlm.nih.gov/pubmed/17888202">short</a><a href="https://www.blogger.com/null">-term</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/14568353">heritable</a>
tolerance of <a href="http://www.ncbi.nlm.nih.gov/pubmed/17206382">exposure</a>
to oxidative stress from/via numerous <a href="http://www.ncbi.nlm.nih.gov/pubmed/18062829">reporting</a> ∈ mechanisms. NADPH is used by glutathione reductase for the reduction
of oxidized glutathione (glutathione disulphide) <a href="http://www.ncbi.nlm.nih.gov/pubmed/12516882">GSSG</a> to
GSH-dependent peroxide metabolism. 4-Hydroxynonenal (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15293559">HNE</a>) is one
of the major <a href="http://www.ncbi.nlm.nih.gov/pubmed/18754092">end
product</a><a href="https://www.blogger.com/null">s</a> of <a href="http://www.ncbi.nlm.nih.gov/pubmed/10064127">lipid</a>
peroxidation which may lead to enhanced action of&nbsp; the (<a href="http://www.ncbi.nlm.nih.gov/pubmed/14637279">GSR</a>) oxygen
radical, glutathione S-transferases (GSTs) are <a href="http://www.ncbi.nlm.nih.gov/pubmed/3509337">specifically</a> suited
to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/19408115">detoxification</a>
and removal of 4-HNE (∋ or ∝) from cells which may provide a basis
for selective cellular and/or subcellular distribution of mitochondrial
and cytosolic to individual <a href="http://www.ncbi.nlm.nih.gov/pubmed/12628444">detoxifying</a> gene inducer activities of glutathione reductase (GR), the cellular (GSH) glutathione. It was evident the enzyme
glutathione reductase (GR) <a href="http://www.ncbi.nlm.nih.gov/pubmed/9367667">represents</a>
the erythrocyte glutathione-reducing system (<a href="http://www.ncbi.nlm.nih.gov/pubmed/8786703">GRS</a>), of the
GSH pathway to <a href="http://www.ncbi.nlm.nih.gov/pubmed/12135692">oxidation</a> and the (∉ or ∝) <a href="http://www.ncbi.nlm.nih.gov/pubmed/16910673">inhibition</a> constant for <a href="http://www.ncbi.nlm.nih.gov/pubmed/22010840">reversible</a> inactivation in the activity of glutathione related antioxidant enzymes. And GSH
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15513322">reductase</a>
may be one of the factors that remained in focus that suggests its
effects on the antioxidant system related to glutathione synthesis (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10343979">GCL</a>), degradation, and functions.</div>
<div style="text-align: justify;">
<br /></div>
<div style="text-align: justify;">
<span style="font-size: xx-small;">Biological Xenobiotics, Extracts, Applications of note In the presence of Glutathione reductase.:</span></div>
<div style="text-align: justify;">
<br /></div>
<div style="text-align: justify;">
Schisandrin (Schisandra chinensis), used in traditional Chinese
medicine. PMID:21328628</div>
<div style="text-align: justify;">
Transketolase (TK) and transaldolase (TA)</div>
<div style="text-align: justify;">
Melatonin PMID:15571523, 19475625</div>
<div style="text-align: justify;">
Blackberry (Rubus sp.) cultivars, The 'Hull Thornless',&nbsp;
PMID:11087537</div>
<div style="text-align: justify;">
Glutathione dehydrogenase (ascorbate)-[dehydroascorbate reductase
(DHAR), and glutathione reductase (GR). This enzyme participates in
the glutathione metabolism the active metabolite of vitamin D3
increases glutathione levels.] PMID:11087537, 23770363</div>
<div style="text-align: justify;">
3H-1,2-dithiole-3-thione nutraceutical D3T potently induces the
cellular GSH system, Anethole trithione is a drug used in the
treatment of dry mouth, the Anethole trithione isomer is related to
anethole (anise camphor) used as a flavoring substance.
PMID:17206382*, 19408115, &nbsp;&nbsp;&nbsp; 19176875*, 15896789,
18408143*, <a href="https://picasaweb.google.com/100787464692550241934/GlutathioneReductase?authkey=Gv1sRgCJ2Siuz-pJDp9gE#"><img align="right" alt="Glutathione reductase" border="0" height="199" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiobO-JWlg_2VXn8bNzXUdN1XozDNowCDqy_7PY_2EDjuYBXireNPnzDyVxeE9DjRg3hiEr1l7DSa-NJIckvaVQAdFZd4zDqxdAN_4rE4vS9Akw60gLuSgdfF1uqCZdy1sa4DmDJg/s433/network.png" width="200" /></a></div>
<div style="text-align: justify;">
16946404*</div>
<div style="text-align: justify;">
Cassia fistula used in herbal medicine. PMID:19088944</div>
<div style="text-align: justify;">
Sanguinarine is extracted from some plants, including bloodroot and
Mexican prickly poppy (Argemone mexicana) where argimone oil causes
Epidemic dropsy. PMID:11260782</div>
<div style="text-align: justify;">
Vitamin E, PMID: 15672860</div>
<div style="text-align: justify;">
Tocotrienols are natural compounds members of the vitamin E family
found in select vegetable oils are an essential nutrient for the
body. PMID:21845802</div>
<div style="text-align: justify;">
Pyrrolizidine alkaloids are produced by plants as a defense
mechanism against insect herbivores consumption of PAs is known as
pyrrolizidine alkaloidosis. PMID:20144959</div>
<div style="text-align: justify;">
Apple extract (AE) PMID:20401791</div>
<div style="text-align: justify;">
Lipoic Acid an organic compound, forming a disulfide bond, available
as a dietary supplement PMID:15246746, 21073761</div>
<div style="text-align: justify;">
Carnitine PMID:15246746, 10581232</div>
<div style="text-align: justify;">
Vitamin D upregulated expression of GCLC and GR. PMID:23770363</div>
<div style="text-align: justify;">
Vitamin D3_ PMID:12416023</div>
<div style="text-align: justify;">
Vitamin E_ PMID:10459841, 8360018, 18296478, 21845802, 15490422,
16885600, 7062348, 20729758, 21086752</div>
<div style="text-align: justify;">
Shidagonglao roots Mahonia fortunei (十大功劳 shi da gong lao) species
contains the alkaloid berberine PMID:199382 18</div>
<div style="text-align: justify;">
Coenzyme Q10 (CoQ10) PMID:16621054</div>
<div style="text-align: justify;">
Trigonella foenum graecum seed powder (TSP) PMID:15026271</div>
<div style="text-align: justify;">
Boschniakia rossica, a ̱̱̱Traditional Chinese medicine.
PMID:19352025</div>
<div style="text-align: justify;">
Aegle marmelos commonly known as bael is a species of tree.
PMID:18830880</div>
<div style="text-align: justify;">
Scoparia dulcis A medicinal plant, dulcis. PMID:21905284</div>
<div style="text-align: justify;">
Fenugreek (Trigonella foenum-graecum)&nbsp; is used as a herb.
PMID:15026271</div>
<div style="text-align: justify;">
L-arginine (L-Arg) semiessential supplementation common natural
amino acid. PMID:16038634</div>
<div style="text-align: justify;">
Hypericum perforatum (St. John's Wort) PMID:18754092</div>
<div style="text-align: justify;">
Urtica dioica often called common nettle PMID:12834006</div>
<div style="text-align: justify;">
Usnea longissima, a medicinal lichen. PMID:16169175</div>
<div style="text-align: justify;">
Capparis decidua, a fruting tree also used in folk medicine and
herbalism. PMID:22272107</div>
<div style="text-align: justify;">
Indole-3-carbinol found at relatively high levels in cruciferous
vegetables such as broccoli</div>
<div style="text-align: justify;">
PMID:9512722, 14512388</div>
<div style="text-align: justify;">
Ascorbate Vitamin C. PMID:14512388</div>
<div style="text-align: justify;">
Sulforaphane It is obtained from cruciferous vegetables such as
broccoli. PMID:12628444, 18607771*, 22303412</div>
<div style="text-align: justify;">
Andrographis paniculata, may shorten the duration and lessen the
symptoms of common cold. PMID:11507728</div>
<div style="text-align: justify;">
Vitamin B-1 (thiamine) PMID:1132146, 10450194, 21308351*, 11514662*,
1270885</div>
<div style="text-align: justify;">
Vitamin B2 (riboflavin) PMID: 5822598, 5550591, 1201246, 5794396,
237845, 3677785, 3582603, 12194936, 2721660, 1261528, 5721130,
14608016, 4400882, 7883462, 844948, 7337797, 5881,12641409, 4393763,
3497609, 16883966...(№<a href="http://www.ncbi.nlm.nih.gov/pubmed?cmd=link&amp;linkname=pubmed_pubmed&amp;uid=5796112,13931269,2319583,13731008,5822598,5550591,947404,435643,5704435,5365571">
1244</a>, OMIM.138300)</div>
<div style="text-align: justify;">
Vitamin B-6 (Pyridoxine) PMID:2721660, 3582603, 10450194, 15490422,
1270885, 7417521, 7337797, 7814235</div>
<div style="text-align: justify;">
Vitamin B9 (Folic acid)&nbsp; PMID: 844947, 1270885</div>
<div style="text-align: justify;">
Aspartate transaminase (AST) or glutamic oxaloacetic transaminase
(GOT) catalyzes the interconversion of aspartate an important enzyme
in amino acid metabolism. PMID:1132146, 10450194, 1253408</div>
<div style="text-align: justify;">
β-Carotene is a strongly colored red-orange pigment abundant in
plants and fruits. PMID:19957244</div>
<div style="text-align: justify;">
3-Hydroxykynurenine (3OHKyn) a metabolite of tryptophan.
PMID:11273669</div>
<div style="text-align: justify;">
Ajoene ((E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide), a
garlic-derived natural compound. PMID:9986706 PDB: 1BWC</div>
<div style="text-align: justify;">
Propolis a product made by bees. PMID:19394397</div>
<div style="text-align: justify;">
Resveratrol produced naturally by several plants PMID:12797471<br />
&nbsp;No CiTO relationships defined:<br />
&nbsp;http://vixra.org/abs/1506.0104<br />
&nbsp;http://www.citeulike.org/user/emissrto/article/13645622</div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2015/06/changes-in-glutathione-and-glutathione.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj6P26a91JxT5UV_pt1DnatY-WR9AWNv9_2lfwbof_ZVfnp3u0scSHQgDPNUoTZv0a8A0GQp0X8ZCHVc5QMaEog2DsvM25alwgpNHFzJq15r4R2MOYMStVVq67xOidSNSatRihRlw/s72-c/3dk9.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-4036479430916432975</guid><pubDate>Tue, 03 Mar 2015 17:23:00 +0000</pubDate><atom:updated>2015-03-03T07:34:37.669-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">FAD</category><category domain="http://www.blogger.com/atom/ns#">glutathione-GSH</category><category domain="http://www.blogger.com/atom/ns#">GRX-glutaredoxin</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">oxidized glutathione reductase-GSSG</category><category domain="http://www.blogger.com/atom/ns#">RNR-Ribonucleotide reductase</category><category domain="http://www.blogger.com/atom/ns#">Secys- selenocysteine</category><category domain="http://www.blogger.com/atom/ns#">TGR-selenodiglutathione reductase</category><category domain="http://www.blogger.com/atom/ns#">TXN</category><category domain="http://www.blogger.com/atom/ns#">TXNRD1</category><title>Thioredoxin reductase: Selenotetrapeptide sequences with specificity for thioredoxin and glutathione systems</title><description><div align="justify">
<big>&nbsp; Thioredoxin reductase (EC <a href="http://www.ncbi.nlm.nih.gov/pubmed/11328605">1.6.4.5</a>) TXNRD1 (Alternate
Symbols: GRIM-12, TR, TRXR) chromosomal position <a href="http://www.ncbi.nlm.nih.gov/gene?term=7296#genomic-context">12q23</a>.3-<a href="http://www.ncbi.nlm.nih.gov/pubmed/8921404">q24.1</a> (<a href="https://www.blogger.com/null">§</a>, <a href="http://www.ihop-net.org/UniPub/iHOP/gs/92936.html?ID=86939">‡</a>) is a
homodimeric selenocysteine-containing enzyme. Secys a
selenocysteine residue is an essential TR isozyme component,
located near the <a href="http://www.ncbi.nlm.nih.gov/pubmed/9177183">C-terminus</a>
region [cysteine (Cys)-<a href="http://www.ncbi.nlm.nih.gov/pubmed/9671710" title="pdb 3ean">497</a>,Secys-498]
of the intracellular, <a href="http://www.ncbi.nlm.nih.gov/pubmed/16857846">redox
cellular</a> environments center in the catalytically active
enzyme site, Gly-<a href="http://www.ncbi.nlm.nih.gov/pubmed/8650234">499</a> is the
actual C-terminal amino acid. In their N-terminal sequences Cys-<a href="http://www.ncbi.nlm.nih.gov/pubmed/9671710">59</a>, Cys-<a href="http://www.ncbi.nlm.nih.gov/pubmed/20457604">64</a>
links the <a href="http://www.ncbi.nlm.nih.gov/pubmed/7827267">thiol/disulfide</a>
oxidoreductase dependent pathway <a href="http://www.ncbi.nlm.nih.gov/pubmed/16481328">reductases</a>
from there to the flexible <a href="http://www.ncbi.nlm.nih.gov/pubmed/16750198">C-terminal</a>
part (Secys) of the other sub cellular subunit by which <a href="http://www.ncbi.nlm.nih.gov/pubmed/9315320">Selenocystine</a>
is efficiently reduced and induce <a href="http://www.ncbi.nlm.nih.gov/pubmed/20920480">RNR</a>
(Ribonucleotide reductase) for <a href="http://www.ncbi.nlm.nih.gov/pubmed/3152490">replication</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/15123685">repair</a>,
where Trx reductase (TR) or oxidized <a href="http://www.ncbi.nlm.nih.gov/pubmed/11213485">GSH</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9315320">GSSG</a>) reductase
further supply electrons for <a href="http://www.ncbi.nlm.nih.gov/pubmed/22198266">RNR</a>. The protein reversibly <a href="http://www.ncbi.nlm.nih.gov/pubmed/12214272">modulates</a>
specific signal <a href="http://www.ncbi.nlm.nih.gov/pubmed/11259642">transduction</a> cascades, to regulate multiple
downstream intracellular redox-sensitive proteins that links NADPH
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/15379556">thiol-dependent</a>
processes which catalyzes <a href="http://www.ncbi.nlm.nih.gov/pubmed/8702596">NADPH</a>-dependent
reduction in the presence of the redox protein-<a href="http://www.ncbi.nlm.nih.gov/pubmed/12230868">Trx</a> and
thioredoxin reductase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/14980055">TR</a>) maintain cysteine residues in <a href="http://www.ncbi.nlm.nih.gov/pubmed/16774913">numerous</a>
proteins in the reduced state. There are <a href="http://www.ncbi.nlm.nih.gov/pubmed/20536427">three</a>
TXNRD selenoproteins&nbsp; <a href="http://www.ncbi.nlm.nih.gov/pubmed/18042542">5-prime</a> end variants <a href="http://www.ncbi.nlm.nih.gov/pubmed/19433132">essential</a>
for mammals, one <a href="http://www.ncbi.nlm.nih.gov/pubmed/18042542">V3</a>
(TXNRD1) encodes an <a href="http://www.ncbi.nlm.nih.gov/pubmed/18042542">N-terminal</a>
glutaredoxin (GRX) these variants code for thioredoxin glutathione
reductases (TGR). V3 associates with and triggers formation of <a href="http://www.ncbi.nlm.nih.gov/pubmed/23413027">Filopodia</a>
(cytoplasmic filaments) can guide <a href="http://www.ncbi.nlm.nih.gov/pubmed/18042542">actin</a> in
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17581112">migrating</a> cells, the emerging <a href="http://www.ncbi.nlm.nih.gov/pubmed/19654027">protrusions</a>
of cell membrane <a href="http://www.ncbi.nlm.nih.gov/pubmed/18042542">restructuring</a> involved is in '<a href="http://www.ncbi.nlm.nih.gov/pubmed/18408002">deglutathionylation</a>
values" for <a href="http://www.ncbi.nlm.nih.gov/pubmed/19216714">mitochondrial</a> and cytosolic thioredoxin reductase (TR)
domains. Characterization of the TR native Thioredoxin and <a href="http://www.ncbi.nlm.nih.gov/pubmed/16750198">glutathione</a>
systems (TGR) suggests that the lifecycle of <a href="http://www.ncbi.nlm.nih.gov/pubmed/12538593">E. granulosus</a>
and&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/19070522">Schistosoma
mansoni</a> a phylum of <a href="http://www.ncbi.nlm.nih.gov/pubmed/18408002">Platyhelmintha</a>,
involves the TXNRD1_v3 isoform containing a <a href="http://www.ncbi.nlm.nih.gov/pubmed/19070522">fused</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/14676218">Grx</a>)
glutaredoxin domain which is abolished by deglutathionylation'
targeted to either mitochondria or the nucleus in the reduction of
glutathionylated substrates, in <a href="http://www.ncbi.nlm.nih.gov/pubmed/19317451">leishmaniasis</a>
(disease) glutathione reductase system (TGR) is replaced by the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8760878">trypanothione</a>
reductase (TcTR) system in mammalian cells, essential as these TR3
are significant as a recognized <a href="http://www.ncbi.nlm.nih.gov/pubmed/18448175">drug target</a>
of these (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11170645">TcTR</a>)
human protozoan parasites. Cytosolic TR1, <a href="http://www.ncbi.nlm.nih.gov/pubmed/16774913">mitochondrial</a>
- <a href="http://www.ncbi.nlm.nih.gov/pubmed/24393022">TR3</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/24407164/">TrxR2</a>
(locus <a href="http://www.ncbi.nlm.nih.gov/pubmed/10215850">22q11.21</a>)
where <a href="http://www.ncbi.nlm.nih.gov/pubmed/10657232">TrxR1
and TrxR2</a> are consdered as the respective <a href="http://www.ncbi.nlm.nih.gov/pubmed/21172426">cytosolic</a>
<a href="https://plus.google.com/u/0/photos/100787464692550241934/albums/6117623971482461473"><img align="left" alt="1w1e MITOCHONDRIAL" border="0" height="181" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEibYjO6PJUfkg4N1cFzLjvo1rGVyhur-wCIldN4EEYaVQ_nay5omtIWcTsYAXyHwe_TJQKo_uglk6yifFFOq13IFFpyypjfuWeEgi7TVnZMWzQiRf8WfpeMDlOeabelb8uo50v-rQ/w483-h436-no/1w1e+MITOCHONDRIAL.png" width="200" /></a> <a href="https://plus.google.com/u/0/photos/100787464692550241934/albums/6117623971482461473"><img align="right" alt="cytoplasmic" border="0" height="186" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEivPHZy_tviRR7n2OWK92IIQPjMENBuhY0FyDDvZd3_mZ6Xv0bZ71NTwuRcPuSth-ey1-NWmZZDsuvHwLlNaFgwSBbpOuu9o_FEHXOAEkYIv_k-yMNbLd7xP3HnqIWjc9zTBFy0gA/w470-h436-no/1w1c+CYTOPLASMIC.png" width="200" /></a>and <a href="http://www.ncbi.nlm.nih.gov/pubmed/10215850">mitochondrial</a>
thioredoxin reductases, plus the thioredoxin glutathione
reductases-TGR <a href="http://www.ncbi.nlm.nih.gov/pubmed/11737861">systems</a>
most likely can reduce (Trx) by fusion of the TR and an <a href="http://www.ncbi.nlm.nih.gov/pubmed/16262253">N-terminal</a>
glutaredoxin domains. As a <a href="http://www.ncbi.nlm.nih.gov/pubmed/8921404">pyridine</a>
nucleotide disulfide oxidoreductase of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/11259642">oxidized</a> GSH and <a href="http://www.ncbi.nlm.nih.gov/pubmed/9315320">GSSG</a>
(selenodiglutathione) reductase TGR
structures enzyme stability, are linked to the previously
characterized two thioredoxin reductases cytosolic <a href="http://www.ncbi.nlm.nih.gov/pubmed/11060283">TR1</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/16217027">TR3</a>, and <a href="http://www.ncbi.nlm.nih.gov/pubmed/14622292">one
mitochondrial</a> variant. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11782468">Selenols</a>
are key metabolites at mammalian TXNRD1's active (<a href="http://www.rcsb.org/pdb/explore/explore.do?structureId=2ZZ0">SeCys</a>
498) site. Thioredoxin undergoes <a href="http://www.ncbi.nlm.nih.gov/pubmed/12435734">NADPH</a>-dependent
reduction (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19690371">NTR</a>s)
and reduce <a href="http://www.ncbi.nlm.nih.gov/pubmed/21782934">oxidized</a> cysteine groups on mitochondrial <a href="http://www.ncbi.nlm.nih.gov/pubmed/8577704">TXNRD1</a> proteins <a href="http://www.ncbi.nlm.nih.gov/pubmed/10447675">similar to</a> the cytosolic enzyme, from the <a href="http://pfam.xfam.org/family/PF00667">FAD binding</a>
domain where the active <a href="http://www.ncbi.nlm.nih.gov/pubmed/7589432">cystines</a>
and the NADPH binding domain are contained, plus an interface
domain (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11953436">ID</a>)
of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/10688911">C-terminal</a> interface <a href="http://www.ncbi.nlm.nih.gov/pubmed/10849437">homologous</a> to glutathione reductase identifies a mechanism of <a href="http://www.ncbi.nlm.nih.gov/pubmed/11464290">p53</a>
mediated cell death regulation involving (TrxR) enzymes of redox <a href="http://www.ncbi.nlm.nih.gov/pubmed/17611157">homeostasis</a>
reactions to overcome the <a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">oxidative</a>
stress <a href="http://www.ncbi.nlm.nih.gov/pubmed/16481328">generating</a>
reactive oxygen species (ROS) on a <a href="http://www.ncbi.nlm.nih.gov/pubmed/18045191">complex
combination</a> of decreased apoptosis to prevent permanent cell
damage and cell death that tumor cells use to evade the
redox-sensitive signaling factors, or <a href="http://www.ncbi.nlm.nih.gov/pubmed/16096367">resistance</a>
to therapy. End products of <a href="http://www.ncbi.nlm.nih.gov/pubmed/18229449">lipid</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/11744405">peroxid</a>ation,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16464088">4-HNE</a>-(<a href="http://www.ncbi.nlm.nih.gov/pubmed/16219762">4-</a>Hydroxynonenal) can induce oxidative stress,
other isoforms are more water-soluble adducts detoxifying such a
buildup,&nbsp; peroxidation might be <a href="http://www.ncbi.nlm.nih.gov/pubmed/19942156">limiting</a>
their (selenoproteins) proper expression. Thioredoxin reductase
(TrxR) is the homodimeric <a href="http://www.ncbi.nlm.nih.gov/pubmed/17512005">flavoenzyme</a>
that catalyzes reduction of thioredoxin disulfide (Trx) one of the
major redox control <a href="http://www.ncbi.nlm.nih.gov/pubmed/12894524">systems</a>,
involving a second interaction between NAD(P)H <a href="http://www.ncbi.nlm.nih.gov/pubmed/12742546">and/or</a>
(quinone reductase) <a href="http://www.ncbi.nlm.nih.gov/pubmed/16377050">NQO1</a> via
the FAD-containing enzyme (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9315320">TR</a>),
thioredoxin reductase forms an oxidoreductase system. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10657232">TrxRs</a> are
able to reduce a number of substrate proteins other than Trx.</big><br />
<br />
<br />
<big>
</big><br />
<big>
</big><br />
<big>
<a href="https://plus.google.com/u/0/photos/100787464692550241934/albums/6117623971482461473"><img align="left" alt="3qfb" border="0" height="118" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjuUrhyphenhyphenfntGziU_DEHgdb69b0JAdpKtiL-hRkrMW3LwZV31KnBGaP0us6qjXQbpPHTIHkuimbUj41ytFISCzItUdIrbST4yHRPaIQEOFFsG1P0ThZVYpVD2EcVXifzVENnQmrs65w/w736-h436-no/cys59-64.png" width="200" /></a>The 3' UTR of selenocysteine-containing genes have a common
stem-loop structure, the sec insertion sequence
(selenocystine-SECIS, PDB: <a href="http://www.rcsb.org/pdb/explore/explore.do?structureId=2ZZ0">2ZZ0</a>),
that is necessary for the recognition of a <a href="http://www.ncbi.nlm.nih.gov/pubmed/15471857">catalytically</a>
active Sec codon rather in the values for mitochondrial and
cytosolic thioredoxins reductase (TR) domains. The Sec residue is
protonated at a different pka than in comparison to that of Cysteine. Cys59-Cys64 two cysteines pair also was <a href="http://www.ncbi.nlm.nih.gov/pubmed/10688911">oxidized</a> in the N-terminal <a href="http://www.ncbi.nlm.nih.gov/pubmed/11328605">FAD</a> domain essential for thioredoxin-reducing activity, and the need for Sec-498 (PDB: <a href="http://www.pdb.org/pdb/explore/explore.do?structureId=2J3N">2J3N</a>)
to be in complex with the FAD and <a href="http://www.ncbi.nlm.nih.gov/pubmed/11213469">NADP</a>(+)
during catalysis to the N-terminal active site cysteine residues
Cys59-Cys64 and from there to the C-terminal part of the other subunit <small>which
have </small></big><big><a href="http://www.ncbi.nlm.nih.gov/pubmed/11259642"> selenotetrapeptide</a>
sequences from the other module (PDB: <a href="http://www.pdb.org/pdb/explore/explore.do?structureId=2J3N">2J3N)</a>.
Secys498 forms, (Human PDB 3QFB,) can both be identified at
active site of the enzyme Gly-<a href="http://www.ncbi.nlm.nih.gov/pubmed/8650234">499</a> of the
subunits active Cys-497-TRXR1 (the TR1
structure PDB: <a href="http://www.ncbi.nlm.nih.gov/pubmed/21750537">3QFB</a>) are the mechanism(s) for the incorporation of
<a href="http://www.ncbi.nlm.nih.gov/pubmed/25436585">Se</a> into
TrxRs as the amino acid selenocysteine (Sec), as well as for
delivery to a variety of secondary substrates or TRX (PDB: 3QFB) in nuclei provide means to quantify glutathione (<a href="http://www.ncbi.nlm.nih.gov/pubmed/18951192">GSH</a>) (PDB: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11259642">3H8Q</a>)
conditions of the active GRX functonally and structurally analogus to
TGR (selenodiglutathione) reductase. These two were modeled parts of TGR
were linked to V3 (_TXNRD1) encodes an N-terminal inter-specific
glutaredoxin
(PDB: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11259642">1JHB</a>).<a href="https://plus.google.com/u/0/photos/100787464692550241934/albums/6117623971482461473"><img align="right" alt="3qfb-3h8q" border="0" height="111" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi4-VnYVc9nDjaNDYpawwCPzE9fYxL-JA-Lv07B982_4-bZNHeCuX6DHNFsIfAnsOE-lqg8wK6GgFcHFVfpZ5K8-BDhji1FU8uz-h3PyUGhBGiGb14yi7Ks1L3qevB_icv28wYMfg/w767-h427-no/ligand-ligand+3h8q.png" width="200" /></a>
From the <a href="http://pfam.xfam.org/family/PF00667">FAD
binding</a> domain-(PDB: <a href="http://www.ncbi.nlm.nih.gov/pubmed/16217027">1ZKQ</a> ) active cystines and the <a href="http://www.ncbi.nlm.nih.gov/pubmed/20457604">NADPH</a> binding
domain where they are contained, plus an interface domain (ID) of the
C-terminal ID in complex with its substrate thioredoxin
</big><big> (Trx-PDB: <a href="http://www.ncbi.nlm.nih.gov/pubmed/20536427">1TRX</a>,
TXNRD1-<a href="http://www.pdb.org/pdb/explore/explore.do?structureId=3QFB">3QFB</a>) </big><big>bringing Cys<a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471089/figure/F2/">32</a>
in Trx1 close to Cys497 in 3H8Q to quantify glutathione (GSH) that
helped in characterizing&nbsp; what was separately modeled as the Thioredoxin
reductase (TXNRD1) domain which are consdered as the respective
cytosolic and mitochondrial thioredoxin reductases units with a model
obeying standard geometry that is conceivable of human thioredoxin
reductase 3's structure&nbsp; glutaredoxin domain 3H8Q&nbsp; in complex with the
FAD and NADP(H), </big><big>when replaced by the <a href="http://www.ncbi.nlm.nih.gov/pubmed/?term=19317451">TcTR</a></big><big> (PDB: 2W0H) trypanothione/trypanothione reductase system involves a
phylum of Platyhelmintha, where a glutathione (GSH) isoform containing a
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19070522">fused</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/14676218">Grx</a>)
glutaredoxin domain&nbsp; (PDB: 1JHB) is essential for the parasite
survival.&nbsp; The intricate substrate specificities for the thioredoxin
(Trx) system which consists of native Trx and the respective cytosolic&nbsp;
mitochondrial thioredoxin reductase (TrxR) enzymes are likely to be of
central importance to these observations as a determinant of TrxR
function in general, each (the thioredoxin reductase/thioredoxin
pathway) can reduce a number of different types of substrates or
cross-reactive-bound enzyme fractions as active with thioredoxin.</big><big> </big></div>
<big>
<br />
</big>
<br />
<div align="justify">
<big>
[1.] Selenium yeast: seleno yeast PMID: 16857846</big><br />
<big>
[2.] Sulforaphane From Broccoli PMID: 16377050, 12742546,
20204301, 12949356, 19595745, 17150329, 15740016, 12663510,
15998110, 17300148</big><br />
<big>
[3.] Chlorella vulgaris: corresponding to a chloroplast
NADPH-dependent thioredoxin reductase gene (NTR-C), in Chlorella
PMID: 18029787</big><br />
<big>
[4.] Scutellarin:&nbsp; It can be found in Scutellaria barbata and
S. lateriflora. PMID: 15131321</big><br />
<big>
[5.] Curcumin (TURMERIC plant of the ginger family): PMID:
21782934, 20160040, ~15879598</big><br />
<big>
[6.] Experiments in <a href="http://lnwme.blogspot.com/search/label/Emiliania%20Huxleyi">E.
huxleyi</a> genus phytoplankton PMID: 20032866</big><br />
<big>
[7.] Gambogic Acid pigment of gambooge resin from tree species
Garcinia gummi-gutta. PMID: 24407164</big><br />
<big>
[8.] Shikonin an antioxidant (no longer approved for use,: targets
the <a href="http://www.ncbi.nlm.nih.gov/pubmed/18382651">Sec
residue</a> [13.] in TrxR1 to inhibit its physiological
function. see: (Methane-) methylseleninic acid (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20920480">MSA</a>))
obtained from the extracts of&nbsp; plant [9.] Lithospermum
erythrorhizon. PMID: 24583460</big><br />
<big>
[10.] Black tea extract (BTE) theaflavin (TF) PMID: 19059456</big><br />
<big>
[11.] Green tea extract-epigallocatechin-3-gallate (EGCG) PMID:
19020731</big><br />
<big>
[12.] Eicosatetraenoic acid, (<a href="http://www.upcfoodsearch.com/ingredients/mortierella-alpina-oil/?fb_action_ids=10152940213699670&amp;fb_action_types=og.comments">Mortierella
Alpina Oil</a>) Arachidonic acid (AA)
all-cis-5,8,11,14-eicosatetraenoic acid,
5-Hydroxyicosatetraenoic_acid_and_5-oxo-eicosatetraenoic_acid
PMID: 15123685</big><br />
<big>
[13.] Juglone: In the food industry known as C.I. Natural Brown 7
and C.I. 75500. (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19366212">DTNB</a>
assay, a <a href="http://www.ncbi.nlm.nih.gov/pubmed/18035847">synthetic</a>
approach for Cys and Sec residues.) PMID: 21172426, 11170645,
18382651 ... a 5,5'-[dithiobis Pyritinol: analogue, Sulbutiamine]</big><br />
<big>
[14.] The antioxidant ubiquinol-10 (Q10) PMID: 12435734</big><br />
<big>
[15.] Rottlerin, conductance potassium channel (BKCa++) opener,
source the Kamala tree. PMID: 17581112</big><br />
<big>
[16.] Ajoene a chemical compound available from garlic. PMID:
9986706</big><br />
<big>&nbsp;</big>&nbsp;&nbsp;&nbsp;&nbsp; <big>No CiTO relationships defined<br />
http://vixra.org/abs/1502.0252<br />
http://www.citeulike.org/user/emissrto/article/13530556</big></div>
<big>
<br />
</big>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2015/03/thioredoxin-reductase.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEibYjO6PJUfkg4N1cFzLjvo1rGVyhur-wCIldN4EEYaVQ_nay5omtIWcTsYAXyHwe_TJQKo_uglk6yifFFOq13IFFpyypjfuWeEgi7TVnZMWzQiRf8WfpeMDlOeabelb8uo50v-rQ/s72-w483-h436-c-no/1w1e+MITOCHONDRIAL.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-8602622812753101163</guid><pubDate>Mon, 24 Nov 2014 22:32:00 +0000</pubDate><atom:updated>2015-03-26T08:29:00.243-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">Catalase</category><category domain="http://www.blogger.com/atom/ns#">H2O2</category><category domain="http://www.blogger.com/atom/ns#">NADP</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">peroxiredoxin</category><category domain="http://www.blogger.com/atom/ns#">SOD1</category><category domain="http://www.blogger.com/atom/ns#">TBARS</category><category domain="http://www.blogger.com/atom/ns#">TXN</category><category domain="http://www.blogger.com/atom/ns#">TXNRD1</category><title> Catalase, the antioxidant heme enzyme one of three subgroups related to catalase deficiency in humans modulating the normal catalase reaction dependent on NADPH-binding catalases for function.</title><description><div style="text-align: justify;">
Catalase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10446501">CAT</a>)
is converted by decomposition and intracellular localization
relationships of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/22167619">main</a>
cellular <a href="http://www.ncbi.nlm.nih.gov/pubmed/18603400">antioxidant</a> enzyme system like <a href="http://www.ncbi.nlm.nih.gov/pubmed/19092850">superoxide</a>
dismutase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/2313035">SOD</a>),
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20070187">
peroxiredoxins</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12732627">Prdx</a>), and
<a href="http://www.ncbi.nlm.nih.gov/pubmed/2066646">glutathione</a> peroxidase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/8608252">GPX</a>) are
peroxisomal matrix enzymes in the cytoplasm, <a href="http://www.ncbi.nlm.nih.gov/pubmed/1651504">translocated</a>
to the peroxisomes to catalyze hydrogen peroxide <a href="http://www.ncbi.nlm.nih.gov/pubmed/3944256">H2O2</a> which is <a href="http://www.ncbi.nlm.nih.gov/pubmed/10656833">decomposed</a>
to oxygen and water, locus: <a href="http://www.ncbi.nlm.nih.gov/pubmed/2991908?">11p13</a> (<a href="http://www.ncbi.nlm.nih.gov/gene?term=CCDS7891+AND+%28alive[property]%29&amp;cmd=DetailsSearch">§</a>,
<a href="http://www.ihop-net.org/UniPub/iHOP/gs/86939.html?ID=100299"> ‡</a>). Unlike catalase, the objective of this communication, SOD which
<a href="http://www.ncbi.nlm.nih.gov/pubmed/3273212">prevents</a>
the formation of <a href="http://www.ncbi.nlm.nih.gov/pubmed/18482604">Hydroxyl</a>
radicals - (<a href="http://www.ncbi.nlm.nih.gov/pubmed/23097744"><i>HRGT</i></a>)
determined from constant of <a href="http://www.ncbi.nlm.nih.gov/pubmed/1657455">O2</a>.-
dismutation, and generation of reversibly inactive (CAT)-compound
II, <a href="http://www.ncbi.nlm.nih.gov/pubmed/10594930">Panax
ginseng</a> could induce both transcription factors. Catalase
is&nbsp; composed of four identical subunits each of the subunits
binds one heme-containing active site, and produces two catalase <a href="http://www.ncbi.nlm.nih.gov/pubmed/7663946">compounds</a>
HPI and HPII (PDB: <a href="http://www.pdb.org/pdb/explore/explore.do?pdbId=1p80">1p80</a>)
is flipped <a href="http://www.ncbi.nlm.nih.gov/pubmed/10022351">180
degrees</a> » with respect to the orientation of the heme related
to the « root mean square to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/7663946">structure</a> of
catalase, (Mutation <a href="http://karchinlab.org/Mutants/CAN-genes//pancreatic/CCDS7891.1_Q387H/CCDS7891.1_Q387H.html">Location</a>)
from peroxisomal catalases inactive state in compound II NADP+(H)
binding pockets inverted remains similar to the structure of the
wild type (Val111, PDB:<a href="http://www.ncbi.nlm.nih.gov/pubmed/9931255">1A4E</a>, KatG)
orientation on the heme <a href="http://www.ncbi.nlm.nih.gov/pubmed/11455600">proximal</a>
(PDB: 1GGK) side, <a href="http://www.ncbi.nlm.nih.gov/pubmed/8086159">inactivate</a>
catalase can be prevented by <a href="http://www.ncbi.nlm.nih.gov/pubmed/12797476">melatonin</a>.
Catalase (CAT; EC <a href="http://www.ncbi.nlm.nih.gov/pubmed/1934468">1.11.1.6</a>)
a&nbsp; free radical scavenging enzyme (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12588287">FRSE</a>) is a
scavenger of <a href="http://www.ncbi.nlm.nih.gov/pubmed/18634817">H2O2</a>.
Protoporphyrin - (ZnPPIX) (PDB: <a href="http://www.ncbi.nlm.nih.gov/pubmed/12486720">1H6N</a>), from
a heme group of the 'heme-pathway, which forms catalase,' is a
scavenger of <a href="http://www.ncbi.nlm.nih.gov/pubmed/12565200">antioxidant</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/18228149">HO-1</a>-HMOX1)
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16830363">heme oxygenase</a>,
involving <a href="http://www.ncbi.nlm.nih.gov/pubmed/16703357">ROS</a>.
Catalase is part of the enzymatic defense <a href="http://www.ncbi.nlm.nih.gov/pubmed/14680687">system</a>
constituting the <a href="http://www.ncbi.nlm.nih.gov/pubmed/17264407">primary</a>
defense against <a href="http://www.ncbi.nlm.nih.gov/pubmed/18949620">ROS</a>, zinc
protoporphyrin IX (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21731454">ZnPPIX</a>) is
an inhibitor of (HO-1) heme oxygenase. Catalase <a href="http://www.ncbi.nlm.nih.gov/pubmed/21062512">protects</a>
the cell from oxidative <a href="http://www.ncbi.nlm.nih.gov/pubmed/20878976">damage</a> by
the accumulation of cellular reactive oxygen species (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10960765">ROS</a>)
generation systems, those <a href="http://www.ncbi.nlm.nih.gov/pubmed/12475949">peroxisomal</a>
enzymes that <a href="http://www.ncbi.nlm.nih.gov/pubmed/10656833">breaks
down</a> hydrogen peroxide after H(2)O(2) exposure, and thereby <a href="http://www.ncbi.nlm.nih.gov/pubmed/16611809">mitigates</a>*
(some <a href="http://www.ncbi.nlm.nih.gov/pubmed/12509339">contradictory</a>*
results) the toxic effects of hydrogen peroxide. In the process (The
typical hydroperoxidases (CAT) known as <a href="http://www.ncbi.nlm.nih.gov/pubmed/22516655">Compound I</a>)
of the substrate of catalase, <a href="http://www.ncbi.nlm.nih.gov/pubmed/10318800">NADP+</a> (an <a href="http://www.ncbi.nlm.nih.gov/pubmed/10446501">inactive</a>
state, <a href="http://www.ncbi.nlm.nih.gov/pubmed/3805001">compound
II</a>) is replaced by another molecule of NADP(H) to provide
protection of catalase against <a href="http://www.ncbi.nlm.nih.gov/pubmed/15456401">inactivation</a>
by (H2O2) hydrogen peroxide. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11163027">Erythrocyte</a>&nbsp;
[Human erythrocyte catalase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16204228">HEC</a>), The <a href="http://www.ncbi.nlm.nih.gov/pubmed/11134921">NADPH</a>-binding
sites were empty - PDB: 1F4J, <a href="http://www.ncbi.nlm.nih.gov/pubmed/10666617">1QQW</a>] and plasma <a href="http://www.ncbi.nlm.nih.gov/pubmed/17171548">indices</a>
(enzymatic-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15205966">antioxidant</a><a href="https://www.blogger.com/null">s</a>)
initially implies the thiobarbituric acid-reacting substances (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15158621">TBARS</a>)
based on reaction with hydroxyl radicals (<a href="http://www.ncbi.nlm.nih.gov/pubmed/2573174">OH</a>) can
release thiobarbituric acid, <a href="http://www.ncbi.nlm.nih.gov/pubmed/10064127">TBAR</a>
inhibition <a href="http://www.ncbi.nlm.nih.gov/pubmed/1683270">measures</a>
malondialdehyde (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12707286">MDA</a> -
impact of coenzyme <a href="http://www.ncbi.nlm.nih.gov/pubmed/22645453">Q10</a>)
correlated (with MPO-myeloperoxidase <a href="http://www.ncbi.nlm.nih.gov/pubmed/23746122">activity</a>
-generating ROS) as <a href="http://www.ncbi.nlm.nih.gov/pubmed/19228758">co-variable</a>,
by which <a href="http://www.ncbi.nlm.nih.gov/pubmed/25316427">mulberry
leaf</a> polysaccharide (MLPII) via the decomposition of (certain)
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15295623">MDA</a>,
products of <a href="http://www.ncbi.nlm.nih.gov/pubmed/16781659">lipid</a>
peroxidation (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9609318">LPO</a>)
were reduced. Comparisons were to specific activities of catalase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/23098659">SNP</a>) single
nucleotide <a href="http://www.ncbi.nlm.nih.gov/pubmed/16298864">polymorphisms</a>
(CAT-C-<a href="http://www.ncbi.nlm.nih.gov/pubmed/19255063">262</a>
(rs<a href="http://www.ncbi.nlm.nih.gov/pubmed/19863340">1001179</a>)
the low-risk <a href="http://www.ncbi.nlm.nih.gov/pubmed/17264407">allele</a>)
of genetic variants in both, promoter a common <a href="http://www.ncbi.nlm.nih.gov/pubmed/11182520">C/T</a>
polymorphism (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16775184">262</a>-C/<a href="http://www.ncbi.nlm.nih.gov/pubmed/15472150">T</a>), and in <a href="http://www.ncbi.nlm.nih.gov/pubmed/22058000">nine</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/22736749">exonic</a> - regions
and its boundaries, occur frequently associated distally in <a href="http://www.ncbi.nlm.nih.gov/pubmed/12633942">genomic</a>
mutations, similar to those of <a href="http://www.ncbi.nlm.nih.gov/pubmed/1999334">normal catalase</a>
demonstrating <a href="http://www.ncbi.nlm.nih.gov/pubmed/8931469">changes</a>
in catalase protein level targeted to the peroxisomal <a href="http://www.ncbi.nlm.nih.gov/pubmed/20178365">matrix</a>. The 262-C/T CAT low-risk allele is hypothetically related to the lower risk variant allele CAT <a href="http://www.ncbi.nlm.nih.gov/pubmed/19242068">Tyr308</a> G to A point mutation ineducable in the Japanese acatalasemia allele. The
common C/T polymorphism can be <a href="http://www.ncbi.nlm.nih.gov/pubmed/16192345">targeted</a> by
dietary <a href="http://www.ncbi.nlm.nih.gov/pubmed/22736749">and/or</a>
pharmacological antioxidants, and the <a href="http://www.ncbi.nlm.nih.gov/pubmed/23827365">endogenous</a>
antioxidant defense <a href="http://www.ncbi.nlm.nih.gov/pubmed/18838841">enzymes</a>
concentration can prevent cellular <a href="http://www.ncbi.nlm.nih.gov/pubmed/12135688">lipid</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11412828">LPO</a>) <a href="http://www.ncbi.nlm.nih.gov/pubmed/10370358">peroxidative</a>
reactions occurring. Catalase is a homo<a href="http://www.ncbi.nlm.nih.gov/pubmed/3755525">tetramer</a>
complex of 4 identical <a href="http://www.ncbi.nlm.nih.gov/pubmed/14745498">monofunctional</a>
subunits. Catalase is located at the <a href="http://www.ncbi.nlm.nih.gov/pubmed/15733034">peroxisome</a>
of human cells associated with several (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10567403">PBDs</a>)-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15771551">peroxisomal</a>
biogenesis disorders commonly caused by mutations in the PEX <a href="http://www.ncbi.nlm.nih.gov/pubmed/21976670">genes</a>,
peroxisomal targeting signal 1 (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12475949">PTS1</a>)
protein affecting in peroxisomal <a href="http://www.ncbi.nlm.nih.gov/pubmed/19479899">biogenesis</a>,
the monomeric to homotetrameric transition in the forms of
peroxisome <a href="http://www.ncbi.nlm.nih.gov/pubmed/10960480">biogenesis</a>
disorder. PBDs also include <a href="http://www.ncbi.nlm.nih.gov/pubmed/22286031">Acatalasemia</a> the only disease <a href="http://www.ncbi.nlm.nih.gov/pubmed/21985133">known</a> to be
caused by the (CAT) gene. In human catalase, the antioxidant <a href="http://www.ncbi.nlm.nih.gov/pubmed/18498226">heme</a>
enzyme, is localized in the cytoplasm to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8463903">peroxisome</a>, nucleus, or <a href="http://www.ncbi.nlm.nih.gov/pubmed/18197787">linked</a> with
mitochondria which in most cells <a href="http://www.ncbi.nlm.nih.gov/pubmed/11351128">lack catalase</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9408912">Peroxisomes</a> do not contain <a href="http://www.ncbi.nlm.nih.gov/pubmed/21338322">DNA</a>), its <a href="http://www.ncbi.nlm.nih.gov/pubmed/18379038">mitochondrial</a> fraction (microperoxisome), a secondary <a href="http://www.ncbi.nlm.nih.gov/pubmed/22685621">phenomena</a> shows physiological decline, <a href="http://www.ncbi.nlm.nih.gov/pubmed/18948086">aging</a> and age-<a href="http://www.ncbi.nlm.nih.gov/pubmed/8090715">related</a> reactions in <a href="http://www.ncbi.nlm.nih.gov/pubmed/21109199">mitochondrial</a> function and <a href="http://www.ncbi.nlm.nih.gov/pubmed/16178023">disfunction</a>.
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17158050">NADPH</a> is
required for the prevention of forming an <a href="http://www.ncbi.nlm.nih.gov/pubmed/3805001">inactive</a>
state of the enzyme. Antioxidative defence mechanisms, capacity and
redox <a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&amp;cmd=search&amp;Dopt=b&amp;term=21180245" target="aaa"> </a>cycle enzyme
activities increasing with Tc treatment <a href="http://www.ncbi.nlm.nih.gov/pubmed/24250513">Tinospora
cordifolia</a> (Tc), T and B cells and antibody. Both <a href="http://www.ncbi.nlm.nih.gov/pubmed/14707431">RBC</a>s and
plasma were measured on parameters of oxidative stress.&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/21063110">Syzygium cumini</a>
aqueous leaves extract (ASc) was able to remove oxidant
species in a hyperglycemic state generated in red blood cells
RBC-CAT levels. Catalase alone is unable to prevent in a
hyperglycemic state. <a href="http://www.ncbi.nlm.nih.gov/pubmed/12619169">Macrophages</a>
recruit other types of immune cells such as lymphocytes white blood
cells (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12542561">WBC</a>s).&nbsp; Catalase is dependent on the family of <a href="http://www.ncbi.nlm.nih.gov/pubmed/18498226">NADPH</a>-binding
catalases for function, the prevention and reversal of
inactivation by its toxic substrate (H2O2) hydrogen peroxide. Amyloid-<a href="http://www.ncbi.nlm.nih.gov/pubmed/10567208">beta</a> binds
catalase and <a href="http://www.ncbi.nlm.nih.gov/pubmed/10567208">inhibits</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/18498226">H2O2</a>)
hydrogen peroxide, a reactive oxygen species, <a href="http://www.ncbi.nlm.nih.gov/pubmed/19092850">breakdown</a>
through efficient <a href="http://www.ncbi.nlm.nih.gov/pubmed/10446501">dismutation</a>,
and malonaldelhyde (MDA) determined in <a href="http://www.ncbi.nlm.nih.gov/pubmed/15223607">plasma</a>, as
well as another member of the oxidoreductase family, myeloperoxidase
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/15705913">MPO</a> (EC <a href="http://www.ncbi.nlm.nih.gov/pubmed/20732340">1.11.1.7</a>))
converting H(2)O(2), the reducing equivalents produces (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11513598">HOCl</a>)
hypochlorous acid a <a href="http://www.ncbi.nlm.nih.gov/pubmed/6270214">mechanism</a> of
cell-mediated antimicrobial immune defense for <a href="http://www.ncbi.nlm.nih.gov/pubmed/1954228">monofunctional</a>
catalases one of three subgroups related to catalase deficiency in
humans, in micro-organisms <a href="http://www.ncbi.nlm.nih.gov/pubmed/8315349">manganese</a>-containing catalases ('large
catalases') determining in part the bifunctional activity of (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20054829">KatG</a>, PDB:<a href="http://www.ncbi.nlm.nih.gov/pubmed/15567407">1X7U</a>)
represented by <a href="http://www.ncbi.nlm.nih.gov/pubmed/19129167">bifunctional</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/22209752">heme</a>) <a href="http://www.ncbi.nlm.nih.gov/pubmed/16211084">catalase-peroxidase</a>
based Bacterial-<a href="http://www.ncbi.nlm.nih.gov/pubmed/16566587">resistance</a>
mechanisms. Peroxiredoxins (Prxs, EC <a href="http://smart.embl.de/smart/do_annotation.pl?DOMAIN=SM01060">1.11.1.21</a>),
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12731870">bifunctional</a>
catalase-peroxidases (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19139099">KatGs</a>) two
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18634817">organelle</a>
systems are antioxidant enzymes of the peroxiredoxin family that oxidize and reduce H(2)O(2)
hydrogen peroxide thereby modulating the <a href="http://www.ncbi.nlm.nih.gov/pubmed/17063492">catalase</a>
reaction, KatGs are <a href="http://www.ncbi.nlm.nih.gov/pubmed/18498226">not found</a>
in plants and animals. Trx (<a href="http://lnwme.blogspot.com/2014/07/characterization-of-human-thioredoxin.html#identifier_4_1125">thioredoxin</a>) a <a href="http://www.ncbi.nlm.nih.gov/pubmed/16712839">redox</a>-regulating protein also <a href="http://www.ncbi.nlm.nih.gov/pubmed/9409558">controls</a> the antioxidant enzyme activity of the main
cellular antioxidant enzymes (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10374946">AOE</a>)
superoxide dismutase (SOD) and catalase.</div>
<br />
<br />
<div align="justify">
The function of <a href="http://www.ncbi.nlm.nih.gov/pubmed/8086159">NADPH</a> bound
to <a href="http://www.ncbi.nlm.nih.gov/pubmed/10318800">Catalase</a>.<br />
<a href="https://plus.google.com/photos/100787464692550241934/albums/6084961365149457457?referrer=GPU&amp;ruid=100787464692550241934"><img align="left" alt="catalase" border="0" height="205" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg7jWMvyxsIk_hLRrdzwIT6oTDVxVmcRJXHG4SmJ_yxJvlkc3B_aD5yuARDDVRxCraD4xL2cxIgKskBp3nfIYz8IbhwVhGXNbZVaDe8xaIB1YulmM0S-ORddhVvVfYACRaXD1GC5g/w482-h494-no/element1.png" width="200" /></a>The cytosine to thymidine transition of nucleotide-262 (-262C&gt;T)
Computer analysis indicated that the two variants bound promoter the
Ile&nbsp; (-262 C/T) and (B) <a href="http://www.ncbi.nlm.nih.gov/pubmed/23773345">Ile-262</a> in
the <a href="http://www.ncbi.nlm.nih.gov/pubmed/11182520">5'-flanking</a>
region carrying the T allele best captured and characterized the
generation of the hydroxyl radical site in (PDB: <a href="http://www.ncbi.nlm.nih.gov/pubmed/18498226">1DGB</a>), (CAT) -[GLU] <a href="http://www.ncbi.nlm.nih.gov/pubmed/18368408">330C&gt;T</a> transition, is known also as -262C&gt;T. The
'T allele in comparison to the C allele' is a common C/T
polymorphism frequency in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/23098659">promoter</a>
region association was observed between genotypes for locus11p13 risk alleles acatalasemia mutation Asp
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/21947853">37C&gt;T</a> in exon 9) was hypothetically related to the lower risk Japanese acatalasemia allele <a href="http://www.ncbi.nlm.nih.gov/pubmed/19242068">Tyr308</a> a single <a href="http://www.ncbi.nlm.nih.gov/pubmed/1551654">G</a> to <a href="http://www.ncbi.nlm.nih.gov/pubmed/24057136">A</a> (see: rs<a href="http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7947841">7947841</a>&nbsp; to evaluate the link to rs<a href="http://www.ncbi.nlm.nih.gov/pubmed/21827848">769214</a>) point mutation ineducable or near exon 9 (<a href="http://www.ncbi.nlm.nih.gov/pubmed/22167619">TC</a>,
CC, TT) of the CAT gene to which variant changes in the promoter region
C/T-262 polymorphism are more closely related to CAT T/C at codon <a href="http://www.ncbi.nlm.nih.gov/pubmed/22058000">389</a> in exon 9 (rs<a href="http://www.ncbi.nlm.nih.gov/pubmed/23868633">769217</a>)
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21054578">polymorphism</a> did not <a href="http://www.ncbi.nlm.nih.gov/pubmed/22736749">differ</a> significantly from
those of healthy <a href="http://www.ncbi.nlm.nih.gov/pubmed/22058000">controls</a> in both promoter (-262 C/T) and
in exonic (<a href="http://www.ncbi.nlm.nih.gov/pubmed/22058000">ASP</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/22736749">389</a> C/T)
regions of the catalase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/22736749">CAT</a>).&nbsp;<a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjk-YCuceVO8Jc-iOST1edYytJpAvEY7wPsYIGQrlUFRCLm9MurKya0INpxK8O9MhdZB4mXD9o2RDAuof8vdVXYwZ95ErEg8vxCn86s4tq-VaYQUTvpHB0-QP0ytD34D8foOvopUw/w467-h494-no/111c.png"><img align="right" alt="catalase" border="0" height="218" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjk-YCuceVO8Jc-iOST1edYytJpAvEY7wPsYIGQrlUFRCLm9MurKya0INpxK8O9MhdZB4mXD9o2RDAuof8vdVXYwZ95ErEg8vxCn86s4tq-VaYQUTvpHB0-QP0ytD34D8foOvopUw/w467-h494-no/111c.png" width="200" /></a>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10656833">Tyr 370</a>
resolves the 25 A-long (hydrogen peroxide) channel a constriction or
narrowing of the channel leading to the heme cavity ('Parameters)
situated in the entrance channel to a heme protoporphyrin (ZnPPIX)
(PDB: 1H6N) from a heme group, capable of heme <a href="http://eds.bmc.uu.se/cgi-bin/eds/uusfs?pdbCode=2IUF">biosynthesis</a>'
in a wide range of organisms convert it into into <a href="https://www.blogger.com/null">heme b</a>,
protoporphyrin <a href="http://www.rcsb.org/pdb/101/motm.do?momID=57">IX-heme</a>.
Two channels lead close to the distal side.&nbsp; A third channel
reaching the heme <a href="http://www.ncbi.nlm.nih.gov/pubmed/10022351">proximal side</a>
Tyr 370, <a href="http://www.ncbi.nlm.nih.gov/pubmed/12777389">Ile-262</a>
is proposed as a the 'PDB: 1DGB - variant with a substituted residue in the ASP 178 to the (Met)
<a href="http://www.pdb.org/pdb/explore/explore.do?pdbId=1p80"> D181E</a> variant PDB <a href="http://www.ncbi.nlm.nih.gov/pubmed/12777389">1p80</a>'.&nbsp;
These differences include the structure of the variant protein <a href="http://www.ncbi.nlm.nih.gov/pubmed/9931255">Val111</a>Ala
(Saccharomyces cerevisiae) related supports the existence of the 'Heme and NADP(H) binding
pockets'. The omission of a 20-residue&nbsp; PDB: 1F4J, (1QQW) segment
corresponds to the N-terminal (blue) of catalase from human
erythrocytes (HEC), or in a <a href="http://www.ncbi.nlm.nih.gov/pubmed/10446501">C-terminal</a>
(red) domain organized with an extra <a href="http://www.ncbi.nlm.nih.gov/pubmed/10022351">flavodoxin</a>-like
<a href="http://en.wikipedia.org/wiki/Flavodoxin_fold">fold</a>
topology may provide with weak coordination the <a href="http://www.ncbi.nlm.nih.gov/pubmed/21968615">N- or
C-terminal</a>, that allows scrutiny of the origins (topology) in
this report of what would otherwise remain speculative or <a href="http://www.ncbi.nlm.nih.gov/pubmed/11134921">determined</a> with further verification.</div>
<br />
<div style="text-align: justify;">
&nbsp;Biological Xenobiotic Extracts Applications of note In the presence
of Catalase:</div>
<div style="text-align: justify;">
<br /></div>
<div style="text-align: justify;">
green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) </div>
<div style="text-align: justify;">
Yamamoto T, Lewis J, Wataha J, Dickinson D, Singh B, Bollag WB, Ueta
E, OsakiT, Athar M, Schuster G, Hsu S. Roles of catalase and hydrogen
peroxide in greentea polyphenol-induced chemopreventive effects. J
Pharmacol Exp Ther. 2004Jan;308(1):317-23. Epub 2003 Oct 20. PubMed
PMID: 14569057.Furukawa A, Oikawa S, Murata M, Hiraku Y, Kawanishi S.
(-)-Epigallocatechingallate causes oxidative damage to isolated and
cellular DNA. Biochem Pharmacol.2003 Nov 1;66(9):1769-78. PubMed PMID:
14563487.*</div>
<div style="text-align: justify;">
Trigonella (Fenugreek) </div>
<div style="text-align: justify;">
Mohammad S, Taha A, Bamezai RN, Basir SF, Baquer NZ. Lower doses of
vanadatein combination with trigonella restore altered carbohydrate
metabolism andantioxidant status in alloxan-diabetic rats. Clin Chim
Acta. 2004Apr;342(1-2):105-14. Erratum in: Clin Chim Acta. 2010 Aug
5;411(15-16):1158.Mohamad, Sameer [corrected to Mohammad, Sameer].
PubMed PMID: 15026271.</div>
<div style="text-align: justify;">
Aegle marmelos </div>
<div style="text-align: justify;">
Khan TH, Sultana S. Antioxidant and hepatoprotective potential of
Aeglemarmelos Correa. against CCl4-induced oxidative stress and early
tumor events. JEnzyme Inhib Med Chem. 2009 Apr;24(2):320-7. doi:
10.1080/14756360802167754 .PubMed PMID: 18830880.</div>
<div style="text-align: justify;">
Centella asiatica<br />
Flora SJ, Gupta R. Beneficial effects of Centella asiatica aqueous
extractagainst arsenic-induced oxidative stress and essential metal
status in rats.Phytother Res. 2007 Oct;21(10):980-8. PubMed PMID:
17600859.</div>
<div style="text-align: justify;">
Daidzein<br />
Mishra P, Kar A, Kale RK. Prevention of chemically induced
mammarytumorigenesis by daidzein in pre-pubertal rats: the role of
peroxidative damageand antioxidative enzymes. Mol Cell Biochem. 2009
May;325(1-2):149-57. doi:10.1007/s11010-009-0029-1. Epub 2009 Feb 13.
PubMed PMID: 19214712.</div>
<div style="text-align: justify;">
Capparis<br />
Yadav P, Sarkar S, Bhatnagar D. Action of capparis decidua
againstalloxan-induced oxidative stress and diabetes in rat tissues.
Pharmacol Res. 1997Sep;36(3):221-8. PubMed PMID: 9367667.</div>
<div style="text-align: justify;">
Retinal<br />
&nbsp;Kannan R, Jin M, Gamulescu MA, Hinton DR. Ceramide-induced apoptosis:
role ofcatalase and hepatocyte growth factor. Free Radic Biol Med. 2004
Jul15;37(2):166-75. PubMed PMID: 15203188.</div>
<div style="text-align: justify;">
Retinol<br />
Cemek M, Caksen H, Bayiroğlu F, Cemek F, Dede S. Oxidative stress
andenzymic-non-enzymic antioxidant responses in children with acute
pneumonia. CellBiochem Funct. 2006 May-Jun;24(3):269-73. PubMed PMID:
16634091.</div>
<div style="text-align: justify;">
Diallyl disulfide (Allicin)<br />
Kalayarasan S, Prabhu PN, Sriram N, Manikandan R, Arumugam M,
Sudhandiran G.Diallyl sulfide enhances antioxidants and inhibits
inflammation through theactivation of Nrf2 against gentamicin-induced
nephrotoxicity in Wistar rats. EurJ Pharmacol. 2009 Mar
15;606(1-3):162-71. doi: 10.1016/j.ejphar.2008.12.055. Epub2009 Jan 19.
PubMed PMID: 19374873.</div>
<div style="text-align: justify;">
Leucas aspera (Catechin, EGCG)<br />
Kripa KG, Chamundeeswari D, Thanka J, Uma Maheswara Reddy C. Modulation
ofinflammatory markers by the ethanolic extract of Leucas aspera in
adjuvantarthritis. J Ethnopharmacol. 2011 Apr 12;134(3):1024-7.
doi:10.1016/j.jep.2011.01.010. Epub 2011 Jan 18. PubMed PMID: 21251972.</div>
<div style="text-align: justify;">
Urtica dioica (nettle suppliment)Ozen T, Korkmaz H. Modulatory effect of Urtica dioica L. (Urticaceae) leaf<br />
extract on biotransformation enzyme systems, antioxidant enzymes,
lactatedehydrogenase and lipid peroxidation in mice. Phytomedicine.
2003;10(5):405-15.PubMed PMID: 12834006.</div>
<div style="text-align: justify;">
Justicia adhatoda<br />
Singh RP, Padmavathi B, Rao AR. Modulatory influence of Adhatoda
vesica(Justicia adhatoda) leaf extract on the enzymes of xenobiotic
metabolism,antioxidant status and lipid peroxidation in mice. Mol Cell
Biochem. 2000Oct;213(1-2):99-109. PubMed PMID: 11129964.</div>
<div style="text-align: justify;">
Phyllanthus niruri L. (Euphorbiaceae) (P. niruri)<br />
Bhattacharjee R, Sil PC. Protein isolate from the herb, Phyllanthus
niruri L.(Euphorbiaceae), plays hepatoprotective role against carbon
tetrachloride inducedliver damage via its antioxidant properties. Food
Chem Toxicol. 2007May;45(5):817-26. Epub 2006 Nov 11. PubMed PMID:
17175085.</div>
<div style="text-align: justify;">
Tinospora cordifolia<br />
Sharma V, Pandey D. Protective Role of Tinospora cordifolia
againstLead-induced Hepatotoxicity. Toxicol Int. 2010 Jan;17(1):12-7.
doi:10.4103/0971-6580.68343. PubMed PMID: 21042467; PubMed Central
PMCID: PMC2964743.</div>
<div style="text-align: justify;">
Aher V, Kumar Wahi A. Biotechnological Approach to Evaluate
theImmunomodulatory Activity of Ethanolic Extract of Tinospora
cordifolia Stem(Mango Plant Climber). Iran J Pharm Res. 2012
Summer;11(3):863-72. PubMed PMID:24250513; PubMed Central PMCID:
PMC3813135.</div>
<div style="text-align: justify;">
coenzyme Q10<br />
Lee BJ, Lin YC, Huang YC, Ko YW, Hsia S, Lin PT. The relationship
betweencoenzyme Q10, oxidative stress, and antioxidant enzymes
activities and coronaryartery disease. ScientificWorldJournal.
2012;2012:792756. doi:10.1100/2012/792756. Epub 2012 May 3. PubMed PMID:
22645453; PubMed CentralPMCID: PMC3356738.</div>
<div style="text-align: justify;">
Dietary carotenoid-rich pequi oil<br />
Miranda-Vilela AL, Akimoto AK, Alves PC, Pereira LC, Gonçalves
CA,Klautau-Guimarães MN, Grisolia CK. Dietary carotenoid-rich pequi oil
reducesplasma lipid peroxidation and DNA damage in runners and evidence
for anassociation with MnSOD genetic variant -Val9Ala. Genet Mol Res.
2009 Dec15;8(4):1481-95. doi: 10.4238/vol8-4gmr684. PubMed PMID:
20082261.</div>
<div style="text-align: justify;">
Tinospora
cordifolia&nbsp; (Mango Plant Climber) extract from Tinospora
known as Tinofend Aher V, Kumar Wahi A. Biotechnological Approach to
Evaluate theImmunomodulatory Activity of Ethanolic Extract of Tinospora
cordifolia Stem(Mango Plant Climber). Iran J Pharm Res. 2012
Summer;11(3):863-72. PubMed PMID:24250513; PubMed Central PMCID:
PMC3813135.</div>
<div style="text-align: justify;">
&nbsp;mulberry leaf polysaccharide (MLPII)<br />
Ren C, Zhang Y, Cui W, Lu G, Wang Y, Gao H, Huang L, Mu Z. A
polysaccharideextract of mulberry leaf ameliorates hepatic glucose
metabolism and insulinsignaling in rats with type 2 diabetes induced by
high fat-diet andstreptozotocin. Int J Biol Macromol. 2014 Oct 11. pii:
S0141-8130(14)00674-6.doi: 10.1016/j.ijbiomac.2014.09.060. [Epub ahead
of print] PubMed PMID: 25316427.</div>
<div style="text-align: justify;">
five widely studied medicinal plants (Protandim)<br />
Nelson SK, Bose SK, Grunwald GK, Myhill P, McCord JM. The induction of
humansuperoxide dismutase and catalase in vivo: a fundamentally new
approach toantioxidant therapy. Free Radic Biol Med. 2006 Jan
15;40(2):341-7. PubMed PMID:16413416.</div>
<div style="text-align: justify;">
melatonin<br />
Mayo JC, Tan DX, Sainz RM, Lopez-Burillo S, Reiter RJ. Oxidative damage
tocatalase induced by peroxyl radicals: functional protection by
melatonin andother antioxidants. Free Radic Res. 2003 May;37(5):543-53.
PubMed PMID: 12797476.</div>
<div style="text-align: justify;">
Protective effect of harmaline<br />
Kim DH, Jang YY, Han ES, Lee CS. Protective effect of harmaline and
harmalolagainst dopamine- and 6-hydroxydopamine-induced oxidative damage
of brainmitochondria and synaptosomes, and viability loss of PC12
cells. Eur J Neurosci.2001 May;13(10):1861-72. PubMed PMID: 11403679.</div>
<div style="text-align: justify;">
horseradish peroxidase (HRP)<br />
Shen L, Hu N. Heme protein films with polyamidoamine dendrimer:
directelectrochemistry and electrocatalysis. Biochim Biophys Acta. 2004
Jan30;1608(1):23-33. PubMed PMID: 14741582.</div>
<div style="text-align: justify;">
Selegiline (--)Deprenyl<br />
Kitani K, Minami C, Isobe K, Maehara K, Kanai S, Ivy GO, Carrillo MC.
Why(--)deprenyl prolongs survivals of experimental animals: increase of
anti-oxidantenzymes in brain and other body tissues as well as
mobilization of varioushumoral factors may lead to systemic anti-aging
effects. Mech Ageing Dev. 2002Apr 30;123(8):1087-100. Review. PubMed
PMID: 12044958.</div>
<div style="text-align: justify;">
Rhodiola rosea<br />
Bayliak MM, Lushchak VI. The golden root, Rhodiola rosea, prolongs
lifespanbut decreases oxidative stress resistance in yeast Saccharomyces
cerevisiae.Phytomedicine. 2011 Nov 15;18(14):1262-8. doi:
10.1016/j.phymed.2011.06.010. Epub2011 Jul 30. PubMed PMID: 21802922.</div>
<div style="text-align: justify;">
Carnitine<br />
Kiziltunc A, Coğalgil S, Cerrahoğlu L. Carnitine and antioxidants levels
inpatients with rheumatoid arthritis. Scand J Rheumatol.
1998;27(6):441-5. PubMedPMID: 9855215.</div>
<div style="text-align: justify;">
&nbsp;Syzygium cumini</div>
<div style="text-align: justify;">
&nbsp;De Bona KS, Bellé LP, Sari MH, Thomé G, Schetinger MR, Morsch VM, Boligon A,<br />
Athayde ML, Pigatto AS, Moretto MB. Syzygium cumini extract decrease adenosine<br />
deaminase, 5'nucleotidase activities and oxidative damage in platelets of<br />
diabetic patients. Cell Physiol Biochem. 2010;26(4-5):729-38. doi:<br />
10.1159/000322340. Epub 2010 Oct 29. PubMed PMID: 21063110.</div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2014/11/catalase-antioxidant-heme-enzyme-one-of.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg7jWMvyxsIk_hLRrdzwIT6oTDVxVmcRJXHG4SmJ_yxJvlkc3B_aD5yuARDDVRxCraD4xL2cxIgKskBp3nfIYz8IbhwVhGXNbZVaDe8xaIB1YulmM0S-ORddhVvVfYACRaXD1GC5g/s72-w482-h494-c-no/element1.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-1420426069265773815</guid><pubDate>Wed, 16 Jul 2014 18:35:00 +0000</pubDate><atom:updated>2014-11-24T08:45:32.676-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">1</category><category domain="http://www.blogger.com/atom/ns#">25D(3)</category><category domain="http://www.blogger.com/atom/ns#">AP-1</category><category domain="http://www.blogger.com/atom/ns#">ASK1</category><category domain="http://www.blogger.com/atom/ns#">capsase</category><category domain="http://www.blogger.com/atom/ns#">Catalase</category><category domain="http://www.blogger.com/atom/ns#">epigallocatechin</category><category domain="http://www.blogger.com/atom/ns#">NADP</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">SOD1</category><category domain="http://www.blogger.com/atom/ns#">TBP</category><category domain="http://www.blogger.com/atom/ns#">TRX</category><title>Characterization of human thioredoxin system and the potential cellular responses encoded to observe the Thioredoxin-Trx1 reversibly regulated redox sites.</title><description><div style="text-align: justify;">
<big>Thioredoxin: human TXN, is a oxidoreductase enzyme in the
status of a <a href="http://www.ncbi.nlm.nih.gov/pubmed/7788295">12 kDa</a>
cellular <a href="http://www.ncbi.nlm.nih.gov/pubmed/8958209">redox</a>-reductase
reaction (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11012661">70-kDa</a>
in bacteria, fungi and plants), a <a href="http://www.ncbi.nlm.nih.gov/pubmed/10232049">cellular</a>
defense mechanisms against oxidative stress of the cell, and
numerous cytosolic processes in <a href="http://www.ncbi.nlm.nih.gov/pubmed/9369469">all cells</a>.
Txn1 is a <a href="http://www.ncbi.nlm.nih.gov/pubmed/9108029">pleiotropic</a>
cellular causative gene factor which has <a href="http://www.ncbi.nlm.nih.gov/pubmed/24062305">numerous</a>
functions. Chromosome 3<a href="http://www.ncbi.nlm.nih.gov/pubmed/7601465">p12-p11</a>
shares homology with human thioredoxin gene Trx1, Trx<a href="http://www.ncbi.nlm.nih.gov/pubmed/10982790">80</a>:
9q31.3; (<a href="http://www.ncbi.nlm.nih.gov/gene?term=7295">§</a>,
<a href="http://www.ihop-net.org/UniPub/iHOP/gs/92935.html?ID=88800">‡</a>). Here </big><big>the following reaction is the possible mechanisms of the thioredoxin-catalyzed reduction and re-oxidation of its characteristic cystine residues.</big><br />
<big> &nbsp;The TXN gene, </big><big>consists of the first of 5 <a href="http://www.ncbi.nlm.nih.gov/pubmed/1874447">exons</a> separated by 4 introns and is located <a href="http://www.ncbi.nlm.nih.gov/pubmed/8144037">22 bp</a>
downstream from the only known basal <a href="http://www.ncbi.nlm.nih.gov/pubmed/16712525">TATA</a>
box factor <a href="http://www.ncbi.nlm.nih.gov/pubmed/19018770">TBP-2</a>/TXNIP
vitamin <a href="http://www.ncbi.nlm.nih.gov/pubmed/15234975">D(3)</a>
up-regulated <a href="http://www.ncbi.nlm.nih.gov/pubmed/15818395">protein</a>
1-<a href="http://www.ncbi.nlm.nih.gov/pubmed/11778846">VDUP1</a>,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17012763">negatively</a>
regulating <a href="http://www.ncbi.nlm.nih.gov/pubmed/17603038">TRX</a>
function, and exhibiting <a href="http://www.ncbi.nlm.nih.gov/pubmed/10419473">cellular</a>
growth and <a href="http://www.ncbi.nlm.nih.gov/pubmed/12189205">suppressive</a>
(cancer) activity.</big><br />
<big> &nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/10843682">TRX</a>
inhibited <a href="http://www.ncbi.nlm.nih.gov/pubmed/12723971">Apoptosis</a>
signal-regulating kinase-<a href="http://www.ncbi.nlm.nih.gov/pubmed/18501712">ASK1</a>
kinase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17561491">MAP3K</a>5),
activity, dependent on two <a href="http://www.ncbi.nlm.nih.gov/pubmed/9564042">cysteine</a>
residues in the N-terminal domain of <a href="http://www.ncbi.nlm.nih.gov/pubmed/16311508">ASK1</a>
on the redox (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15818395">regulation</a>)
forming intramolecular disulfide between the status of TXN.
Two cysteine residues (N-terminal <a href="http://www.ncbi.nlm.nih.gov/pubmed/12089063">C32S</a>
or Trx C-terminal <a href="http://www.ncbi.nlm.nih.gov/pubmed/17652454">C35S</a>
and/or a Trx-CS double <a href="http://www.ncbi.nlm.nih.gov/pubmed/10419473">mutation</a>)
remaining trapped with the Ask1 as a inactive high-<a href="http://www.ncbi.nlm.nih.gov/pubmed/17724081">molecular-mass</a>
complex, blocking its reduction to release Trx from ASK1
depends on intramolecular disulfide to catalyze the reduction
of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/24062305">redox</a>
regulation of <a href="http://www.ncbi.nlm.nih.gov/pubmed/17258890">TRX</a>.
Trx and a thiol-specific antioxidant <a href="http://www.ncbi.nlm.nih.gov/pubmed/15792362">thioredoxin
peroxidase</a>-2 orthologue (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8926222.html?nr=8&amp;pmid=11744405">Tpx</a>)
in <a href="http://www.ncbi.nlm.nih.gov/pubmed/19018770">various</a>*
biological <a href="http://www.ncbi.nlm.nih.gov/pubmed/21266044">phenomena</a>
is involved in redox regulation </big><big>(<a href="http://www.ncbi.nlm.nih.gov/pubmed/18544525">NADPH</a>-the
thioredoxin <a href="http://www.ncbi.nlm.nih.gov/pubmed/20536427">system</a>)
</big><big>of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/3170595">dithiol</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/19385090">disulfide</a>
active site.</big><br />
<big> &nbsp;An <a href="http://www.ncbi.nlm.nih.gov/pubmed/11012661">apoptosis</a>
signal transduction pathway through stimulus-coupled <a href="http://www.ncbi.nlm.nih.gov/pubmed/23212077">S-nitrosation</a>
of <a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">cysteine</a>,
has <a href="http://www.ncbi.nlm.nih.gov/pubmed/20536427">two</a>
critical (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9315320">almost
identical</a>) cysteine residues in the Trx redox-active
center. Where a <a href="http://www.ncbi.nlm.nih.gov/pubmed/16766796">disulfide</a>
exchange reaction between <a href="http://www.ncbi.nlm.nih.gov/pubmed/19244202">oxidized</a>
Txnip [thioredoxin-interacting protein; mouse <a href="http://www.ncbi.nlm.nih.gov/pubmed/10814541">Vdup1</a>]
and reduced TXN occurs. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16766796">Txnip</a>
</big><big>(-<a href="http://www.ncbi.nlm.nih.gov/pubmed/17021908">when used</a>
to investigate <a href="http://www.ncbi.nlm.nih.gov/pubmed/15792362">cardiac</a>
hypertrophy) </big><big>is a regulator of <a href="http://www.ncbi.nlm.nih.gov/pubmed/17916779">biomechanical</a>
signaling. Hydrogen peroxide downregulated expression is the
only <a href="http://www.ncbi.nlm.nih.gov/pubmed/16766796">known</a>
function associated with an <a href="http://www.ncbi.nlm.nih.gov/pubmed/19074570">incomplete</a>
TRX response through stimulus-coupled S-nitrosation of
cysteine residues. Peroxiredoxin <a href="http://www.ncbi.nlm.nih.gov/pubmed/17707404">PrxIII</a>-'<a href="http://www.ncbi.nlm.nih.gov/pubmed/21266044">Tpx</a>1
serves as' a tandem (dimer) thioredoxin (Trx2) and <a href="http://www.ncbi.nlm.nih.gov/pubmed/3170595">NADP</a>-linked
thioredoxin reductase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17707404">TRR2</a>-TxnR1),
are Trx mechanisms of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/7640917">two
electron</a> donor system.</big><br />
<big> &nbsp;Cytosolic <a href="http://www.ncbi.nlm.nih.gov/pubmed/18497292">caspase-3</a>
was maintained by S-nitrosation, consistent with <a href="http://www.ncbi.nlm.nih.gov/pubmed/18544525">cytosolic</a>
and mitochondria, </big><big>Trx-1 </big><big>contain <a href="http://www.ncbi.nlm.nih.gov/pubmed/18979503">equivalent</a>
Trx <a href="http://www.ncbi.nlm.nih.gov/pubmed/16987025">systems</a>,
which enabled identification of <a href="http://www.ncbi.nlm.nih.gov/pubmed/18544525">caspase-3</a>
substrates <a href="http://www.ncbi.nlm.nih.gov/pubmed/12089063">where TXN</a>
may regulate S-nitrosation with the redox center of TXN
specific (C73S) to Nitric oxide-<a href="http://www.ncbi.nlm.nih.gov/pubmed/18497292">NO</a>
cellular signal <a href="http://www.ncbi.nlm.nih.gov/pubmed/19328186">transduction</a>
associated with&nbsp; inhibition of <a href="http://www.ncbi.nlm.nih.gov/pubmed/17606900">apoptosis
or</a> </big><big> mutant </big><big>Trx neurotoxicity. <a href="http://www.ncbi.nlm.nih.gov/pubmed/21479441">EGCG</a>°&nbsp;</big><big>(epigallocatechin-3-gallate)</big><big>
may be useful in cell survival </big><big>on caspase-(</big><big>3_</big><big>dependent)-<a href="http://www.ncbi.nlm.nih.gov/pubmed/19328186">neuronal</a>
apoptosis where a membrane reaction, a reduced <a href="http://www.ncbi.nlm.nih.gov/pubmed/11751890">hormesis</a>
consequently triggers the apoptosis effect</big><big> </big><big>and
direct or indirectly numerous <a href="http://www.ncbi.nlm.nih.gov/pubmed/17606900">protein-protein</a>
interactions and basal <a href="http://www.ncbi.nlm.nih.gov/pubmed/20460580">cofactor</a>
substrates</big><big> which occur</big><big> between </big><big><a href="http://www.ncbi.nlm.nih.gov/pubmed/20660346">caspase-3</a>
and </big><big>Trx. The effect of&nbsp;</big><big> exercise <a href="http://www.ncbi.nlm.nih.gov/pubmed/19074570">training</a>
via activation of <a href="http://www.ncbi.nlm.nih.gov/pubmed/24549090">caspase-3</a>
has a decrease in <a href="http://www.ncbi.nlm.nih.gov/pubmed/12016152">superoxide</a>,
and increase of Trx-1 levels in <a href="http://www.ncbi.nlm.nih.gov/pubmed/19074570">brain</a>.
Protection from <a href="http://www.ncbi.nlm.nih.gov/pubmed/17972886">mechanical</a>
stress identified, NSF- <a href="http://www.ncbi.nlm.nih.gov/pubmed/21324905">N-ethylmaleimide</a>
transduced into</big><big> a TRX <a href="http://www.ncbi.nlm.nih.gov/pubmed/17012768">peroxidase</a>
response via</big><big> mechanical force of a typical</big><big>
transnitrosylated&nbsp;</big> <big>Casp3, </big><big>attenuated&nbsp;
Trx1</big><big> <a href="http://www.ncbi.nlm.nih.gov/pubmed/20660346">2-</a></big><big><a href="http://www.ncbi.nlm.nih.gov/pubmed/20660346">cysteines</a>
which </big><big>directly transnitrosylates Peroxiredoxins.
C32S ( </big><big><a href="http://www.ncbi.nlm.nih.gov/pubmed/8805557">redox
potential</a>) was identified as thiol-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15818395">reducing
system</a>, which <a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">lacks</a>
reducing </big><big>activitiy </big><big>(<a href="http://www.ncbi.nlm.nih.gov/pubmed/12244325">non</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/18544525">active</a>
C<a href="http://www.ncbi.nlm.nih.gov/pubmed/12816947">69</a>S
and Cys(<a href="http://www.ncbi.nlm.nih.gov/pubmed/9369469">73</a>)
both monomeric) or a <a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">reversible</a>
regulating function in the presence of caspase 3 activity is a
process found in the presence of NADP and TrxR.</big><br />
<big>&nbsp;There are at least two </big><big><a href="http://www.ncbi.nlm.nih.gov/pubmed/15485910">thioredoxin</a>
</big><big>reductive or </big><big><a href="http://www.ncbi.nlm.nih.gov/pubmed/21453190">oxidative</a>**
</big><big>(<a href="http://www.ncbi.nlm.nih.gov/pubmed/11012661">reductases</a>
/ <a href="http://www.ncbi.nlm.nih.gov/pubmed/20660346">peroxiredoxin</a>)
</big><big>regulated</big><big> systems. The mutant 32<a href="http://www.ncbi.nlm.nih.gov/pubmed/11702225">CXXC</a>35'
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17008712">motif</a>
of thioredoxin <a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">nitrosation</a>
sites, where <a href="http://www.ncbi.nlm.nih.gov/pubmed/11807942">two
cysteines</a> are separated by two other amino acids, and <a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">codes</a>
for an additional <a href="http://www.ncbi.nlm.nih.gov/pubmed/20662007">three</a>
cysteines where the Cys 62</big><big>/C<a href="http://www.ncbi.nlm.nih.gov/pubmed/16115022">73</a>S (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9369469">not
monomers</a>) sidechain the active site of </big><big><a href="http://www.ncbi.nlm.nih.gov/pubmed/20661909">Cys 62</a></big><big>
also can form several disulphides and be modified by the
carbon-bonded s<a href="http://www.ncbi.nlm.nih.gov/pubmed/2684271">ulfhydryl</a>,
where the&nbsp; thiol <a href="http://www.ncbi.nlm.nih.gov/pubmed/8805557">reducing</a>
system, was evident.</big><br />
<big> &nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/1332947">Intracellular</a>
TRX/<a href="http://www.ncbi.nlm.nih.gov/pubmed/8049254">ADF</a>
(Adult T cell <a href="http://www.ncbi.nlm.nih.gov/pubmed/15818395">leukemia</a>-derived
factor <a href="http://www.ncbi.nlm.nih.gov/pubmed/11841832">HTLV-I</a>)
can regulate cell <a href="http://www.ncbi.nlm.nih.gov/pubmed/21526215">nuclei</a>,
protein-<a href="http://www.ncbi.nlm.nih.gov/pubmed/9143692">nucleic</a>
acid interactions. <a href="http://www.ncbi.nlm.nih.gov/pubmed/20660346">Transnitrosylation</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">denitrosylation</a>
is a reversible Post-translational (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21453190">PTM</a>)
altered by redox <a href="http://www.ncbi.nlm.nih.gov/pubmed/9108029">modification</a>
of different cysteine residues (C<a href="http://www.ncbi.nlm.nih.gov/pubmed/17606900">32</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/23212077">73</a>S)
in Trx1, <a href="http://www.ncbi.nlm.nih.gov/pubmed/20662007">S-nitrosation</a>
or its interactions with <a href="http://www.ncbi.nlm.nih.gov/pubmed/21453190">other</a>
proteins and <a href="http://www.ncbi.nlm.nih.gov/pubmed/16916647">DNA-dependent</a>
nuclear processes. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10585464">NFKappaB
</a>- <a href="http://www.ncbi.nlm.nih.gov/pubmed/15824742">
REF-1</a> </big><big> redox factor 1</big><big>&nbsp;
involving <a href="http://www.ncbi.nlm.nih.gov/pubmed/7788295">Cys62</a></big><big>,
in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8736558">two
complexes</a>, are </big><big>correlated as </big><big>N ⇔ C-terminal</big><big>
responses with&nbsp; TRX-1 <a href="http://www.ncbi.nlm.nih.gov/pubmed/9143692">nuclear
migration</a> through the <a href="http://www.ncbi.nlm.nih.gov/pubmed/17115890">reduction</a>
of a pleiotropic cellular factor. TRX <a href="http://www.ncbi.nlm.nih.gov/pubmed/19628032">redox</a>
activities of protein-<a href="http://www.ncbi.nlm.nih.gov/pubmed/9143692">protein</a>
cysteine residues is identical to a <a href="http://www.ncbi.nlm.nih.gov/pubmed/9108029">DNA repair</a>
enzyme through various <a href="http://www.ncbi.nlm.nih.gov/pubmed/10585464">cytoplasmic</a>
aspects <a href="http://www.ncbi.nlm.nih.gov/pubmed/11118054">mediating</a>
cellular responses in the '<a href="http://www.ncbi.nlm.nih.gov/pubmed/9915858">nucleus</a>'.
The <a href="http://www.ncbi.nlm.nih.gov/pubmed/10823822">DNA</a>
binding <a href="http://www.ncbi.nlm.nih.gov/pubmed/11012661">activity</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/19859790">transactivation</a>
of '<a href="http://www.ncbi.nlm.nih.gov/pubmed/12214272">AP-1</a>'
activator proteins (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10585464">JUN</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/17652454">proto</a>*
oncogen) depends on the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8805557">reduction</a>
between the</big><big> <a href="http://www.ncbi.nlm.nih.gov/pubmed/12214272">sulfhydryl</a>
</big><big>of cysteines to keep Trx1 <a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">reduced</a>,
is demonstrated in cells</big><big>. </big><big><a href="http://www.ncbi.nlm.nih.gov/pubmed/9315320">Selenium</a>-dependent
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20306235">seleneocysteine</a>
based peroxidase reductants, reduce <a href="http://www.ncbi.nlm.nih.gov/pubmed/16214824">Lipoic</a>
acid stereoselectively under the same TRX rather than <a href="http://www.ncbi.nlm.nih.gov/pubmed/7961915">GSH-PX1</a>-glutathione
peroxidase oxidative stress <a href="http://www.ncbi.nlm.nih.gov/pubmed/8702596">conditions</a>.</big><big>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15754001">Sense</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/10232049">antisense</a>
(TRX) <a href="http://www.ncbi.nlm.nih.gov/pubmed/23212077">antiapoptoitic</a>
interactions <a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">nitrosylated</a>
at Cys73 are <a href="http://www.ncbi.nlm.nih.gov/pubmed/20660346">attenuated</a>
and integrated into the host cell under oxidative <a href="http://www.ncbi.nlm.nih.gov/pubmed/18544525">conditions</a>,
in which thioredoxin (TRX), and a cellular TRX reducing
catalyst agent (<a href="http://www.ncbi.nlm.nih.gov/pubmed/8813721">DTT</a>-redox
reagent) to S-nitrosoglutathione (<a href="http://www.ncbi.nlm.nih.gov/pubmed/8702596">GSNO</a>)
intermediate <a href="http://www.ncbi.nlm.nih.gov/pubmed/12801522">via</a>
cysteine residues 'influences'</big><big>-catalyst <a href="http://www.ncbi.nlm.nih.gov/pubmed/21453190">mediated</a>
</big><big>(post-translational modifications) </big><big>PTMs</big><big>;
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/15818395">possibly</a>
1,25<a href="http://www.ncbi.nlm.nih.gov/pubmed/16061374">D(3)</a>-Calcitriol;
NADPH:<a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">oxygen</a>
oxidoreductases correlated with&nbsp; </big><big>(<a href="http://www.ncbi.nlm.nih.gov/pubmed/3170595">Trx-1</a>)
</big><big>a protein <a href="http://www.ncbi.nlm.nih.gov/pubmed/21453190">disulfide</a>
oxidoreductase.</big><br />
<big> &nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/17012768">Peroxynitrite</a><small>**
</small>converts superoxide to hydrogen peroxide (<a href="http://www.ncbi.nlm.nih.gov/pubmed/24062305">H2O2</a>)-induced
Trx <a href="http://www.ncbi.nlm.nih.gov/pubmed/16263712">degradation</a>,
in concentrations that detoxify <a href="http://www.ncbi.nlm.nih.gov/pubmed/12386145">reactive
oxygen</a> species (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17081769">ROS</a>)</big><big>,
</big><big>demonstrated by </big><big> </big><big> superoxide
dismutases (SOD)-</big><big><a href="http://www.ncbi.nlm.nih.gov/pubmed/15723974">catalase</a>: </big><big><a href="http://lnwme.blogspot.com/2014/07/characterization-of-human-thioredoxin.html#footnote_4_1125" id="identifier_4_1125" title="">↩</a></big><big> and peroxidases, </big><big>converting superoxide </big><big>to
hydrogen peroxide which is decomposed to water plus <a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">oxidized</a>
thioredoxin to maintain the <a href="http://www.ncbi.nlm.nih.gov/pubmed/20218863">anti-apoptotic</a>
(C62) function of thioredoxins additional <a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">five</a>
sulfhydryl group <a href="http://www.ncbi.nlm.nih.gov/pubmed/19328186">thiols</a>
in the fully reduced state, in a <a href="http://www.ncbi.nlm.nih.gov/pubmed/17823364">Trx-dependent</a>
manner. Reactive oxygen species (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16159878">ROS</a>)
can cause DNA damage, and uncontrolled cellular <a href="http://www.ncbi.nlm.nih.gov/pubmed/16424062">proliferation</a>
or apoptotic death of <a href="http://www.ncbi.nlm.nih.gov/pubmed/22867430">cancer</a>
cells.The <a href="http://www.ncbi.nlm.nih.gov/pubmed/9354464">NADPH</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/9315320">Trx
system</a>) oxidizing <a href="http://www.ncbi.nlm.nih.gov/pubmed/16750198">substrate</a>-dependent
<a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">
reduction</a> of Thioredoxin reductase-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15824742">TrxR</a>
has a <a href="http://www.ncbi.nlm.nih.gov/pubmed/12214272">reversibly</a>
modulated role in restoration of <a href="http://www.ncbi.nlm.nih.gov/pubmed/8958209">GR</a>
(glucocorticoid <a href="http://www.ncbi.nlm.nih.gov/pubmed/10232049">receptor</a>)
function, and <a href="http://www.ncbi.nlm.nih.gov/pubmed/20584310">DNA</a>
binding domain.</big><br />
<br />
<span style="font-size: x-small;">(Click on image to Zoom)</span><br />
<big>&nbsp;</big><big> <a href="https://plus.google.com/photos/100787464692550241934/albums/6031543788040075489/6031551361126214834?hl=en&amp;pid=6031551361126214834&amp;oid=100787464692550241934"><img align="left" alt="1XOB" border="0" height="126" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj-HkZJBjlc_MRfSlWEWHzQANaKPyk4ZpzTTF5PA4DwL7Md1xBWa9Vla3MeZFdL7j1G8LHrZrp5rtLbVYYtuwUC7AB-rud9e7qcWeueeG-lrkHXio2xF6WHdTOhai47E9It6cWbWQ/w899-h567-no/1XOB_TR1.png" width="200" /></a>
Secreted Trx may participate in removing inhibitors of
collagen-degrading metalloproteinases. PMID: <a href="http://www.uniprot.org/citations/14503974">14503974</a> the molecular
mechanisms underlying functional the TR1-Trx1 redox pair and
structure determination of an active site of the ligand
mini-stromelysin-1 TR-1 augmentation composed of TR (Trx
reductase activities) the main function of <a href="http://www.rcsb.org/pdb/ligand/ligandsummary.do?hetId=TR1">TR1</a> here is to
reduce Trx1 also validated as a ligand PMID; <a href="http://www.ncbi.nlm.nih.gov/pubmed/23105116">23105116</a>, have
been characterized between ligand bound and free structures
PMID; <a href="http://www.ncbi.nlm.nih.gov/pubmed/20661909">20661909</a>, for specific isolation of&nbsp; C35S </big><big>
sel</big><big>enocysteine (SeCys)-containing protein </big><big>shows
the best docking position found, consists of one strand at
position [PROline]76:A.side chain: from the four-stranded
antiparallel beta sheet was with wild-type TrxA C32-35S
located in the Thioredoxin_fold (PDB accession code 1XOB</big><big>:
PMID: <a href="http://www.ncbi.nlm.nih.gov/pubmed/15987909">15987909</a></big><big>) , TR1 as a single hybrid PDB (Cys32
and Cys35 for Trx1, and for TR1) pubmed/<a href="http://www.ncbi.nlm.nih.gov/pubmed/20536427">20536427</a> investigate
the possible mechanism. {{{During this reduction, the
thiol-disulfide oxidoreductase thioredoxin-1 (Trx1) linked</big><big><a href="https://plus.google.com/photos/100787464692550241934/albums/6031543788040075489/6031881084282980578?hl=en&amp;pid=6031881084282980578&amp;oid=100787464692550241934"><img align="right" alt="NADP" border="0" height="151" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgqTQlVFCRZ8yODpzpa-Tg8Mgv3ogtxZY1SS-wXJWhyphenhyphen0L6QrHo3XwGQv97rddvmHP46_8AvKu0ufInSgJfZ2cHnjRkmMH9CaKMBF2KBQ989TwMh7fkpKlSI9fG14wbvq2yWMN1gvQ/w752-h567-no/1auc-1aiu-d60_aspartate1.png" width="200" /></a></big><big>
thioredoxin reductase (TRR2) a working model suggesting that
deregulation of the thioredoxin reductase TXNRD1 and|}}} its
characteristic substrate thioredoxin (TR [1]), concomitant
with diminution of their Trx reductase cellular contents is
highly related to glutamate excitotoxicity PMID: <a href="http://www.ncbi.nlm.nih.gov/pubmed/20620191">20620191</a>;
TR1: hStromelysin-1<br />
<br />
<br />
&nbsp;<a href="https://plus.google.com/photos/100787464692550241934/albums/6031543788040075489/6031880511750227922?hl=en&amp;pid=6031880511750227922&amp;oid=100787464692550241934"><img align="left" alt="enlarge" border="0" height="184" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgCPSOfeZt3nTxcc_b76Dh0ucVnZbjgpOXwmgkgFTmofpHg8qucWSY1BMpt5cZMWHurqoEQ_D1aUneddxK2GVchEz3eSsIO6irQY6nX6S2O1UmvK22CQiEQgqZfE2Ln8fEQHfCUGA/w616-h567-no/1auc-1aiu.png" width="200" /></a>An ET
(electron transfer) mechanism from NADPH and another enzyme
thioredoxin reductase pubmed/<a href="http://www.ncbi.nlm.nih.gov/pubmed/17369362">17369362</a> the charged residue
aspartate D60 (Fig.2) pubmed/<a href="http://www.ncbi.nlm.nih.gov/pubmed/9369469">9369469</a>/ plays a role in the
degradation of proteins and in apoptotic processes induced by
oxidative stress PMID: <a href="http://www.ncbi.nlm.nih.gov/pubmed/16263712">16263712</a>&nbsp; to determine the effect
of&nbsp; <a href="http://www.ncbi.nlm.nih.gov/pubmed/21527993">zerumbone</a>
ZSD1 (from shampoo ginger; Name: <a href="http://www.uniprot.org/uniprot/E3W9C4">Alpha-humulene</a>)
on NADP-malate dehydrogenase,<a href="https://plus.google.com/photos/100787464692550241934/albums/6031543788040075489/6031881365289478514?hl=en&amp;pid=6031881365289478514&amp;oid=100787464692550241934"><img align="right" alt="NADP" border="0" height="141" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhbVKC19raKsBNZMijqlxZGxWzzkcZdKethx1NxP7KPEdIuby1LIrfvu-tio4aL41wzQN7HtoSbEXb6oek7oOeXOVUFu4KzDRD8oXNxf0kmRuwT1HqUDbuI1Wmh2v7vYL76X9BGCA/w806-h567-no/nadp2.png" width="200" /></a> TRX
dependent oxidoreductase, that NADPH does not contain.
Monomeric Thioredoxin is present across phyla from humans to
plants PMID: <a href="http://www.ncbi.nlm.nih.gov/pubmed/20661909">20661909</a>, <a href="http://www.ncbi.nlm.nih.gov/pubmed/11012661">11012661</a> mediated in vivo by
thioredoxin-catalyzed reduction and re-oxidation of cystine
residues PubMed id: <a href="http://www.ncbi.nlm.nih.gov/pubmed/10196131">10196131</a> (Fig.3-PDB</big><big>: <a href="http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=1CIV">1CIV</a></big><big>,
NADP). Trx is able to activate vegetal NADP-malate
dehydrogenase PMID: <a href="http://www.ncbi.nlm.nih.gov/pubmed/3170595">3170595</a> (excluding the initial methionine)
Met is located at the N-terminal - PMID: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11807942">11807942</a>, <a href="http://www.ncbi.nlm.nih.gov/pubmed/2684271">2684271</a>. </big><big>A relatively rigid local configuration for the TRX-aspartate residue D60
is found but which implies that the (NADP-TrxR) protein fluctuates among
the numerous protein models and mutations over the time scales
fluctuations.</big><br />
<br />
<br />
<span style="font-size: xx-small;"> </span><br />
<br />
<li class="footnote" id="footnote_4_1125"><span style="font-size: xx-small;">Trx (<a href="http://lnwme.blogspot.com/2014/07/characterization-of-human-thioredoxin.html">thioredoxin</a>) a <a href="http://www.ncbi.nlm.nih.gov/pubmed/16712839">redox</a>-regulating protein also <a href="http://www.ncbi.nlm.nih.gov/pubmed/9409558">controls</a> the antioxidant enzyme activity of the main
cellular antioxidant enzymes (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10374946">AOE</a>)
superoxide dismutase (SOD) and catalase.</span>[<a href="http://lnwme.blogspot.com/2014/07/characterization-of-human-thioredoxin.html#identifier_4_1125">↩</a>]</li>
<br />
(Reference: 1-189)<br />
<a name='more'></a><br />
<br />
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/7788295">Solution
structure of human thioredoxin in a mixed disulfide intermediate
complex with its target peptide from the transcription factor NF
kappa B.</a>Qin J, Clore GM, Kennedy WM, Huth JR, Gronenborn AM.<span class="jrnl" title="Structure (London, England : 1993)">Structure</span>.
1995 Mar 15;3(3):289-97.PMID:7788295</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8958209">Thioredoxin:
a redox-regulating cellular cofactor for glucocorticoid hormone
action. Cross talk between endocrine control of stress response
and cellular antioxidant defense system.</a>Makino Y, Okamoto K,
Yoshikawa N, Aoshima M, Hirota K, Yodoi J, Umesono K, Makino I,
Tanaka H.<span class="jrnl" title="The Journal of clinical
investigation">, J Clin Invest</span>. 1996 Dec
1;98(11):2469-77.PMID:8958209</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11012661">Physiological
functions of thioredoxin and thioredoxin reductase.</a>Arnér ES,
Holmgren A.<span class="jrnl" title="European journal of
biochemistry / FEBS">,Eur J Biochem</span>. 2000
Oct;267(20):6102-9. Review.PMID:11012661</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10232049">Thioredoxin
in the endocrine response to stress.</a>Tanaka H, Makino Y,
Okamoto K.<span class="jrnl" title="Vitamins and hormones">Vitam
Horm</span>. 1999;57:153-75. Review.,PMID:10232049</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9369469">Human
thioredoxin homodimers: regulation by pH, role of aspartate 60,
and crystal structure of the aspartate 60 --&gt; asparagine
mutant.</a>Andersen JF, Sanders DA, Gasdaska JR, Weichsel A,
Powis G, Montfort WR.<span class="jrnl" title="Biochemistry">Biochemistry</span>.
1997 Nov 18;36(46):13979-88.PMID:9369469</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9108029">AP-1
transcriptional activity is regulated by a direct association
between thioredoxin and Ref-1.</a>Hirota K, Matsui M, Iwata S,
Nishiyama A, Mori K, Yodoi J.<span class="jrnl" title="Proceedings
of the National Academy of Sciences of the United States of
America">Proc Natl Acad Sci U S A</span>. 1997 Apr
15;94(8):3633-8.PMID:9108029</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/24062305">Thioredoxin
1 is inactivated due to oxidation induced by peroxiredoxin under
oxidative stress and reactivated by the glutaredoxin system.</a>Du
Y, Zhang H, Zhang X, Lu J, Holmgren A.<span class="jrnl" title="The Journal of biological chemistry">J Biol Chem</span>.
2013 Nov 8;288(45):32241-7. doi: 10.1074/jbc.M113.495150. Epub
2013 Sep 23.PMID:24062305</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/7601465">Thioredoxin,
a mediator of growth inhibition, maps to 9q31.</a>Heppell-Parton
A, Cahn A, Bench A, Lowe N, Lehrach H, Zehetner G, Rabbitts P.<span class="jrnl" title="Genomics">Genomics</span>. 1995 Mar
20;26(2):379-81.PMID:7601465</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10982790">Truncated
thioredoxin is a mitogenic cytokine for resting human peripheral
blood mononuclear cells and is present in human plasma.</a>Pekkari
K, Gurunath R, Arner ES, Holmgren A.<span class="jrnl" title="The
Journal of biological chemistry">J Biol Chem</span>. 2000 Dec
1;275(48):37474-80.PMID:10982790</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/1874447">Isolation
and characterization of human thioredoxin-encoding genes.</a>Tonissen
KF, Wells JR.<span class="jrnl" title="Gene">Gene</span>. 1991 Jun
30;102(2):221-8.PMID:1874447</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8144037">Genomic
cloning of human thioredoxin-encoding gene: mapping of the
transcription start point and analysis of the promoter.</a>Kaghad
M, Dessarps F, Jacquemin-Sablon H, Caput D, Fradelizi D, Wollman
EE.<span class="jrnl" title="Gene">Gene</span>. 1994 Mar
25;140(2):273-8.PMID:8144037</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16712525">The
tert-butylhydroquinone-mediated activation of the human
thioredoxin gene reveals a novel promoter structure.</a>Osborne
SA, Hawkes HJ, Baldwin BL, Alexander KA, Svingen T, Clarke FM,
Tonissen KF.<span class="jrnl" title="The Biochemical journal">Biochem
J</span>. 2006 Sep 1;398(2):269-77.PMID:16712525</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19018770">Involvement
of thioredoxin-binding protein 2 in the antitumor activity of
CD437.</a>Matsuoka S, Tsuchiya H, Sakabe T, Watanabe Y,
Hoshikawa Y, Kurimasa A, Itamochi H, Harada T, Terakawa N,
Masutani H, Yodoi J, Shiota G.<span class="jrnl" title="Cancer
science">Cancer Sci</span>. 2008 Dec;99(12):2485-90. doi:
10.1111/j.1349-7006.2008.00979.x. Epub 2008 Nov 17.PMID:19018770</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15234975">Importin
alpha1 (Rch1) mediates nuclear translocation of
thioredoxin-binding protein-2/vitamin D(3)-up-regulated protein
1.</a>Nishinaka Y, Masutani H, Oka S, Matsuo Y, Yamaguchi Y,
Nishio K, Ishii Y, Yodoi J.<span class="jrnl" title="The Journal
of biological chemistry">J Biol Chem</span>. 2004 Sep
3;279(36):37559-65. Epub 2004 Jul 2.PMID:15234975</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15818395">The
thioredoxin system in retroviral infection and apoptosis.</a>Masutani
H, Ueda S, Yodoi J.<span class="jrnl" title="Cell death and
differentiation">Cell Death Differ</span>. 2005 Aug;12 Suppl
1:991-8. Review.PMID:15818395</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11778846">Regulatory
roles of thioredoxin in oxidative stress-induced cellular
responses.</a>Nishinaka Y, Masutani H, Nakamura H, Yodoi J.<span class="jrnl" title="Redox report : communications in free
radical research">Redox Rep</span>. 2001;6(5):289-95.
Review.PMID:11778846</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17012763">Thioredoxin-binding
protein-2 (TBP-2): its potential roles in the aging process.</a>Yoshida
T, Kondo N, Oka S, Ahsan MK, Hara T, Masutani H, Nakamura H, Yodoi
J.<span class="jrnl" title="BioFactors (Oxford, England)">Biofactors</span>.
2006;27(1-4):47-51. Review.PMID:17012763</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17603038">Regulation
of the bioavailability of thioredoxin in the lens by a specific
thioredoxin-binding protein (TBP-2).</a>Liyanage NP, Fernando
MR, Lou MF.<span class="jrnl" title="Experimental eye research">Exp
Eye Res</span>. 2007 Aug;85(2):270-9. Epub 2007 May
21.PMID:17603038</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10419473">Identification
of thioredoxin-binding protein-2/vitamin D(3) up-regulated
protein 1 as a negative regulator of thioredoxin function and
expression.</a>Nishiyama A, Matsui M, Iwata S, Hirota K,
Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J.<span class="jrnl" title="The Journal of biological chemistry">J Biol
Chem</span>. 1999 Jul 30;274(31):21645-50.PMID:10419473</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12189205">The
histone deacetylase inhibitor SAHA arrests cancer cell growth,
up-regulates thioredoxin-binding protein-2, and down-regulates
thioredoxin.</a>Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA,
Marks PA, Richon VM.<span class="jrnl" title="Proceedings of the
National Academy of Sciences of the United States of America">Proc
Natl Acad Sci U S A</span>. 2002 Sep 3;99(18):11700-5. Epub 2002
Aug 20.PMID:12189205</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10843682">Vitamin
D3 up-regulated protein 1 mediates oxidative stress via
suppressing the thioredoxin function.</a>Junn E, Han SH, Im JY,
Yang Y, Cho EW, Um HD, Kim DK, Lee KW, Han PL, Rhee SG, Choi I.<span class="jrnl" title="Journal of immunology (Baltimore, Md. :
1950)">J Immunol</span>. 2000 Jun
15;164(12):6287-95.PMID:10843682</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12723971">Differential
role of glutaredoxin and thioredoxin in metabolic oxidative
stress-induced activation of apoptosis signal-regulating kinase
1.</a>Song JJ, Lee YJ.<span class="jrnl" title="The Biochemical
journal">Biochem J</span>. 2003 Aug 1;373(Pt
3):845-53.PMID:12723971</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18501712">A
novel function of peroxiredoxin 1 (Prx-1) in apoptosis
signal-regulating kinase 1 (ASK1)-mediated signaling pathway.</a>Kim
SY, Kim TJ, Lee KY.<span class="jrnl" title="FEBS letters">FEBS
Lett</span>. 2008 Jun 11;582(13):1913-8. doi:
10.1016/j.febslet.2008.05.015. Epub 2008 May 22.PMID:18501712</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17561491">A
novel class of antioxidants inhibit LPS induction of tissue
factor by selective inhibition of the activation of ASK1 and MAP
kinases.</a>Luyendyk JP, Piper JD, Tencati M, Reddy KV, Holscher
T, Zhang R, Luchoomun J, Chen X, Min W, Kunsch C, Mackman N.<span class="jrnl" title="Arteriosclerosis, thrombosis, and vascular
biology">Arterioscler Thromb Vasc Biol</span>. 2007
Aug;27(8):1857-63. Epub 2007 Jun 7.PMID:17561491</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9564042">Mammalian
thioredoxin is a direct inhibitor of apoptosis signal-regulating
kinase (ASK) 1.</a>Saitoh M, Nishitoh H, Fujii M, Takeda K,
Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H.<span class="jrnl" title="The EMBO journal">EMBO J</span>. 1998 May
1;17(9):2596-606.PMID:9564042</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16311508">Involvement
of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and
Alzheimer's disease.</a>Akterin S, Cowburn RF, Miranda-Vizuete
A, Jiménez A, Bogdanovic N, Winblad B, Cedazo-Minguez A.<span class="jrnl" title="Cell death and differentiation">Cell Death
Differ</span>. 2006 Sep;13(9):1454-65. Epub 2005 Nov
25.PMID:16311508</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15818395">The
thioredoxin system in retroviral infection and apoptosis.</a>Masutani
H, Ueda S, Yodoi J.<span class="jrnl" title="Cell death and
differentiation">Cell Death Differ</span>. 2005 Aug;12 Suppl
1:991-8. Review.PMID:15818395</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12089063">Thioredoxin
promotes ASK1 ubiquitination and degradation to inhibit
ASK1-mediated apoptosis in a redox activity-independent manner.</a>Liu
Y, Min W.<span class="jrnl" title="Circulation research">Circ Res</span>.
2002 Jun 28;90(12):1259-66.PMID:12089063</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17652454">Disulfide
Bond-mediated multimerization of Ask1 and its reduction by
thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal
kinase activation and apoptosis.</a>Nadeau PJ, Charette SJ,
Toledano MB, Landry J.<span class="jrnl" title="Molecular biology
of the cell">Mol Biol Cell</span>. 2007 Oct;18(10):3903-13. Epub
2007 Jul 25.PMID:17652454</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10419473">Identification
of thioredoxin-binding protein-2/vitamin D(3) up-regulated
protein 1 as a negative regulator of thioredoxin function and
expression.</a>Nishiyama A, Matsui M, Iwata S, Hirota K,
Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J.<span class="jrnl" title="The Journal of biological chemistry">J Biol
Chem</span>. 1999 Jul 30;274(31):21645-50.PMID:10419473</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17724081">Thioredoxin
and TRAF family proteins regulate reactive oxygen
species-dependent activation of ASK1 through reciprocal
modulation of the N-terminal homophilic interaction of ASK1.</a>Fujino
G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K, Ichijo
H.<span class="jrnl" title="Molecular and cellular biology">Mol
Cell Biol</span>. 2007 Dec;27(23):8152-63. Epub 2007 Aug
27.PMID:17724081</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/24062305">Thioredoxin
1 is inactivated due to oxidation induced by peroxiredoxin under
oxidative stress and reactivated by the glutaredoxin system.</a>Du
Y, Zhang H, Zhang X, Lu J, Holmgren A.<span class="jrnl" title="The Journal of biological chemistry">J Biol Chem</span>.
2013 Nov 8;288(45):32241-7. doi: 10.1074/jbc.M113.495150. Epub
2013 Sep 23.PMID:24062305</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17258890">Granzyme
B induction signalling pathway in acute myeloid leukemia cell
lines stimulated by tumor necrosis factor alpha and Fas ligand.</a>Guilloton
F, Jean C, de Thonel A, Laurent G, Quillet-Mary A.<span class="jrnl" title="Cellular signalling">Cell Signal</span>.
2007 Jun;19(6):1132-40. Epub 2007 Jan 3.PMID:17258890</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15792362">Effects
of dietary selenium on post-ischemic expression of antioxidant
mRNA.</a>Venardos K, Ashton K, Headrick J, Perkins A.<span class="jrnl" title="Molecular and cellular biochemistry">Mol
Cell Biochem</span>. 2005 Feb;270(1-2):131-8.PMID:15792362</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11744405">Thioredoxin
reductase - its role in epidermal redox status.</a>Schallreuter
KU, Wood JM.<span class="jrnl" title="Journal of photochemistry
and photobiology. B, Biology">J Photochem Photobiol B</span>.
2001 Nov 15;64(2-3):179-84. Review.PMID:1174440</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19018770">Involvement
of thioredoxin-binding protein 2 in the antitumor activity of
CD437.</a>Matsuoka S, Tsuchiya H, Sakabe T, Watanabe Y,
Hoshikawa Y, Kurimasa A, Itamochi H, Harada T, Terakawa N,
Masutani H, Yodoi J, Shiota G.<span class="jrnl" title="Cancer
science">Cancer Sci</span>. 2008 Dec;99(12):2485-90. doi:
10.1111/j.1349-7006.2008.00979.x. Epub 2008 Nov 17.PMID:19018770</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21266044">The
logic of kinetic regulation in the thioredoxin system.</a>Pillay
CS, Hofmeyr JH, Rohwer JM.<span class="jrnl" title="BMC systems
biology">BMC Syst Biol</span>. 2011 Jan 25;5:15. doi:
10.1186/1752-0509-5-15.PMID:21266044</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18544525">Regulation
of the catalytic activity and structure of human thioredoxin 1
via oxidation and S-nitrosylation of cysteine residues.</a>Hashemy
SI, Holmgren A.<span class="jrnl" title="The Journal of biological
chemistry">J Biol Chem</span>. 2008 Aug 8;283(32):21890-8. doi:
10.1074/jbc.M801047200. Epub 2008 Jun 10.PMID:18544525</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20536427">Mammalian
thioredoxin reductase 1: roles in redox homoeostasis and
characterization of cellular targets.</a>Turanov AA, Kehr S,
Marino SM, Yoo MH, Carlson BA, Hatfield DL, Gladyshev VN.<span class="jrnl" title="The Biochemical journal">Biochem J</span>.
2010 Sep 1;430(2):285-93. doi: 10.1042/BJ20091378.PMID:20536427</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/3170595">Cloning
and expression of a cDNA for human thioredoxin.</a>Wollman EE,
d'Auriol L, Rimsky L, Shaw A, Jacquot JP, Wingfield P, Graber P,
Dessarps F, Robin P, Galibert F, et al.<span class="jrnl" title="The Journal of biological chemistry">J Biol Chem</span>.
1988 Oct 25;263(30):15506-12.PMID:3170595</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19385090">Thioredoxin
1 delivery as new therapeutics.</a>Nakamura H, Hoshino Y,
Okuyama H, Matsuo Y, Yodoi J.<span class="jrnl" title="Advanced
drug delivery reviews">Adv Drug Deliv Rev</span>. 2009 Apr
28;61(4):303-9. Review.PMID:19385090</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11012661">Physiological
functions of thioredoxin and thioredoxin reductase.</a>Arnér ES,
Holmgren A.<span class="jrnl" title="European journal of
biochemistry / FEBS">Eur J Biochem</span>. 2000
Oct;267(20):6102-9. Review.PMID:11012661</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/23212077">Small
changes huge impact: the role of thioredoxin 1 in the regulation
of apoptosis by S-nitrosylation.</a>Li H, Wan A, Xu G, Ye D.<span class="jrnl" title="Acta biochimica et biophysica Sinica">Acta
Biochim Biophys Sin (Shanghai)</span>. 2013 Mar;45(3):153-61.
doi: 10.1093/abbs/gms103. Epub 2012 Dec 4. Review.PMID:23212077</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">Distinction
of thioredoxin transnitrosylation and denitrosylation target
proteins by the ICAT quantitative approach.</a>Wu C, Parrott AM,
Liu T, Jain MR, Yang Y, Sadoshima J, Li H.<span class="jrnl" title="Journal of proteomics">J Proteomics</span>. 2011 Oct
19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
Jun 17.PMID:21704743</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20536427">Mammalian
thioredoxin reductase 1: roles in redox homoeostasis and
characterization of cellular targets.</a>Turanov AA, Kehr S,
Marino SM, Yoo MH, Carlson BA, Hatfield DL, Gladyshev VN.<span class="jrnl" title="The Biochemical journal">Biochem J</span>.
2010 Sep 1;430(2):285-93. doi: 10.1042/BJ20091378.PMID:20536427</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9315320">Selenium
and the thioredoxin and glutaredoxin systems.</a>Björnstedt M,
Kumar S, Björkhem L, Spyrou G, Holmgren A.<span class="jrnl" title="Biomedical and environmental sciences : BES">Biomed
Environ Sci</span>. 1997 Sep;10(2-3):271-9. Review.PMID:9315320</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16766796">The
interaction of thioredoxin with Txnip. Evidence for formation of
a mixed disulfide by disulfide exchange.</a>atwari P, Higgins
LJ, Chutkow WA, Yoshioka J, Lee RT.<span class="jrnl" title="The
Journal of biological chemistry">J Biol Chem</span>. 2006 Aug
4;281(31):21884-91. Epub 2006 Jun 9.PMID:16766796</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19244202">Alterations
of the thioredoxin system by hyperoxia: implications for
alveolar development.</a>Tipple TE, Welty SE, Nelin LD, Hansen
JM, Rogers LK.<span class="jrnl" title="American journal of
respiratory cell and molecular biology">Am J Respir Cell Mol
Biol</span>. 2009 Nov;41(5):612-9. doi:
10.1165/rcmb.2008-0224OC. Epub 2009 Feb 24.PMID:19244202</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10814541">A
possible interaction of thioredoxin with VDUP1 in HeLa cells
detected in a yeast two-hybrid system.</a>Yamanaka H, Maehira F,
Oshiro M, Asato T, Yanagawa Y, Takei H, Nakashima Y.<span class="jrnl" title="Biochemical and biophysical research
communications">Biochem Biophys Res Commun</span>. 2000 May
19;271(3):796-800.PMID:10814541</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16766796">The
interaction of thioredoxin with Txnip. Evidence for formation of
a mixed disulfide by disulfide exchange.</a>Patwari P, Higgins
LJ, Chutkow WA, Yoshioka J, Lee RT.<span class="jrnl" title="The
Journal of biological chemistry">J Biol Chem</span>. 2006 Aug
4;281(31):21884-91. Epub 2006 Jun 9.PMID:16766796</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17021908">Thioredoxin
in the cardiovascular system.</a>World CJ, Yamawaki H, Berk BC.<span class="jrnl" title="Journal of molecular medicine (Berlin,
Germany)">J Mol Med (Berl)</span>. 2006 Dec;84(12):997-1003.
Epub 2006 Oct 5. Review.PMID:17021908</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15792362">Effects
of dietary selenium on post-ischemic expression of antioxidant
mRNA.</a>Venardos K, Ashton K, Headrick J, Perkins A.<span class="jrnl" title="Molecular and cellular biochemistry">Mol
Cell Biochem</span>. 2005 Feb;270(1-2):131-8.PMID:15792362</div>
<div class="details">
</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17916779">Targeted
deletion of thioredoxin-interacting protein regulates cardiac
dysfunction in response to pressure overload.</a>Yoshioka J,
Imahashi K, Gabel SA, Chutkow WA, Burds AA, Gannon J, Schulze PC,
MacGillivray C, London RE, Murphy E, Lee RT.<span class="jrnl" title="Circulation research">Circ Res</span>. 2007 Dec
7;101(12):1328-38. Epub 2007 Oct 4.PMID:17916779</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16766796">The
interaction of thioredoxin with Txnip. Evidence for formation of
a mixed disulfide by disulfide exchange.</a>Patwari P, Higgins
LJ, Chutkow WA, Yoshioka J, Lee RT.<span class="jrnl" title="The
Journal of biological chemistry">J Biol Chem</span>. 2006 Aug
4;281(31):21884-91. Epub 2006 Jun 9.PMID:16766796</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19074570">Diabetes
impairs exercise training-associated thioredoxin response and
glutathione status in rat brain.</a>Lappalainen Z, Lappalainen
J, Oksala NK, Laaksonen DE, Khanna S, Sen CK, Atalay M.<span class="jrnl" title="Journal of applied physiology (Bethesda, Md.
: 1985)">J Appl Physiol (1985)</span>. 2009 Feb;106(2):461-7.
doi:10.1152/japplphysiol.91252.2008. Epub 2008 Dec
12.PMID:19074570</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17707404">Reconstitution
of the mitochondrial PrxIII antioxidant defence pathway: general
properties and factors affecting PrxIII activity and oligomeric
state.</a>Cao Z, Bhella D, Lindsay JG.<span class="jrnl" title="Journal of molecular biology">J Mol Biol</span>. 2007 Sep
28;372(4):1022-33. Epub 2007 Jul 21.PMID:17707404</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21266044">The
logic of kinetic regulation in the thioredoxin system.</a>Pillay
CS, Hofmeyr JH, Rohwer JM.<span class="jrnl" title="BMC systems
biology">BMC Syst Biol</span>. 2011 Jan 25;5:15. doi:
10.1186/1752-0509-5-15.PMID:21266044</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/3170595">Cloning
and expression of a cDNA for human thioredoxin.</a>Wollman EE,
d'Auriol L, Rimsky L, Shaw A, Jacquot JP, Wingfield P, Graber P,
Dessarps F, Robin P, Galibert F, et al.<span class="jrnl" title="The Journal of biological chemistry">J Biol Chem</span>.
1988 Oct 25;263(30):15506-12.PMID:3170595</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17707404">Reconstitution
of the mitochondrial PrxIII antioxidant defence pathway: general
properties and factors affecting PrxIII activity and oligomeric
state.</a>Cao Z, Bhella D, Lindsay JG.<span class="jrnl" title="Journal of molecular biology">J Mol Biol</span>. 2007 Sep
28;372(4):1022-33. Epub 2007 Jul 21.PMID:17707404</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/7640917">Balancing
science and practice in indicator development: the Maryland
Hospital Association Quality Indicator (QI) project.</a>Kazandjian
VA, Wood P, Lawthers J.<span class="jrnl" title="International
journal for quality in health care : journal of the
International Society for Quality in Health Care / ISQua">Int J
Qual Health Care</span>. 1995 Mar;7(1):39-46.PMID:7640917</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18497292">Regulated
protein denitrosylation by cytosolic and mitochondrial
thioredoxins.</a>Benhar M, Forrester MT, Hess DT, Stamler JS.<span class="jrnl" title="Science (New York, N.Y.)">Science</span>.
2008 May 23;320(5879):1050-4. doi:
10.1126/science.1158265.PMID:18497292</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18544525">Regulation
of the catalytic activity and structure of human thioredoxin 1
via oxidation and S-nitrosylation of cysteine residues.</a>Hashemy
SI, Holmgren A.<span class="jrnl" title="The Journal of biological
chemistry">J Biol Chem</span>. 2008 Aug 8;283(32):21890-8. doi:
10.1074/jbc.M801047200. Epub 2008 Jun 10.PMID:18544525</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18979503">Thioredoxin
system inhibitors as mediators of apoptosis for cancer therapy.</a>Tonissen
KF, Di Trapani G.<span class="jrnl" title="Molecular nutrition
&amp; food research">Mol Nutr Food Res</span>. 2009
Jan;53(1):87-103. doi: 10.1002/mnfr.200700492.
Review.PMID:18979503</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16987025">The
role of apoptosis signal-regulating kinase 1 in cardiomyocyte
apoptosis.</a>Nishida K, Otsu K.<span class="jrnl" title="Antioxidants &amp; redox signaling">Antioxid Redox Signal</span>.
2006 Sep-Oct;8(9-10):1729-36. Review.PMID:16987025</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18544525">Regulation
of the catalytic activity and structure of human thioredoxin 1
via oxidation and S-nitrosylation of cysteine residues.</a>Hashemy
SI, Holmgren A.<span class="jrnl" title="The Journal of biological
chemistry">J Biol Chem</span>. 2008 Aug 8;283(32):21890-8. doi:
10.1074/jbc.M801047200. Epub 2008 Jun 10.PMID:1854452</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12089063">Thioredoxin
promotes ASK1 ubiquitination and degradation to inhibit
ASK1-mediated apoptosis in a redox activity-independent manner.</a>Liu
Y, Min W.<span class="jrnl" title="Circulation research">Circ Res</span>.
2002 Jun 28;90(12):1259-66.PMID:12089063</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18497292">Regulated
protein denitrosylation by cytosolic and mitochondrial
thioredoxins.</a>Benhar M, Forrester MT, Hess DT, Stamler JS.<span class="jrnl" title="Science (New York, N.Y.)">Science</span>.
2008 May 23;320(5879):1050-4. doi:
10.1126/science.1158265.PMID:18497292</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19328186">Attenuation
of neuronal degeneration in thioredoxin-1 overexpressing mice
after mild focal ischemia.</a>Zhou F, Gomi M, Fujimoto M, Hayase
M, Marumo T, Masutani H, Yodoi J, Hashimoto N, Nozaki K, Takagi Y.<span class="jrnl" title="Brain research">Brain Res</span>. 2009 May
26;1272:62-70. doi: 10.1016/j.brainres.2009.03.023. Epub 2009 Mar
25.PMID:19328186</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17606900">Thioredoxin
is required for S-nitrosation of procaspase-3 and the inhibition
of apoptosis in Jurkat cells.</a>Mitchell DA, Morton SU,
Fernhoff NB, Marletta MA.<span class="jrnl" title="Proceedings of
the National Academy of Sciences of the United States of
America">Proc Natl Acad Sci U S A</span>. 2007 Jul
10;104(28):11609-14. Epub 2007 Jul 2.PMID:17606900</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21479441">Epigallocatechin-3-gallate
exhibits anti-tumor effect by perturbing redox homeostasis,
modulating the release of pro-inflammatory mediators and
decreasing the invasiveness of glioblastoma cells.</a>Agarwal A,
Sharma V, Tewari R, Koul N, Joseph C, Sen E.<span class="jrnl" title="Molecular medicine reports">Mol Med Rep</span>. 2008
Jul-Aug;1(4):511-5.PMID:21479441</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19328186">Attenuation
of neuronal degeneration in thioredoxin-1 overexpressing mice
after mild focal ischemia.</a>Zhou F, Gomi M, Fujimoto M, Hayase
M, Marumo T, Masutani H, Yodoi J, Hashimoto N, Nozaki K, Takagi Y.<span class="jrnl" title="Brain research">Brain Res</span>. 2009 May
26;1272:62-70. doi: 10.1016/j.brainres.2009.03.023. Epub 2009 Mar
25.PMID:19328186</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11751890">The
roles of thioredoxin in protection against oxidative
stress-induced apoptosis in SH-SY5Y cells.</a>Andoh T, Chock PB,
Chiueh CC.<span class="jrnl" title="The Journal of biological
chemistry">J Biol Chem</span>. 2002 Mar 22;277(12):9655-60. Epub
2001 Dec 19.PMID:11751890</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17606900">Thioredoxin
is required for S-nitrosation of procaspase-3 and the inhibition
of apoptosis in Jurkat cells.</a>Mitchell DA, Morton SU,
Fernhoff NB, Marletta MA.<span class="jrnl" title="Proceedings of
the National Academy of Sciences of the United States of
America">Proc Natl Acad Sci U S A</span>. 2007 Jul
10;104(28):11609-14. Epub 2007 Jul 2.PMID:17606900</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20460580">Methylglyoxal
increases cardiomyocyte ischemia-reperfusion injury via
glycative inhibition of thioredoxin activity.</a>Wang XL, Lau
WB, Yuan YX, Wang YJ, Yi W, Christopher TA, Lopez BL, Liu HR, Ma
XL.<span class="jrnl" title="American journal of physiology.
Endocrinology and metabolism">Am J Physiol Endocrinol Metab</span>.
2010 Aug;299(2):E207-14. doi: 10.1152/ajpendo.00215.2010. Epub
2010 May 11.PMID:20460580</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20660346">Redox
regulatory mechanism of transnitrosylation by thioredoxin.</a>Wu
C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT,
Sadoshima J, Li H.<span class="jrnl" title="Molecular &amp;
cellular proteomics : MCP">Mol Cell Proteomics</span>. 2010
Oct;9(10):2262-75. doi: 10.1074/mcp.M110.000034. Epub 2010 Jul
21.PMID:20660346</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19074570">Diabetes
impairs exercise training-associated thioredoxin response and
glutathione status in rat brain.</a>Lappalainen Z, Lappalainen
J, Oksala NK, Laaksonen DE, Khanna S, Sen CK, Atalay M.<span class="jrnl" title="Journal of applied physiology (Bethesda, Md.
: 1985)">J Appl Physiol (1985)</span>. 2009 Feb;106(2):461-7.
doi: 10.1152/japplphysiol.91252.2008. Epub 2008 Dec
12.PMID:19074570</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/24549090">Zerumbone-loaded
nanostructured lipid carrier induces G2/M cell cycle arrest and
apoptosis via mitochondrial pathway in a human lymphoblastic
leukemia cell line.</a>Rahman HS, Rasedee A, Abdul AB, Zeenathul
NA, Othman HH, Yeap SK, How CW, Hafiza WA.<span class="jrnl" title="International journal of nanomedicine">Int J Nanomedicine</span>.
2014 Jan 16;9:527-38. doi: 10.2147/IJN.S54346. eCollection
2014.PMID:24549090<br />
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12016152">Zerumbone,
a Southeast Asian ginger sesquiterpene, markedly suppresses free
radical generation, proinflammatory protein production, and
cancer cell proliferation accompanied by apoptosis: the
alpha,beta-unsaturated carbonyl group is a prerequisite.</a>Murakami
A, Takahashi D, Kinoshita T, Koshimizu K, Kim HW, Yoshihiro A,
Nakamura Y, Jiwajinda S, Terao J, Ohigashi H.<span class="jrnl" title="Carcinogenesis">Carcinogenesis</span>. 2002
May;23(5):795-802.PMID:12016152</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19074570">Diabetes
impairs exercise training-associated thioredoxin response and
glutathione status in rat brain.</a>Lappalainen Z, Lappalainen
J, Oksala NK, Laaksonen DE, Khanna S, Sen CK, Atalay M.<span class="jrnl" title="Journal of applied physiology (Bethesda, Md.
: 1985)">J Appl Physiol (1985)</span>. 2009 Feb;106(2):461-7.
doi: 10.1152/japplphysiol.91252.2008. Epub 2008 Dec
12.PMID:19074570</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17972886">Probing
the chemistry of thioredoxin catalysis with force.</a>Wiita AP,
Perez-Jimenez R, Walther KA, Gräter F, Berne BJ, Holmgren A,
Sanchez-Ruiz JM, Fernandez JM.<span class="jrnl" title="Nature">Nature</span>.
2007 Nov 1;450(7166):124-7.PMID:17972886</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21324905">Thioredoxin
increases exocytosis by denitrosylating
N-ethylmaleimide-sensitive factor.</a>Ito T, Yamakuchi M,
Lowenstein CJ.<span class="jrnl" title="The Journal of biological
chemistry">J Biol Chem</span>. 2011 Apr 1;286(13):11179-84. doi:
10.1074/jbc.M110.201780. Epub 2011 Feb 15.PMID:21324905</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17012768">The
thiol-based redox networks of pathogens: unexploited targets in
the search for new drugs.</a>Jaeger T, Flohé L.<span class="jrnl" title="BioFactors (Oxford, England)">Biofactors</span>.
2006;27(1-4):109-20. Review.PMID:17012768</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20660346">Redox
regulatory mechanism of transnitrosylation by thioredoxin.</a>Wu
C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT,
Sadoshima J, Li H.<span class="jrnl" title="Molecular &amp;
cellular proteomics : MCP">Mol Cell Proteomics</span>. 2010
Oct;9(10):2262-75. doi: 10.1074/mcp.M110.000034. Epub 2010 Jul
21.PMID:20660346</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8805557">Crystal
structures of reduced, oxidized, and mutated human thioredoxins:
evidence for a regulatory homodimer.</a>Weichsel A, Gasdaska JR,
Powis G, Montfort WR.<span class="jrnl" title="Structure (London,
England : 1993)">Structure</span>. 1996 Jun
15;4(6):735-51.PMID:8805557</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15818395">The
thioredoxin system in retroviral infection and apoptosis.</a>Masutani
H, Ueda S, Yodoi J.<span class="jrnl" title="Cell death and
differentiation">Cell Death Differ</span>. 2005 Aug;12 Suppl
1:991-8. Review.PMID:15818395</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">Distinction
of thioredoxin transnitrosylation and denitrosylation target
proteins by the ICAT quantitative approach.</a>Wu C, Parrott AM,
Liu T, Jain MR, Yang Y, Sadoshima J, Li H.<span class="jrnl" title="Journal of proteomics">J Proteomics</span>. 2011 Oct
19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
Jun 17.PMID:21704743</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12244325">Redox
regulatory and anti-apoptotic functions of thioredoxin depend on
S-nitrosylation at cysteine 69.</a>Haendeler J, Hoffmann J,
Tischler V, Berk BC, Zeiher AM, Dimmeler S.<span class="jrnl" title="Nature cell biology">Nat Cell Biol</span>. 2002
Oct;4(10):743-9.PMID:12244325</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18544525">Regulation
of the catalytic activity and structure of human thioredoxin 1
via oxidation and S-nitrosylation of cysteine residues.</a>Hashemy
SI, Holmgren A.<span class="jrnl" title="The Journal of biological
chemistry">J Biol Chem</span>. 2008 Aug 8;283(32):21890-8. doi:
10.1074/jbc.M801047200. Epub 2008 Jun 10.PMID:18544525</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12816947">Redox
potential of human thioredoxin 1 and identification of a second
dithiol/disulfide motif.</a>Watson WH, Pohl J, Montfort WR,
Stuchlik O, Reed MS, Powis G, Jones DP.<span class="jrnl" title="The Journal of biological chemistry">J Biol Chem</span>.
2003 Aug 29;278(35):33408-15. Epub 2003 Jun 19.PMID:1281694</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9369469">Human
thioredoxin homodimers: regulation by pH, role of aspartate 60,
and crystal structure of the aspartate 60 --&gt; asparagine
mutant.</a>Andersen JF, Sanders DA, Gasdaska JR, Weichsel A,
Powis G, Montfort WR.<span class="jrnl" title="Biochemistry">Biochemistry</span>.
1997 Nov 18;36(46):13979-88.PMID:9369469</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">Distinction
of thioredoxin transnitrosylation and denitrosylation target
proteins by the ICAT quantitative approach.</a>Wu C, Parrott AM,
Liu T, Jain MR, Yang Y, Sadoshima J, Li H.<span class="jrnl" title="Journal of proteomics">J Proteomics</span>. 2011 Oct
19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
Jun 17.PMID:21704743</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15485910">Essential
role for mitochondrial thioredoxin reductase in hematopoiesis,
heart development, and heart function.</a>Conrad M, Jakupoglu C,
Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK,
Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW,
Brielmeier M.<span class="jrnl" title="Molecular and cellular
biology">Mol Cell Biol</span>. 2004
Nov;24(21):9414-23.PMID:15485910</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21453190">Thioredoxin
1-mediated post-translational modifications: reduction,
transnitrosylation, denitrosylation, and related proteomics
methodologies.</a>Wu C, Parrott AM, Fu C, Liu T, Marino SM,
Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve
A, Simmons WJ, Li H.<span class="jrnl" title="Antioxidants &amp;
redox signaling">Antioxid Redox Signal</span>. 2011 Nov
1;15(9):2565-604. doi: 10.1089/ars.2010.3831. Epub 2011 Jun 8.
Review.PMID:21453190</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11012661">Physiological
functions of thioredoxin and thioredoxin reductase.</a>Arnér ES,
Holmgren A.<span class="jrnl" title="European journal of
biochemistry / FEBS">Eur J Biochem</span>. 2000
Oct;267(20):6102-9. Review.PMID:11012661</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20660346">Redox
regulatory mechanism of transnitrosylation by thioredoxin.</a>Wu
C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT,
Sadoshima J, Li H.<span class="jrnl" title="Molecular &amp;
cellular proteomics : MCP">Mol Cell Proteomics</span>. 2010
Oct;9(10):2262-75. doi: 10.1074/mcp.M110.000034. Epub 2010 Jul
21.PMID:20660346</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11702225">A
genome-wide survey of human thioredoxin and glutaredoxin family
pseudogenes.</a>Spyrou G, Wilson W, Padilla CA, Holmgren A,
Miranda-Vizuete A.<span class="jrnl" title="Human genetics">Hum
Genet</span>. 2001 Oct;109(4):429-39.PMID:11702225</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17008712">The
origami of thioredoxin-like folds.</a>Pan JL, Bardwell JC.<span class="jrnl" title="Protein science : a publication of the
Protein Society">Protein Sci</span>. 2006
Oct;15(10):2217-27.PMID:17008712</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">Distinction
of thioredoxin transnitrosylation and denitrosylation target
proteins by the ICAT quantitative approach.</a>Wu C, Parrott AM,
Liu T, Jain MR, Yang Y, Sadoshima J, Li H.<span class="jrnl" title="Journal of proteomics">J Proteomics</span>. 2011 Oct
19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
Jun 17.PMID:21704743</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11807942">Thioredoxin
and peptide methionine sulfoxide reductase: convergence of
similar structure and function in distinct structural folds.</a>Gladyshev
VN.<span class="jrnl" title="Proteins">Proteins</span>. 2002 Feb
1;46(2):149-52.PMID:11807942</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">Glutathione
and glutaredoxin act as a backup of human thioredoxin reductase
1 to reduce thioredoxin 1 preventing cell death by
aurothioglucose.</a>Du Y, Zhang H, Lu J, Holmgren A.<span class="jrnl" title="The Journal of biological chemistry">J Biol
Chem</span>. 2012 Nov 2;287(45):38210-9. doi:
10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20662007">Crystal
structure of human thioredoxin revealing an unraveled helix and
exposed S-nitrosation site.</a>Weichsel A, Kem M, Montfort WR.<span class="jrnl" title="Protein science : a publication of the
Protein Society">Protein Sci</span>. 2010 Sep;19(9):1801-6. doi:
10.1002/pro.455.PMID:20662007</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20661909">Structure
of human thioredoxin exhibits a large conformational change.</a>Hall
G, Emsley J.<span class="jrnl" title="Protein science : a
publication of the Protein Society">Protein Sci</span>. 2010
Sep;19(9):1807-11. doi: 10.1002/pro.466.PMID:20661909</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16115022">Requirements
for the different cysteines in the chemotactic and desensitizing
activity of human thioredoxin.</a>Bizzarri C, Holmgren A,
Pekkari K, Chang G, Colotta F, Ghezzi P, Bertini R.<span class="jrnl" title="Antioxidants &amp; redox signaling">Antioxid
Redox Signal</span>. 2005 Sep-Oct;7(9-10):1189-94.PMID:16115022</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9369469">Human
thioredoxin homodimers: regulation by pH, role of aspartate 60,
and crystal structure of the aspartate 60 --&gt; asparagine
mutant.</a>Andersen JF, Sanders DA, Gasdaska JR, Weichsel A,
Powis G, Montfort WR.<span class="jrnl" title="Biochemistry">Biochemistry</span>.
1997 Nov 18;36(46):13979-88.PMID:9369469</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/2684271">A
proton nuclear magnetic resonance assignment and secondary
structure determination of recombinant human thioredoxin.</a>Forman-Kay
JD, Clore GM, Driscoll PC, Wingfield P, Richards FM, Gronenborn
AM.<span class="jrnl" title="Biochemistry">Biochemistry</span>.
1989 Aug 22;28(17):7088-97.PMID:2684271</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8805557">Crystal
structures of reduced, oxidized, and mutated human thioredoxins:
evidence for a regulatory homodimer.</a>Weichsel A, Gasdaska JR,
Powis G, Montfort WR.<span class="jrnl" title="Structure (London,
England : 1993)">Structure</span>. 1996 Jun
15;4(6):735-51.PMID:8805557</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/1332947">Secretion
of thioredoxin by normal and neoplastic cells through a
leaderless secretory pathway.</a>Rubartelli A, Bajetto A,
Allavena G, Wollman E, Sitia R.<span class="jrnl" title="The
Journal of biological chemistry">J Biol Chem</span>. 1992 Dec
5;267(34):24161-4.PMID:1332947</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8049254">The
predicted amino acid sequence of human thioredoxin is identical
to that of the autocrine growth factor human adult T-cell
derived factor (ADF): thioredoxin mRNA is elevated in some human
tumors.</a>Gasdaska PY, Oblong JE, Cotgreave IA, Powis G.<span class="jrnl" title="Biochimica et biophysica acta">Biochim
Biophys Acta</span>. 1994 Aug 2;1218(3):292-6.PMID:8049254</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15818395">The
thioredoxin system in retroviral infection and apoptosis.</a>Masutani
H, Ueda S, Yodoi J.<span class="jrnl" title="Cell death and
differentiation">Cell Death Differ</span>. 2005 Aug;12 Suppl
1:991-8. Review.PMID:15818395</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11841832">Thioredoxin-mediated
redox control of human T cell lymphotropic virus type I (HTLV-I)
gene expression.</a>Sasada T, Nakamura H, Masutani H, Ueda S,
Sono H, Takabayashi A, Yodoi J.<span class="jrnl" title="Molecular
immunology">Mol Immunol</span>. 2002
Feb;38(10):723-32.PMID:11841832</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21526215">Increased
inflammatory signaling and lethality of influenza H1N1 by
nuclear thioredoxin-1.</a>Go YM, Kang SM, Roede JR, Orr M, Jones
DP.<span class="jrnl" title="PloS one">PLoS One</span>. 2011 Apr
15;6(4):e18918. doi: 10.1371/journal.pone.0018918.PMID:21526215</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9143692">Redox
regulation of cellular activation.</a>Nakamura H, Nakamura K,
Yodoi J.<span class="jrnl" title="Annual review of immunology">Annu
Rev Immunol</span>. 1997;15:351-69. Review.PMID:9143692</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20660346">Redox
regulatory mechanism of transnitrosylation by thioredoxin.</a>Wu
C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT,
Sadoshima J, Li H.<span class="jrnl" title="Molecular &amp;
cellular proteomics : MCP">Mol Cell Proteomics</span>. 2010
Oct;9(10):2262-75. doi: 10.1074/mcp.M110.000034. Epub 2010 Jul
21.PMID:20660346</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">Distinction
of thioredoxin transnitrosylation and denitrosylation target
proteins by the ICAT quantitative approach.</a>Wu C, Parrott AM,
Liu T, Jain MR, Yang Y, Sadoshima J, Li H.<span class="jrnl" title="Journal of proteomics">J Proteomics</span>. 2011 Oct
19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
Jun 17.PMID:21704743</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21453190">Thioredoxin
1-mediated post-translational modifications: reduction,
transnitrosylation, denitrosylation, and related proteomics
methodologies.</a>Wu C, Parrott AM, Fu C, Liu T, Marino SM,
Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve
A, Simmons WJ, Li H.<span class="jrnl" title="Antioxidants &amp;
redox signaling">Antioxid Redox Signal</span>. 2011 Nov
1;15(9):2565-604. doi: 10.1089/ars.2010.3831. Epub 2011 Jun 8.
Review.PMID:21453190</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9108029">AP-1
transcriptional activity is regulated by a direct association
between thioredoxin and Ref-1.</a>Hirota K, Matsui M, Iwata S,
Nishiyama A, Mori K, Yodoi J.<span class="jrnl" title="Proceedings
of the National Academy of Sciences of the United States of
America">Proc Natl Acad Sci U S A</span>. 1997 Apr
15;94(8):3633-8.PMID:9108029</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17606900">Thioredoxin
is required for S-nitrosation of procaspase-3 and the inhibition
of apoptosis in Jurkat cells.</a>Mitchell DA, Morton SU,
Fernhoff NB, Marletta MA.<span class="jrnl" title="Proceedings of
the National Academy of Sciences of the United States of
America">Proc Natl Acad Sci U S A</span>. 2007 Jul
10;104(28):11609-14. Epub 2007 Jul 2.PMID:17606900</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/23212077">Small
changes huge impact: the role of thioredoxin 1 in the regulation
of apoptosis by S-nitrosylation.</a>Li H, Wan A, Xu G, Ye D.<span class="jrnl" title="Acta biochimica et biophysica Sinica">Acta
Biochim Biophys Sin (Shanghai)</span>. 2013 Mar;45(3):153-61.
doi: 10.1093/abbs/gms103. Epub 2012 Dec 4. Review.PMID:23212077</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20662007">Crystal
structure of human thioredoxin revealing an unraveled helix and
exposed S-nitrosation site.</a>Weichsel A, Kem M, Montfort WR.<span class="jrnl" title="Protein science : a publication of the
Protein Society">Protein Sci</span>. 2010 Sep;19(9):1801-6. doi:
10.1002/pro.455.PMID:20662007</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21453190">Thioredoxin
1-mediated post-translational modifications: reduction,
transnitrosylation, denitrosylation, and related proteomics
methodologies.</a>Wu C, Parrott AM, Fu C, Liu T, Marino SM,
Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve
A, Simmons WJ, Li H.<span class="jrnl" title="Antioxidants &amp;
redox signaling">Antioxid Redox Signal</span>. 2011 Nov
1;15(9):2565-604. doi: 10.1089/ars.2010.3831. Epub 2011 Jun 8.
Review.PMID:21453190</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16916647">Substrate
and functional diversity of lysine acetylation revealed by a
proteomics survey.</a>Kim SC, Sprung R, Chen Y, Xu Y, Ball H,
Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang
XJ, Zhao Y.<span class="jrnl" title="Molecular cell">Mol Cell</span>.
2006 Aug;23(4):607-18.PMID:16916647</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10585464">Thioredoxin-dependent
redox regulation of p53-mediated p21 activation.</a>Ueno M,
Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T,
Yamaoka Y, Yodoi J, Nikaido T.<span class="jrnl" title="The
Journal of biological chemistry">J Biol Chem</span>. 1999 Dec
10;274(50):35809-15.PMID:10585464</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15824742">Roles
of thioredoxin reductase 1 and APE/Ref-1 in the control of basal
p53 stability and activity.</a>Seemann S, Hainaut P.<span class="jrnl" title="Oncogene">Oncogene</span>. 2005 Jun
2;24(24):3853-63.PMID:15824742</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/7788295">Solution
structure of human thioredoxin in a mixed disulfide intermediate
complex with its target peptide from the transcription factor NF
kappa B.</a>Qin J, Clore GM, Kennedy WM, Huth JR, Gronenborn AM.<span class="jrnl" title="Structure (London, England : 1993)">Structure</span>.
1995 Mar 15;3(3):289-97.PMID:7788295</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8736558">The
solution structure of human thioredoxin complexed with its
target from Ref-1 reveals peptide chain reversal.</a>Qin J,
Clore GM, Kennedy WP, Kuszewski J, Gronenborn AM.<span class="jrnl" title="Structure (London, England : 1993)">Structure</span>.
1996 May 15;4(5):613-20.PMID:8736558</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9143692">Redox
regulation of cellular activation.</a>Nakamura H, Nakamura K,
Yodoi J.<span class="jrnl" title="Annual review of immunology">Annu
Rev Immunol</span>. 1997;15:351-69. Review.PMID:9143692</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17115890">Contribution
of thioredoxin reductase to T-cell mitogenesis and NF-kappaB
DNA-binding promoted by selenite.</a>Ueno H, Kajihara H,
Nakamura H, Yodoi J, Nakamuro K.<span class="jrnl" title="Antioxidants &amp; redox signaling">Antioxid Redox Signal</span>.
2007 Jan;9(1):115-21.PMID:17115890</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19628032">Thioredoxin-related
protein 14, a new member of the thioredoxin family with
disulfide reductase activity: implication in the redox
regulation of TNF-alpha signaling.</a>Jeong W, Jung Y, Kim H,
Park SJ, Rhee SG.<span class="jrnl" title="Free radical biology
&amp; medicine">Free Radic Biol Med</span>. 2009 Nov
1;47(9):1294-303. doi: 10.1016/j.freeradbiomed.2009.07.021. Epub
2009 Jul 21. Review.PMID:19628032</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9143692">Redox
regulation of cellular activation.</a>Nakamura H, Nakamura K,
Yodoi J.<span class="jrnl" title="Annual review of immunology">Annu
Rev Immunol</span>. 1997;15:351-69. Review.PMID:9143692</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9108029">AP-1
transcriptional activity is regulated by a direct association
between thioredoxin and Ref-1.</a>Hirota K, Matsui M, Iwata S,
Nishiyama A, Mori K, Yodoi J.<span class="jrnl" title="Proceedings
of the National Academy of Sciences of the United States of
America">Proc Natl Acad Sci U S A</span>. 1997 Apr
15;94(8):3633-8.PMID:9108029</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10585464">Thioredoxin-dependent
redox regulation of p53-mediated p21 activation.</a>Ueno M,
Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T,
Yamaoka Y, Yodoi J, Nikaido T.<span class="jrnl" title="The
Journal of biological chemistry">J Biol Chem</span>. 1999 Dec
10;274(50):35809-15.PMID:10585464</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11118054">Thioredoxin
nuclear translocation and interaction with redox factor-1
activates the activator protein-1 transcription factor in
response to ionizing radiation.</a>Wei SJ, Botero A, Hirota K,
Bradbury CM, Markovina S, Laszlo A, Spitz DR, Goswami PC, Yodoi J,
Gius D.<span class="jrnl" title="Cancer research">Cancer Res</span>.
2000 Dec 1;60(23):6688-95.PMID:11118054</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9915858">Direct
association with thioredoxin allows redox regulation of
glucocorticoid receptor function.</a>Makino Y, Yoshikawa N,
Okamoto K, Hirota K, Yodoi J, Makino I, Tanaka H.<span class="jrnl" title="The Journal of biological chemistry">J Biol
Chem</span>. 1999 Jan 29;274(5):3182-8.PMID:9915858</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10823822">Thioredoxin
facilitates the induction of heme oxygenase-1 in response to
inflammatory mediators.</a>Wiesel P, Foster LC, Pellacani A,
Layne MD, Hsieh CM, Huggins GS, Strauss P, Yet SF, Perrella MA.<span class="jrnl" title="The Journal of biological chemistry">J Biol
Chem</span>. 2000 Aug 11;275(32):24840-6.PMID:10823822</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11012661">Physiological
functions of thioredoxin and thioredoxin reductase.</a>Arnér ES,
Holmgren A.<span class="jrnl" title="European journal of
biochemistry / FEBS">Eur J Biochem</span>. 2000
Oct;267(20):6102-9. Review.PMID:11012661</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19859790">c-Jun-NH2
terminal kinase (JNK)-mediates AP-1 activation by thioredoxin:
phosphorylation of cJun, JunB, and Fra-1.</a>Das KC, Muniyappa
H.<span class="jrnl" title="Molecular and cellular biochemistry">Mol
Cell Biochem</span>. 2010 Apr;337(1-2):53-63. doi:
10.1007/s11010-009-0285-0. Epub 2009 Oct 27.PMID:19859790</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12214272">Thioredoxin
reductase regulates AP-1 activity as well as thioredoxin nuclear
localization via active cysteines in response to ionizing
radiation.</a>Karimpour S, Lou J, Lin LL, Rene LM, Lagunas L, Ma
X, Karra S, Bradbury CM, Markovina S, Goswami PC, Spitz DR, Hirota
K, Kalvakolanu DV, Yodoi J, Gius D.<span class="jrnl" title="Oncogene">Oncogene</span>. 2002 Sep
12;21(41):6317-27.PMID:12214272</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10585464">Thioredoxin-dependent
redox regulation of p53-mediated p21 activation.</a>Ueno M,
Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T,
Yamaoka Y, Yodoi J, Nikaido T.<span class="jrnl" title="The
Journal of biological chemistry">J Biol Chem</span>. 1999 Dec
10;274(50):35809-15.PMID:10585464</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17652454">Disulfide
Bond-mediated multimerization of Ask1 and its reduction by
thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal
kinase activation and apoptosis.</a>Nadeau PJ, Charette SJ,
Toledano MB, Landry J.<span class="jrnl" title="Molecular biology
of the cell">Mol Biol Cell</span>. 2007 Oct;18(10):3903-13. Epub
2007 Jul 25.PMID:17652454</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8805557">Crystal
structures of reduced, oxidized, and mutated human thioredoxins:
evidence for a regulatory homodimer.</a>Weichsel A, Gasdaska JR,
Powis G, Montfort WR.<span class="jrnl" title="Structure (London,
England : 1993)">Structure</span>. 1996 Jun
15;4(6):735-51.PMID:8805557</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12214272">Thioredoxin
reductase regulates AP-1 activity as well as thioredoxin nuclear
localization via active cysteines in response to ionizing
radiation.</a>Karimpour S, Lou J, Lin LL, Rene LM, Lagunas L, Ma
X, Karra S, Bradbury CM, Markovina S, Goswami PC, Spitz DR, Hirota
K, Kalvakolanu DV, Yodoi J, Gius D.<span class="jrnl" title="Oncogene">Oncogene</span>. 2002 Sep
12;21(41):6317-27.PMID:12214272</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">Glutathione
and glutaredoxin act as a backup of human thioredoxin reductase
1 to reduce thioredoxin 1 preventing cell death by
aurothioglucose.</a>Du Y, Zhang H, Lu J, Holmgren A.<span class="jrnl" title="The Journal of biological chemistry">J Biol
Chem</span>. 2012 Nov 2;287(45):38210-9. doi:
10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9315320">Selenium
and the thioredoxin and glutaredoxin systems.</a>Björnstedt M,
Kumar S, Björkhem L, Spyrou G, Holmgren A.<span class="jrnl" title="Biomedical and environmental sciences : BES">Biomed
Environ Sci</span>. 1997 Sep;10(2-3):271-9. Review.PMID:9315320</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20306235">Regulation
of redox signaling by selenoproteins.</a>Hawkes WC, Alkan Z.<span class="jrnl" title="Biological trace element research">Biol
Trace Elem Res</span>. 2010 Jun;134(3):235-51. doi:
10.1007/s12011-010-8656-7. Epub 2010 Mar 20.PMID:20306235</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16214824">Thioredoxin
and dihydrolipoic acid inhibit elastase activity in cystic
fibrosis sputum.</a>Lee RL, Rancourt RC, del Val G, Pack K,
Pardee C, Accurso FJ, White CW.<span class="jrnl" title="American
journal of physiology. Lung cellular and molecular physiology">Am
J Physiol Lung Cell Mol Physiol</span>. 2005
Nov;289(5):L875-82.PMID:16214824</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/7961915">The
thioredoxin and glutaredoxin systems are efficient electron
donors to human plasma glutathione peroxidase.</a>Björnstedt M,
Xue J, Huang W, Akesson B, Holmgren A.<span class="jrnl" title="The Journal of biological chemistry">J Biol Chem</span>.
1994 Nov 25;269(47):29382-4.PMID:7961915</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8702596">S-nitrosoglutathione
is cleaved by the thioredoxin system with liberation of
glutathione and redox regulating nitric oxide.</a>Nikitovic D,
Holmgren A.<span class="jrnl" title="The Journal of biological
chemistry">J Biol Chem</span>. 1996 Aug
9;271(32):19180-5.PMID:8702596</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15754001">Antisense-thioredoxin
inhibits angiogenesis via pVHL-mediated hypoxia-inducible
factor-1alpha degradation.</a>Kim WJ, Cho H, Lee SW, Kim YJ, Kim
KW.<span class="jrnl" title="International journal of oncology">Int
J Oncol</span>. 2005 Apr;26(4):1049-52.PMID:15754001</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10232049">Thioredoxin
in the endocrine response to stress.</a>Tanaka H, Makino Y,
Okamoto K.<span class="jrnl" title="Vitamins and hormones">Vitam
Horm</span>. 1999;57:153-75. Review.PMID:10232049</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/23212077">Small
changes huge impact: the role of thioredoxin 1 in the regulation
of apoptosis by S-nitrosylation.</a>Li H, Wan A, Xu G, Ye D.<span class="jrnl" title="Acta biochimica et biophysica Sinica">Acta
Biochim Biophys Sin (Shanghai)</span>. 2013 Mar;45(3):153-61.
doi: 10.1093/abbs/gms103. Epub 2012 Dec 4. Review.PMID:23212077</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21704743">Distinction
of thioredoxin transnitrosylation and denitrosylation target
proteins by the ICAT quantitative approach.</a>Wu C, Parrott AM,
Liu T, Jain MR, Yang Y, Sadoshima J, Li H.<span class="jrnl" title="Journal of proteomics">J Proteomics</span>. 2011 Oct
19;74(11):2498-509. doi: 10.1016/j.jprot.2011.06.001. Epub 2011
Jun 17.PMID:21704743</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20660346">Redox
regulatory mechanism of transnitrosylation by thioredoxin.</a>Wu
C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT,
Sadoshima J, Li H.<span class="jrnl" title="Molecular &amp;
cellular proteomics : MCP">Mol Cell Proteomics</span>. 2010
Oct;9(10):2262-75. doi: 10.1074/mcp.M110.000034. Epub 2010 Jul
21.PMID:20660346</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18544525">Regulation
of the catalytic activity and structure of human thioredoxin 1
via oxidation and S-nitrosylation of cysteine residues.</a>Hashemy
SI, Holmgren A.<span class="jrnl" title="The Journal of biological
chemistry">J Biol Chem</span>. 2008 Aug 8;283(32):21890-8. doi:
10.1074/jbc.M801047200. Epub 2008 Jun 10.PMID:18544525</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8813721">Redox
regulation of thyroid-transcription factors, Pax-8 and TTF-1, is
involved in their increased DNA-binding activities by
thyrotropin in rat thyroid FRTL-5 cells.</a>Kambe F, Nomura Y,
Okamoto T, Seo H.<span class="jrnl" title="Molecular endocrinology
(Baltimore, Md.)">Mol Endocrinol</span>. 1996
Jul;10(7):801-12.PMID:8813721</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8702596">S-nitrosoglutathione
is cleaved by the thioredoxin system with liberation of
glutathione and redox regulating nitric oxide.</a>Nikitovic D,
Holmgren A.<span class="jrnl" title="The Journal of biological
chemistry">J Biol Chem</span>. 1996 Aug
9;271(32):19180-5.PMID:8702596</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12801522">S-nitrosylation
of thioredoxin mediates activation of apoptosis
signal-regulating kinase 1.</a>Sumbayev VV.<span class="jrnl" title="Archives of biochemistry and biophysics">Arch Biochem
Biophys</span>. 2003 Jul 1;415(1):133-6.PMID:12801522</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21453190">Thioredoxin
1-mediated post-translational modifications: reduction,
transnitrosylation, denitrosylation, and related proteomics
methodologies.</a>Wu C, Parrott AM, Fu C, Liu T, Marino SM,
Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve
A, Simmons WJ, Li H.<span class="jrnl" title="Antioxidants &amp;
redox signaling">Antioxid Redox Signal</span>. 2011 Nov
1;15(9):2565-604. doi: 10.1089/ars.2010.3831. Epub 2011 Jun 8.
Review.PMID:21453190</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15818395">The
thioredoxin system in retroviral infection and apoptosis.</a>Masutani
H, Ueda S, Yodoi J.<span class="jrnl" title="Cell death and
differentiation">Cell Death Differ</span>. 2005 Aug;12 Suppl
1:991-8. Review.PMID:15818395</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16061374">Altered
thioredoxin subcellular localization and redox status in MCF-7
cells following 1,25-dihydroxyvitamin D3 treatment.</a>Byrne BM,
Welsh J.<span class="jrnl" title="The Journal of steroid
biochemistry and molecular biology">J Steroid Biochem Mol Biol</span>.
2005 Oct;97(1-2):57-64. Epub 2005 Aug 2.PMID:16061374</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">Glutathione
and glutaredoxin act as a backup of human thioredoxin reductase
1 to reduce thioredoxin 1 preventing cell death by
aurothioglucose.</a>Du Y, Zhang H, Lu J, Holmgren A.<span class="jrnl" title="The Journal of biological chemistry">J Biol
Chem</span>. 2012 Nov 2;287(45):38210-9. doi:
10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/3170595">Cloning
and expression of a cDNA for human thioredoxin.</a>Wollman EE,
d'Auriol L, Rimsky L, Shaw A, Jacquot JP, Wingfield P, Graber P,
Dessarps F, Robin P, Galibert F, et al.<span class="jrnl" title="The Journal of biological chemistry">J Biol Chem</span>.
1988 Oct 25;263(30):15506-12.PMID:3170595</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21453190">Thioredoxin
1-mediated post-translational modifications: reduction,
transnitrosylation, denitrosylation, and related proteomics
methodologies.</a>Wu C, Parrott AM, Fu C, Liu T, Marino SM,
Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve
A, Simmons WJ, Li H.<span class="jrnl" title="Antioxidants &amp;
redox signaling">Antioxid Redox Signal</span>. 2011 Nov
1;15(9):2565-604. doi: 10.1089/ars.2010.3831. Epub 2011 Jun 8.
Review.PMID:21453190</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17012768">The
thiol-based redox networks of pathogens: unexploited targets in
the search for new drugs.</a>Jaeger T, Flohé L.<span class="jrnl" title="BioFactors (Oxford, England)">Biofactors</span>.
2006;27(1-4):109-20. Review.PMID:17012768</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/24062305">Thioredoxin
1 is inactivated due to oxidation induced by peroxiredoxin under
oxidative stress and reactivated by the glutaredoxin system.</a>Du
Y, Zhang H, Zhang X, Lu J, Holmgren A.<span class="jrnl" title="The Journal of biological chemistry">J Biol Chem</span>.
2013 Nov 8;288(45):32241-7. doi: 10.1074/jbc.M113.495150. Epub
2013 Sep 23.PMID:24062305</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16263712">Cathepsin
D and H2O2 stimulate degradation of thioredoxin-1: implication
for endothelial cell apoptosis.</a>Haendeler J, Popp R, Goy C,
Tischler V, Zeiher AM, Dimmeler S.<span class="jrnl" title="The
Journal of biological chemistry">J Biol Chem</span>. 2005 Dec
30;280(52):42945-51. Epub 2005 Nov 1.PMID:16263712</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12386145">Vitamin
D3-upregulated protein-1 (VDUP-1) regulates redox-dependent
vascular smooth muscle cell proliferation through interaction
with thioredoxin.</a>Schulze PC, De Keulenaer GW, Yoshioka J,
Kassik KA, Lee RT.<span class="jrnl" title="Circulation research">Circ
Res</span>. 2002 Oct 18;91(8):689-95.PMID:12386145</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17081769">Thioredoxin
and protein kinases in redox signaling.</a>Fujino G, Noguchi T,
Takeda K, Ichijo H.<span class="jrnl" title="Seminars in cancer
biology">Semin Cancer Biol</span>. 2006 Dec;16(6):427-35. Epub
2006 Sep 26. Review.PMID:17081769</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15723974">Alpha-adrenergic
receptor-stimulated hypertrophy in adult rat ventricular
myocytes is mediated via thioredoxin-1-sensitive oxidative
modification of thiols on Ras.</a>Kuster GM, Pimentel DR, Adachi
T, Ido Y, Brenner DA, Cohen RA, Liao R, Siwik DA, Colucci WS.<span class="jrnl" title="Circulation">Circulation</span>. 2005 Mar
8;111(9):1192-8. Epub 2005 Feb 21.PMID:15723974</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">Glutathione
and glutaredoxin act as a backup of human thioredoxin reductase
1 to reduce thioredoxin 1 preventing cell death by
aurothioglucose.</a>Du Y, Zhang H, Lu J, Holmgren A.<span class="jrnl" title="The Journal of biological chemistry">J Biol
Chem</span>. 2012 Nov 2;287(45):38210-9. doi:
10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20218863">Redox
regulation of actin by thioredoxin-1 is mediated by the
interaction of the proteins via cysteine 62.</a>Wang X, Ling S,
Zhao D, Sun Q, Li Q, Wu F, Nie J, Qu L, Wang B, Shen X, Bai Y, Li
Y, Li Y.<span class="jrnl" title="Antioxidants &amp; redox
signaling">Antioxid Redox Signal</span>. 2010 Sep
1;13(5):565-73. doi: 10.1089/ars.2009.2833.PMID:20218863</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">Glutathione
and glutaredoxin act as a backup of human thioredoxin reductase
1 to reduce thioredoxin 1 preventing cell death by
aurothioglucose.</a>Du Y, Zhang H, Lu J, Holmgren A.<span class="jrnl" title="The Journal of biological chemistry">J Biol
Chem</span>. 2012 Nov 2;287(45):38210-9. doi:
10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19328186">Attenuation
of neuronal degeneration in thioredoxin-1 overexpressing mice
after mild focal ischemia.</a>Zhou F, Gomi M, Fujimoto M, Hayase
M, Marumo T, Masutani H, Yodoi J, Hashimoto N, Nozaki K, Takagi Y.<span class="jrnl" title="Brain research">Brain Res</span>. 2009 May
26;1272:62-70. doi: 10.1016/j.brainres.2009.03.023. Epub 2009 Mar
25.PMID:19328186</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17823364">Nuclear
redox-signaling is essential for apoptosis inhibition in
endothelial cells--important role for nuclear thioredoxin-1.</a>Schroeder
P, Popp R, Wiegand B, Altschmied J, Haendeler J.<span class="jrnl" title="Arteriosclerosis, thrombosis, and vascular biology">Arterioscler
Thromb Vasc Biol</span>. 2007 Nov;27(11):2325-31. Epub 2007 Sep
6.PMID:17823364</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16159878">Endogenous
thioredoxin is required for redox cycling of anthracyclines and
p53-dependent apoptosis in cancer cells.</a>Ravi D, Muniyappa H,
Das KC.<span class="jrnl" title="The Journal of biological
chemistry">J Biol Chem</span>. 2005 Dec 2;280(48):40084-96. Epub
2005 Sep 13.PMID:16159878</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16424062">Tagging
single-nucleotide polymorphisms in antioxidant defense enzymes
and susceptibility to breast cancer.</a>Cebrian A, Pharoah PD,
Ahmed S, Smith PL, Luccarini C, Luben R, Redman K, Munday H,
Easton DF, Dunning AM, Ponder BA.<span class="jrnl" title="Cancer
research">Cancer Res</span>. 2006 Jan
15;66(2):1225-33.PMID:16424062</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/22867430">Interacting
with thioredoxin-1--disease or no disease?</a>Zschauer TC,
Matsushima S, Altschmied J, Shao D, Sadoshima J, Haendeler J.<span class="jrnl" title="Antioxidants &amp; redox signaling">Antioxid
Redox Signal</span>. 2013 Mar 20;18(9):1053-62. doi:
10.1089/ars.2012.4822. Epub 2012 Sep 24. Review.PMID:22867430</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9354464">Mechanisms
of the regulation of thioredoxin reductase activity in cancer
cells by the chemopreventive agent selenium.</a>Gallegos A,
Berggren M, Gasdaska JR, Powis G.<span class="jrnl" title="Cancer
research">Cancer Res</span>. 1997 Nov
1;57(21):4965-70.PMID:9354464</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9315320">Selenium
and the thioredoxin and glutaredoxin systems.</a>Björnstedt M,
Kumar S, Björkhem L, Spyrou G, Holmgren A.<span class="jrnl" title="Biomedical and environmental sciences : BES">Biomed
Environ Sci</span>. 1997 Sep;10(2-3):271-9. Review.PMID:9315320</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16750198">Truncated
mutants of human thioredoxin reductase 1 do not exhibit
glutathione reductase activity.</a>Urig S, Lieske J, Fritz-Wolf
K, Irmler A, Becker K.<span class="jrnl" title="FEBS letters">FEBS
Lett</span>. 2006 Jun 26;580(15):3595-600. Epub 2006 May
23.PMID:16750198</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/22977247">Glutathione
and glutaredoxin act as a backup of human thioredoxin reductase
1 to reduce thioredoxin 1 preventing cell death by
aurothioglucose.</a>Du Y, Zhang H, Lu J, Holmgren A.<span class="jrnl" title="The Journal of biological chemistry">J Biol
Chem</span>. 2012 Nov 2;287(45):38210-9. doi:
10.1074/jbc.M112.392225. Epub 2012 Sep 13.PMID:22977247</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15824742">Roles
of thioredoxin reductase 1 and APE/Ref-1 in the control of basal
p53 stability and activity.</a>Seemann S, Hainaut P.<span class="jrnl" title="Oncogene">Oncogene</span>. 2005 Jun
2;24(24):3853-63.PMID:15824742</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12214272">Thioredoxin
reductase regulates AP-1 activity as well as thioredoxin nuclear
localization via active cysteines in response to ionizing
radiation.</a>Karimpour S, Lou J, Lin LL, Rene LM, Lagunas L, Ma
X, Karra S, Bradbury CM, Markovina S, Goswami PC, Spitz DR, Hirota
K, Kalvakolanu DV, Yodoi J, Gius D.<span class="jrnl" title="Oncogene">Oncogene</span>. 2002 Sep
12;21(41):6317-27.PMID:12214272</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8958209">Thioredoxin:
a redox-regulating cellular cofactor for glucocorticoid hormone
action. Cross talk between endocrine control of stress response
and cellular antioxidant defense system.</a>Makino Y, Okamoto K,
Yoshikawa N, Aoshima M, Hirota K, Yodoi J, Umesono K, Makino I,
Tanaka H.<span class="jrnl" title="The Journal of clinical
investigation">J Clin Invest</span>. 1996 Dec
1;98(11):2469-77.PMID:8958209</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10232049">Thioredoxin
in the endocrine response to stress.</a>Tanaka H, Makino Y,
Okamoto K.<span class="jrnl" title="Vitamins and hormones">Vitam
Horm</span>. 1999;57:153-75. Review.PMID:10232049</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20584310">Role
of thioredoxin reductase 1 and thioredoxin interacting protein
in prognosis of breast cancer.</a>Cadenas C, Franckenstein D,
Schmidt M, Gehrmann M, Hermes M, Geppert B, Schormann W, Maccoux
LJ, Schug M, Schumann A, Wilhelm C, Freis E, Ickstadt K,
Rahnenführer J, Baumbach JI, Sickmann A, Hengstler JG.<span class="jrnl" title="Breast cancer research : BCR">Breast Cancer
Res</span>. 2010;12(3):R44. doi: 10.1186/bcr2599. Epub 2010 Jun
28.PMID:20584310</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/14503974">Immunohistochemical
determination of thioredoxin and glutaredoxin distribution in
the human cervix, and possible relation to cervical ripening.</a>Lysell
J, Stjernholm Vladic Y, Ciarlo N, Holmgren A, Sahlin L.<span class="jrnl" title="Gynecological endocrinology : the official
journal of the International Society of Gynecological
Endocrinology">Gynecol Endocrinol</span>. 2003 Aug;17(4):303-10.PMID:14503974</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/23105116">Identification
of novel interaction between ADAM17 (a disintegrin and
metalloprotease 17) and thioredoxin-1.</a>Aragão AZ, Nogueira
ML, Granato DC, Simabuco FM, Honorato RV, Hoffman Z, Yokoo S,
Laurindo FR, Squina FM, Zeri AC, Oliveira PS, Sherman NE, Paes
Leme AF.<span class="jrnl" title="The Journal of biological
chemistry">J Biol Chem</span>. 2012 Dec 14;287(51):43071-82.
doi: 10.1074/jbc.M112.364513. Epub 2012 Oct 26.PMID:23105116</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15987909">The
crystal structure of TrxA(CACA): Insights into the formation of
a [2Fe-2S] iron-sulfur cluster in an Escherichia coli
thioredoxin mutant.</a>Collet JF, Peisach D, Bardwell JC, Xu Z.<span class="jrnl" title="Protein science : a publication of the
Protein Society">Protein Sci</span>. 2005 Jul;14(7):1863-9.PMID:<b>15987909<br />
</b></div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20620191">Thioredoxin
and glutaredoxin system proteins-immunolocalization in the rat
central nervous system.</a>Aon-Bertolino ML, Romero JI, Galeano
P, Holubiec M, Badorrey MS, Saraceno GE, Hanschmann EM, Lillig CH,
Capani F.<span class="jrnl" title="Biochimica et biophysica acta">Biochim
Biophys Acta</span>. 2011 Jan;1810(1):93-110. doi:
10.1016/j.bbagen.2010.06.011. Epub 2010 Jul 8.PMID:20620191</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17369362">Dissection
of complex protein dynamics in human thioredoxin.</a>Qiu W, Wang
L, Lu W, Boechler A, Sanders DA, Zhong D.<span class="jrnl" title="Proceedings of the National Academy of Sciences of the
United States of America">Proc Natl Acad Sci U S A</span>. 2007
Mar 27;104(13):5366-71. Epub 2007 Mar 16.PMID:17369362</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16263712">Cathepsin
D and H2O2 stimulate degradation of thioredoxin-1: implication
for endothelial cell apoptosis.</a>Haendeler J, Popp R, Goy C,
Tischler V, Zeiher AM, Dimmeler S.<span class="jrnl" title="The
Journal of biological chemistry">J Biol Chem</span>. 2005 Dec
30;280(52):42945-51. Epub 2005 Nov 1.PMID:16263712</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10196131">Chloroplast
NADP-malate dehydrogenase: structural basis of light-dependent
regulation of activity by thiol oxidation and reduction.</a>Carr
PD, Verger D, Ashton AR, Ollis DL.<span class="jrnl" title="Structure (London, England : 1993)">Structure</span>.
1999 Apr 15;7(4):461-75.PMID:10196131</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/3170595">Cloning
and expression of a cDNA for human thioredoxin.</a>Wollman EE,
d'Auriol L, Rimsky L, Shaw A, Jacquot JP, Wingfield P, Graber P,
Dessarps F, Robin P, Galibert F, et al.<span class="jrnl" title="The Journal of biological chemistry">J Biol Chem</span>.
1988 Oct 25;263(30):15506-12.PMID:3170595</div>
<div class="details">
<a href="http://www.ncbi.nlm.nih.gov/pubmed/2684271">A
proton nuclear magnetic resonance assignment and secondary
structure determination of recombinant human thioredoxin.</a>Forman-Kay
JD, Clore GM, Driscoll PC, Wingfield P, Richards FM, Gronenborn
AM.<span class="jrnl" title="Biochemistry">Biochemistry</span>.
1989 Aug 22;28(17):7088-97.PMID:2684271<br />
<span style="font-size: xx-small;"><br /></span></div>
<div class="details">
</div>
<div class="details">
<br /></div>
<div class="details">
</div>
<div class="details">
</div>
</div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2014/07/characterization-of-human-thioredoxin.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj-HkZJBjlc_MRfSlWEWHzQANaKPyk4ZpzTTF5PA4DwL7Md1xBWa9Vla3MeZFdL7j1G8LHrZrp5rtLbVYYtuwUC7AB-rud9e7qcWeueeG-lrkHXio2xF6WHdTOhai47E9It6cWbWQ/s72-w899-h567-c-no/1XOB_TR1.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-3289101353440327221</guid><pubDate>Mon, 14 Apr 2014 02:54:00 +0000</pubDate><atom:updated>2014-07-04T11:22:08.549-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">GCG</category><category domain="http://www.blogger.com/atom/ns#">GSH glutathione</category><category domain="http://www.blogger.com/atom/ns#">GST glutathione</category><category domain="http://www.blogger.com/atom/ns#">H2O2</category><category domain="http://www.blogger.com/atom/ns#">NQO</category><category domain="http://www.blogger.com/atom/ns#">peroxiredoxin</category><category domain="http://www.blogger.com/atom/ns#">SOD1</category><category domain="http://www.blogger.com/atom/ns#">UGA</category><title>Gluathione peroxidase (GSH-Px1-GPX1) a extracellular selenoenzyme expression modulates xenobiotic metabolising enzymes.</title><description><div align="justify">
&nbsp; &nbsp;&nbsp; Glutathione peroxidase (EC 1.11.1.9) protects against <a href="http://www.ncbi.nlm.nih.gov/pubmed/18044138">oxidative
damage</a> via the <a href="http://www.ncbi.nlm.nih.gov/pubmed/19826042">chemoprotective</a>
action of nitric-oxide mediated lipid peroxidation and anti
oxidative defense by gluathione (<a href="http://www.ncbi.nlm.nih.gov/pubmed/7961915">GSH-Px1</a>-GPX1)
a extracellular selenoenzyme, extracellular glutathione peroxidase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/8135533">E-GPx</a>) and
cellular (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11103801">C-GPx</a>)
detoxifies hydroperoxides. Other antioxidant genes&nbsp;(<a href="http://www.ncbi.nlm.nih.gov/pubmed/17944819">AOX</a>) as <a href="http://www.ncbi.nlm.nih.gov/pubmed/19818074">Gpx1</a>,&nbsp;is
located in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/12470500">cytosol</a> and
in (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10833429">mt</a>)
mitochondria. Epithelial antioxidative enzymes (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12665121">AOEs</a>) are
activities of GSH-Px1 (gluathione peroxidase), (SOD) superoxide
dismutase, and thioredoxine reductase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19818074">TXNRD1</a>) by
itself or with thioredoxin (<a href="http://www.ncbi.nlm.nih.gov/pubmed/7961915">Trx</a>) are
antioxidant enzymes. Glutaredoxin (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20552295">Grx</a>) are
reduced by the oxidation of glutathione an antioxidant, (The effect
of <a href="http://www.ncbi.nlm.nih.gov/pubmed/19352025?dopt=Abstract">iridoid</a>
 glucosides such as oleuropein an antioxidant, can often be
bound to glucose.) phenolic compound <a href="http://www.ncbi.nlm.nih.gov/pubmed/16377050">isothiocyanate</a>
sulforaphane found in olive leaf, increased cell-lysate <a href="http://www.ncbi.nlm.nih.gov/pubmed/20083859">NAD(P)H</a>:quinone
oxidoreductase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17340195">NQO1</a>) phase
II activities reduction reactions, catalyzed such as by glutathione-S-transferase (GST) can catalyze the conjugation back
to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/18373941">thiol</a>
group and other GPx mimics (converted into <a href="http://www.ncbi.nlm.nih.gov/pubmed/15680236">selenocysteine</a>),
to the reaction site of glutathione (GSH) and <a href="http://www.ncbi.nlm.nih.gov/pubmed/14671197">antioxidants</a>,
implying (GR) <a href="http://www.ncbi.nlm.nih.gov/pubmed/22683538">reduction</a>
reactions back to glutathione, are an <a href="http://www.ncbi.nlm.nih.gov/pubmed/18498225">evolutionary</a>
relationship between <a href="http://www.ncbi.nlm.nih.gov/pubmed/16081649">GST and GPx</a>/glutathione
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20877264">system</a>
defense in oxidative stress. "Glutathione" peroxidase (Gpx) content,
and glutathione reductase (GR) components compose the glutathione
(GSH) system, this contains Selenocysteine (Sec), the 21st amino
acid at the active GPX site (Homo sapiens chromosome 3, GRCh37
primary reference: rs<a href="http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1050450">644261</a>)-
<a href="http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6446261">TGA</a>&nbsp;
=&gt; <a href="http://www.ncbi.nlm.nih.gov/pubmed/2307470">UGA</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/2976939?dopt=Abstract">selenocysteine</a>,
which occurs at the <a href="http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?taxid=9606&amp;chr=3&amp;MAPS=rnaHs,rna-r&amp;cmd=focus&amp;fill=80&amp;query=uid%28-2121880709%29&amp;QSTR=NM_000581%2E2">active
site</a> of&nbsp; glutathione peroxidase GPX1 is coded by UGA, <a href="http://www.ncbi.nlm.nih.gov/protein/41406084#comment_41406084">isoform
1</a> NM_201397.1-<a href="http://www.ncbi.nlm.nih.gov/nucleotide/41406083#comment_41406083">variant
1</a> represents the shorter transcript that&nbsp; encodes the
longer isoform 1, as compared to <a href="http://www.ncbi.nlm.nih.gov/protein/41406082#comment_41406082">isoform
2</a>- NM_000581.2 <a href="http://www.ncbi.nlm.nih.gov/nucleotide/41406083#comment_41406083">variant
2</a>); (rs<a href="http://www.ncbi.nlm.nih.gov/pubmed/20852007">1050450</a>)
is intronless and has a shorter C-terminus. They represent the <a href="http://www.ncbi.nlm.nih.gov/pubmed/16354666"> cDNA</a> as a
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21087145">molecular</a>
mechanism (<a href="http://www.ncbi.nlm.nih.gov/pubmed/1339300">TGA</a>)
for <a href="http://www.ncbi.nlm.nih.gov/pubmed/22843889">down-regulation</a>
of mRNA <a href="http://www.ncbi.nlm.nih.gov/pubmed/18603400">expression</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/20530237">transcriptional</a>
code is a regulatory <a href="http://www.ncbi.nlm.nih.gov/pubmed/11463357">switch</a> at
the <a href="http://www.ncbi.nlm.nih.gov/pubmed/2976939">translational</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/9126277">step</a>
delivered to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/21052528">ribosome</a> in
genes similar to Glutathione peroxidase 1 (GP, <a href="http://www.ncbi.nlm.nih.gov/pubmed/23073788">Gpx1</a>,
GSHPX1): locus 3p13-q12 (<a href="http://www.ncbi.nlm.nih.gov/gene?term=2876">§</a>, <a href="http://www.ihop-net.org/UniPub/iHOP/gs/88800.html?ID=88475">‡</a>,).
GSH-Px is an <a href="http://www.ncbi.nlm.nih.gov/pubmed/17052796">essential</a>
nutrient <a href="http://www.ncbi.nlm.nih.gov/pubmed/11463357">selenium</a>
dependent <a href="http://www.ncbi.nlm.nih.gov/pubmed/15670848">
GPX</a>, by which mRNA translational repression of
selenium-binding protein (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20530237">SBP1</a>) is
accomplished when GPX1 increased in human <a href="http://www.ncbi.nlm.nih.gov/pubmed/18062829">plasma</a>, if
selenium-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15203190">deficient</a>,
while independent of <a href="http://www.ncbi.nlm.nih.gov/pubmed/6662155">Se values</a> in
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12588287">leukocyte</a>
(White blood cells) from <a href="http://www.ncbi.nlm.nih.gov/pubmed/20444272">correspondingly</a>
damaged <a href="http://www.ncbi.nlm.nih.gov/pubmed/22704671">DNA</a>.
In <a href="http://www.ncbi.nlm.nih.gov/pubmed/17625244">fibroblast</a>
activity, <a href="http://www.ncbi.nlm.nih.gov/pubmed/17625244">GPx1</a>
was <a href="http://www.ncbi.nlm.nih.gov/pubmed/15059885">effective</a>
through the <a href="http://www.ncbi.nlm.nih.gov/pubmed/20109103">prevention</a>
or <a href="http://www.ncbi.nlm.nih.gov/pubmed/20444272">repair</a>
of <a href="http://www.ncbi.nlm.nih.gov/pubmed/15203190">DNA damage</a>.
The reductive <a href="http://www.ncbi.nlm.nih.gov/pubmed/19254950">detoxification</a>
of peroxides in cells <a href="http://www.ncbi.nlm.nih.gov/pubmed/1340432">modulates</a>
xenobiotic metabolising enzymes via anticarcinogen <a href="http://www.ncbi.nlm.nih.gov/pubmed/17625244">supplementation</a>,
e.g. <a href="http://www.ncbi.nlm.nih.gov/pubmed/9349843">selenium</a>-yeast
 in human <a href="http://www.ncbi.nlm.nih.gov/pubmed/18062829">plasma</a>.
GPX <a href="http://www.ncbi.nlm.nih.gov/pubmed/19826042">in turn</a>,
can lead to <a href="http://www.ncbi.nlm.nih.gov/pubmed/14744747">carcinogenesis</a>.
The heterozygote has an intraerythrocytic <a href="http://www.ncbi.nlm.nih.gov/pubmed/2294113">environment</a>
(red blood cell) with the favorable higher <a href="http://www.ncbi.nlm.nih.gov/pubmed/17012768">peroxidase</a>
activities role in <a href="http://www.ncbi.nlm.nih.gov/pubmed/10380369">malarial</a>
resistance. An in-frame <a href="http://www.ncbi.nlm.nih.gov/pubmed/19195803">GCG</a>
trinucleotide repeat was <a href="http://www.ncbi.nlm.nih.gov/pubmed/23289525">homozygous</a>
for the <a href="http://www.ncbi.nlm.nih.gov/gene/?Term=related_functional_gene_2876%5Bgroup%5D">pseudogene</a>
GPX1 Pro197Leu-like two alleles associated with 6 GCG repeats coding for a <a href="http://www.ncbi.nlm.nih.gov/pubmed/12496980">polyalanine</a>
tract. CuZn-SOD (copper/zinc-superoxide dismutase) and other <a href="http://www.ncbi.nlm.nih.gov/pubmed/9593640">oxidoreductases</a>
contribute to the cellular defenses, repair of oxidative damage to
DNA. Chronic <a href="http://www.ncbi.nlm.nih.gov/pubmed/19819955">hyperglycemia</a>
(excessive blood sugar) causes oxidative stress, 'Extract <a href="http://www.ncbi.nlm.nih.gov/pubmed/20540643">silymarin</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/20932871">Berberine</a>-'<a href="http://www.ncbi.nlm.nih.gov/pubmed/17434476">may</a>'
overcome insulin resistance. And for diabetes <a href="http://www.ncbi.nlm.nih.gov/pubmed/16124050">Astragalus
membranaceus</a>  can improve the protective effect, an extract
from <a href="http://www.ncbi.nlm.nih.gov/pubmed/19938218?dopt=Abstract">Shidagonglao</a>
roots (Mahonia fortunei)  or the effects of Berberine from the main
alkaloid of <a href="http://www.ncbi.nlm.nih.gov/pubmed/20932871">Coptis
chinensis</a>  are agents for preventing sepsis and its
lipopolysaccharide (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20219985">LPS</a>)
complications in human microvascular endothelial cells. GPX is
down-regulated and <a href="http://www.ncbi.nlm.nih.gov/pubmed/16141655">peroxiredoxin</a>
(PRX) is up-regulated. Both use <a href="http://www.ncbi.nlm.nih.gov/pubmed/20552295">thioredoxin</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/15358104">Gpx</a> and
Prx, suppress <a href="http://www.ncbi.nlm.nih.gov/pubmed/7961915">Trx</a>,
a cysteine-based <a href="http://www.ncbi.nlm.nih.gov/pubmed/18498225">thioredoxin-specific</a>&nbsp;GPx-<a href="http://www.uniprot.org/uniprot/P10599">Txn</a>&nbsp;expression.) to recharge after reducing hydrogen peroxide (H2O2)
along with other <a href="http://www.ncbi.nlm.nih.gov/pubmed/18054426">cellular</a>
molecules. Also found in transcripts in <a href="http://www.ncbi.nlm.nih.gov/pubmed/12458889">ocular</a>
tissues from <a href="http://www.ncbi.nlm.nih.gov/pubmed/8262911">oxidative</a>
anterior damaged cells,&nbsp; GSH-dependent recombinant human lens <a href="http://www.ncbi.nlm.nih.gov/pubmed/9593640">thioltransferase</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/11878824">RHLT</a>)*
being&nbsp; its repair systems. GPX1 could supress <a href="http://www.ncbi.nlm.nih.gov/pubmed/12221075">staurosporine</a>-induced
late generation of ROS, corresponding to reduction in visual
loss.&nbsp; Its role in pathogenesis of&nbsp; (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15158621">inflammatory
disorders</a> of blood antioxidant <a href="http://www.ncbi.nlm.nih.gov/pubmed/18806750">enzyme system</a>)
as an autoimmune disease background, appears to be the hydroperoxide
metabolism in&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/17012768">diverse pathogens</a>*, an enzyme by single administration <a href="http://www.ncbi.nlm.nih.gov/pubmed/12461474">streptozotocin</a>
 (60 mg/kg) of negative implication, oxidative <a href="http://www.ncbi.nlm.nih.gov/pubmed/10343979">damage</a> or
antioxidant status when examined <a href="http://www.ncbi.nlm.nih.gov/pubmed/21241714">in contrast</a>
as metabolic syndrome through the GPX <a href="http://www.ncbi.nlm.nih.gov/pubmed/16784966">down</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/20170713">regulation</a>
are comparable, with reduced-<a href="http://www.ncbi.nlm.nih.gov/pubmed/21185702">enzyme</a>-activity
to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/19428448">T
allele</a> of the GPx-1 genetic <a href="http://www.ncbi.nlm.nih.gov/pubmed/19826042">leucine/proline</a>
polymorphism at <a href="http://www.ncbi.nlm.nih.gov/pubmed/20306294">codon 198</a>&nbsp;
approximately 70% for <a href="http://www.ncbi.nlm.nih.gov/sites/varvu?rs=1050450&amp;gene=2876">pro197</a>
and 30% for <a href="http://omim.org/entry/138320#0001">leu197</a>
named Pro198<a href="http://www.ncbi.nlm.nih.gov/pubmed/19415410">Leu</a>
(rs<a href="http://www.ncbi.nlm.nih.gov/pubmed/21185702">1050450</a>).
The <a href="http://www.ncbi.nlm.nih.gov/pubmed/22888637">leucine</a>-containing
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21165435">allele</a> was
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12810669">less
responsive</a> to GPx-1 <a href="http://www.ncbi.nlm.nih.gov/pubmed/19826042">enzyme</a>
activity. Thioltransferase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9593640">TTase</a>) with
GPx the dethiolating enzyme, <a href="http://www.ncbi.nlm.nih.gov/pubmed/11028671"> thiol</a>*
catalysis glutaredoxin thioltransferase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20552295">Grx</a>)
content and activity to the thiol status produced by the oxidation
of <a href="http://www.ncbi.nlm.nih.gov/pubmed/16081649">glutathione</a>:
a seleno-organic compound <a href="http://www.ncbi.nlm.nih.gov/pubmed/11855823">ebselen</a>&nbsp;
(2-phenyl-1,2-benzisoselenazol-3(2H)-one) catalyzed in vitro, has
been reported to '« <a href="http://www.ncbi.nlm.nih.gov/pubmed/20690615">mimic</a> »
development of small-molecule selenium compounds' ('synthetic
antioxidant' GPX)&nbsp; required for, a diphenyl diselenide <a href="http://www.ncbi.nlm.nih.gov/pubmed/17049506">PhSe group</a>
'in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/18062829">catalytic</a>
activities' is introduced by reaction (a monocyte-derived soluble
protein (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12893830">M-DSP</a>/Gpx1)
with <a href="http://www.ncbi.nlm.nih.gov/pubmed/10880344">5-LO</a>,
(5-lipoxygenase ) activity this '<a href="http://www.ncbi.nlm.nih.gov/pubmed/12893830">recovered</a>
(M-DSP)-GPx inactivation'. In which Serum <a href="http://www.ncbi.nlm.nih.gov/pubmed/15158621">Malondialdehyde</a>
(MDA) a <a href="http://www.ncbi.nlm.nih.gov/pubmed/22259188">marker</a>
(oxidative activity) generated from, reactive oxygen species (<a href="http://www.ncbi.nlm.nih.gov/pubmed/13679085">ROS</a>) is <a href="http://www.ncbi.nlm.nih.gov/pubmed/21667435">thought</a> to
cause DNA damage with various antioxidants usually <a href="http://www.ncbi.nlm.nih.gov/pubmed/17584062">homeostatically</a>
controlled by <a href="http://www.ncbi.nlm.nih.gov/pubmed/15059885">endogenous</a>
superoxide dismutase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/18538307">SOD</a>), as a
by-product and the oxygen-sensor neuroglobin (<a href="http://www.ncbi.nlm.nih.gov/pubmed/18538307">Nb</a>), GSHPx
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10459841">reactive
neurons</a> or in brief neuronal damage (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16871233">apoptosis</a>)
after <a href="http://www.ncbi.nlm.nih.gov/pubmed/17328894">ischemia</a>.
Antioxidant enzymes such as <a href="http://www.ncbi.nlm.nih.gov/pubmed/16871233">Cu/Zn</a>-superoxide
dismutase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15295091">SOD</a>)
and a <a href="http://www.ncbi.nlm.nih.gov/pubmed/18853169">21-kD</a>
protein (involved in <a href="http://www.ncbi.nlm.nih.gov/pubmed/17336361">neuroprotection</a>) GPx1 both in the free radical chain, protects neurons and <a href="http://www.ncbi.nlm.nih.gov/pubmed/1379465">Microglial</a>
cells. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19439213">Microglial</a> cells are, <a href="http://www.ncbi.nlm.nih.gov/pubmed/17606447">sensitive</a> to small changes from
Reactive oxygen species (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10343979">ROS</a>), <a href="http://www.ncbi.nlm.nih.gov/pubmed/15318035">free radical</a> scavenging <a href="http://www.ncbi.nlm.nih.gov/pubmed/16112789">enzymes</a>-mediated
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16871233">apoptosis</a>. Neuronal <a href="http://www.ncbi.nlm.nih.gov/pubmed/15910762">loss and</a> deteriorating <a href="http://www.ncbi.nlm.nih.gov/pubmed/16871233">CNS</a>
function: is linked to the pentose phosphate shunt, the (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10459841">PPP</a>)
pentose phosphate pathway, has a relatively low content of <a href="http://www.ncbi.nlm.nih.gov/pubmed/10609336">enzymatic
antioxidants</a>, in a higher cellular <a href="http://www.ncbi.nlm.nih.gov/pubmed/19026164">ROS</a> level
to oxidative stress. A candidate (<a href="http://www.ncbi.nlm.nih.gov/pubmed/22139612">SePP1</a>) selenoprotein (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21936966">P-plasma</a>)
or&nbsp; genetic <a href="http://www.ncbi.nlm.nih.gov/pubmed/20378690">variations</a> homologous to GPX1 are rapidly <a href="http://www.ncbi.nlm.nih.gov/pubmed/22259188">degraded</a> at relative <a href="http://www.ncbi.nlm.nih.gov/pubmed/20852007">low</a> selenium <a href="http://www.ncbi.nlm.nih.gov/pubmed/22139612">concentrations</a>. Microsomal (reconstituted fraction) glutathione transferase-1 (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10220143?dopt=Abstract">hGSTP1</a>)
decreased cytotoxicity ( cartilage <a href="http://www.ncbi.nlm.nih.gov/pubmed/18291685">degradation</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/21251972">regeneration</a>
[Leucas aspera] to mitochondria damage, directed to <a href="http://www.ncbi.nlm.nih.gov/pubmed/21326956">citrulline</a>- containing proteins) by effects of <a href="http://www.ncbi.nlm.nih.gov/pubmed/7888200">hydrogen
peroxide</a> 'H(2)O(2), which causes lipid peroxidation (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15223607">LPO</a>) in the (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21052528">ER</a>) endoplasmic reticulum. In
which <a href="http://www.ncbi.nlm.nih.gov/pubmed/16784966">LPO</a> product <a href="http://www.ncbi.nlm.nih.gov/pubmed/9034240">Malondialdehyde</a> and other Thiobarbituric acid reactive
substances - <a href="http://www.ncbi.nlm.nih.gov/pubmed/12461474">TBARS</a> - are formed as a <a href="http://www.ncbi.nlm.nih.gov/pubmed/8269197">byproduct</a>, when the effects of
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20444272">GPX1</a> (
glutathione peroxidase 1)' is <a href="http://www.ncbi.nlm.nih.gov/pubmed/20082261">measured</a>, the effects of <a href="http://www.ncbi.nlm.nih.gov/pubmed/17600859">Centella
asiatica</a>  extract detoxifies. Antioxidants and detoxication
agents as <a href="http://www.ncbi.nlm.nih.gov/pubmed/19443942">antigenotoxic</a>*
agents (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15857201">isoflavones</a>
via <a href="http://www.ncbi.nlm.nih.gov/pubmed/19854376">dietary</a>
intake) were also observed as cytogenetic <a href="http://www.ncbi.nlm.nih.gov/pubmed/21273674">end-points</a>* of
carcinogenesis. Over-expression could <a href="http://www.ncbi.nlm.nih.gov/pubmed/12829378">drain</a>
the&nbsp; <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8365784.html?nr=3&amp;pmid=10861977">reduced
glutathione</a> ( <a href="http://www.ncbi.nlm.nih.gov/pubmed/20804611">hepatic</a> and GSH <a href="http://www.ncbi.nlm.nih.gov/pubmed/10861977">dependent</a> enzymes), cellular
glutathione (GSH) levels, GSH acts as a feedback <a href="http://www.ncbi.nlm.nih.gov/pubmed/11028671">rate-limiting</a> inhibitor of its <a href="http://www.ncbi.nlm.nih.gov/pubmed/10343979">synthesizing</a> enzyme
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10652368">GCL</a>
(gamma-glutamyl-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15811874">cysteine</a>
synthetase) activity,&nbsp; <a href="http://www.ncbi.nlm.nih.gov/pubmed/20149787">Diosgenin</a> 
is a useful Marker degradation-compound of Low-density lipoprotein (LDL) and
high-density lipoprotein (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19138652">HDL</a>)
against oxidation. The compound <a href="http://www.ncbi.nlm.nih.gov/pubmed/9501919">buthionine
sulfoximine</a> (BSO) inhibits the first step of glutathione
synthesis, concerning the <a href="http://www.ncbi.nlm.nih.gov/pubmed/17015273">mechanism</a> of GSH depletion. Gpx suppresses (thioredoxin) <a href="http://www.ncbi.nlm.nih.gov/pubmed/15358104">Trx</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/18498225">expressio</a><a href="https://www.blogger.com/null">n</a>, which augments <a href="http://www.ncbi.nlm.nih.gov/pubmed/21273674">Anti-clastogenic</a> (mutagenic agents), potential <a href="http://www.ncbi.nlm.nih.gov/pubmed/14568353">DNA</a>-binding (heritable multigenerational/<a href="http://www.ncbi.nlm.nih.gov/pubmed/16081649">evolutionary</a> tolerance), in a <a href="http://www.ncbi.nlm.nih.gov/pubmed/15489334">cDNA</a> open reading frame (<a href="http://www.ncbi.nlm.nih.gov/pubmed/8125298">ORF</a>) GPx1 is a small <a href="http://www.ncbi.nlm.nih.gov/pubmed/7489513">inversion</a> (~<a href="http://www.ncbi.nlm.nih.gov/pubmed/16641997">pericentric</a>), incorporating the <a href="http://www.ncbi.nlm.nih.gov/pubmed/2976939">co-translational</a> selenocysteine which may be unique to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/17634480">insertion</a> sequence
elements.<br />
<br />
<br />
<div align="justify">
<big><small><small>(Click on image to zoom)</small></small></big>
<hr size="2" width="100%" />
</div>
<div align="justify">
&nbsp; &nbsp; &nbsp;&nbsp;<a href="https://picasaweb.google.com/100787464692550241934/GPx1?authkey=Gv1sRgCM206YOcjrKGjwE#6001950857116413970"><img align="left" alt="gpx1" border="0" height="217" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjslB9cc-I_4UCrTMG3ywt3jl6KKwPxgf0JY4EPJL4vJEDdp1U8I6eVZsRubAdiOOSGIyxXQzrUdMDl88xTNxCkDVyAxUSao8Ec64_4jaEy6H58XTm-iWrwxhV-fbXLDRqTUhwrXQ/s512/tertiary-final.png" width="200" /></a>Biological Assembly GPx-1 <a href="http://www.ncbi.nlm.nih.gov/pubmed/18498225">tetrameric</a> structure with an altered carcinogen metabolism and reduce oxygen tension to explain the anti-carcinogenic effects, the <a href="http://www.ncbi.nlm.nih.gov/pubmed/21980221">redox</a> donor (hTXN-oxidoreductase <a href="https://picasaweb.google.com/100787464692550241934/GPx1?authkey=Gv1sRgCM206YOcjrKGjwE#6003097861291548658">Figure 4</a>) status&nbsp; (Figure 2) of one <a href="http://www.ncbi.nlm.nih.gov/pubmed/16081649">oxygen</a>
atom limited to only two regions may carry missense variant (<a href="http://www.snps3d.org/modules.php?name=SnpAnalysis&amp;locus_ac=2876">rasmol_php_C and _D</a>) a reaction
incorporated into the overall tetrameric structures instability
potentially in humans through modulation of biosynthetic and genetically
modified GSH enzymes binding the selenocysteine <a href="http://www.ncbi.nlm.nih.gov/pubmed/17634480">insertion</a> sequence
elements. The
specific activity of the enzyme Sec suggest how the molecular
pathway might work, as the glutathione pathway may influence the
enzyme Sec reaction site incorporation sequence in the
3'-untranslated region <a href="http://www.ncbi.nlm.nih.gov/pubmed/16354666">UTR</a> of
glutathione (GSH) may further reveal a signaling pathway that is
activated. The differing and interacting roles of GPX1 and (Sec.) <a href="http://www.rcsb.org/pdb/101/motm.do?momID=104">Selenocysteine</a><a href="https://www.blogger.com/null">
Synthase</a> [doi: 10.2210/rcsb_pdb/mom_2008_8] both vectors<a href="https://picasaweb.google.com/100787464692550241934/GPx1?authkey=Gv1sRgCM206YOcjrKGjwE#6001950867748574002"><img align="right" alt="gpx1" border="0" height="222" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgGUCYwHr2XQAA9uBxJg7WrcGJJGVS-wSVGzOUbgavaAYP3JquQ0Auxo0BJ5BlHDzllfF9QPkOa9KoaI7YlPAXgkmExKoa09B8gr0FZOZraeX1rEtdenreY7bTfb_PIHsqrb-urwg/w422-h468-no/redox3.png" width="200" /></a>together with glutathione (HUMAN GLUTATHIONE TRANSFERASE (HGST) PDB
ID: <a href="http://rcsb.org/pdb/explore/explore.do?pdbId=1LJR">1LJR</a>
ligand <a href="http://www.ncbi.nlm.nih.gov/pubmed/16081649">component
GSH</a>: C10 H17 N3 O6 S, molecules colored: aquamarine) did; activates two multiple signaling
pathways in one of the Gpx1 variants 1 or 2 nucleotide, the nonsense
codon, UGA has both, related to the antioxidative pathway vectors
together PDB ID: <a href="http://rcsb.org/pdb/explore/explore.do?pdbId=1gp1">1gp1</a>
(2-AMINO-3-SELENINO-PROPIONIC ACID: <a href="http://www.ncbi.nlm.nih.gov/pubmed/12496980">ALANINE</a>&nbsp; molecule colored: purple),
is located near the selenocysteine insertion sequence element PDB
ID: 2F8A (rainbow colored: ribbons) mutant of&nbsp; GPX1. Interrogation of data based on
experimentally determined models are limited but revealed network
structures that dynamically conveyed information from the
antioxidant enzymes that share a common pathway considered most
important in the selenocysteine synthesis pathway from the
information suggested, and they implicate at least one selenoprotein (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17625244">GPx-1</a>) in the process.</div>
</div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2014/04/gluathione-peroxidase-gsh-px1-gpx1.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjslB9cc-I_4UCrTMG3ywt3jl6KKwPxgf0JY4EPJL4vJEDdp1U8I6eVZsRubAdiOOSGIyxXQzrUdMDl88xTNxCkDVyAxUSao8Ec64_4jaEy6H58XTm-iWrwxhV-fbXLDRqTUhwrXQ/s72-c/tertiary-final.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-2762788260404939984</guid><pubDate>Tue, 31 Dec 2013 01:08:00 +0000</pubDate><atom:updated>2014-07-03T08:20:45.356-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">G6PD</category><category domain="http://www.blogger.com/atom/ns#">GSH glutathione</category><category domain="http://www.blogger.com/atom/ns#">GST glutathione</category><category domain="http://www.blogger.com/atom/ns#">HMG box</category><category domain="http://www.blogger.com/atom/ns#">NADP</category><category domain="http://www.blogger.com/atom/ns#">NADPH</category><category domain="http://www.blogger.com/atom/ns#">NQO</category><category domain="http://www.blogger.com/atom/ns#">NRF2</category><category domain="http://www.blogger.com/atom/ns#">UGT1A1</category><title>G6PD, Exon 12 is an exonic splicing silencer containing/substituted define codon regions involved in the G6PD mRNA¹</title><description><div align="justify">
G6PD (EC <a href="http://www.ncbi.nlm.nih.gov/pubmed/12502759?dopt=Abstract">1.1.1.49</a>)
glucose-6-phosphate dehydrogenase [<a href="http://www.ncbi.nlm.nih.gov/gene/2539">§§</a>; <a href="http://www.ihop-net.org/UniPub/iHOP/gs/88475.html?ID=88959">†</a>,
<a href="http://www.genecards.org/cgi-bin/carddisp.pl?gene=G6PD#interactionspathways_">‡</a>], situated at Xq28 locus-coding region is the <a href="http://www.ncbi.nlm.nih.gov/pubmed/15858258">rate</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/21467295">limiting</a>
enzyme, of the (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21829610">PPP</a>)
pentose phosphate pathway. <a href="http://www.ncbi.nlm.nih.gov/pubmed/18164966">G6PD
deficiency</a>&nbsp; and its&nbsp; X-linked gene mutations exons
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15558953">2-13</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17611006">160</a>
different <a href="http://www.ncbi.nlm.nih.gov/pubmed/15506519">mutations</a>)
are the most common inborn error of <a href="http://www.ncbi.nlm.nih.gov/pubmed/17637841">metabolism</a>,
in human red blood cell (RBC) enzymopathy, among <a href="http://www.ncbi.nlm.nih.gov/pubmed/12524354">humans</a>.
G6PD is divided into <a href="http://www.ncbi.nlm.nih.gov/pubmed/23631859">12</a>
segments and involves an <a href="http://www.ncbi.nlm.nih.gov/pubmed/23233666">exonic
splicing enhancer</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/23631859">ESE</a>) in
exon <a href="http://www.ncbi.nlm.nih.gov/pubmed/1953767">12</a>
with <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2986558/figure/fig1/">13exons</a>
and an <a href="http://www.ncbi.nlm.nih.gov/pubmed/18348143">intron</a>
present <a href="http://www.ncbi.nlm.nih.gov/pubmed/2428611">5'
UTR</a>, proximal to the 5' bkp-breakpoint region. <a href="http://www.ncbi.nlm.nih.gov/pubmed/2428611">Intron</a>
comparisons from the second to the thirteenth exons of G6PD gene,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8364584">3′ UTR</a>
towards the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8364584">3'
end</a> of the gene to exon 1 located in <a href="http://www.ncbi.nlm.nih.gov/pubmed/12696079">5' UTR</a>
G6PD is a region of deleted <a href="http://www.ncbi.nlm.nih.gov/pubmed/12397357">alleles</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16255851">ASO</a>-PCR)
or <a href="http://www.ncbi.nlm.nih.gov/pubmed/11042039">G-6-PD</a>
the <a href="http://www.ncbi.nlm.nih.gov/pubmed/3393536">many</a>
population genetics <a href="http://www.ncbi.nlm.nih.gov/pubmed/12378426">variants</a>/wild-type
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/17611006">160</a>
different <a href="http://www.ncbi.nlm.nih.gov/pubmed/12737943">mutations</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/2912069">&nbsp;300</a>
G6PD variants) <a href="http://www.ncbi.nlm.nih.gov/pubmed/15974296">assuming</a>
that, at <a href="http://www.ncbi.nlm.nih.gov/pubmed/15054810?dopt=Abstract">exon2</a>
(2,3-<a href="http://www.ncbi.nlm.nih.gov/pubmed/2924907">BPG</a>*
levels) are <a href="http://www.ncbi.nlm.nih.gov/pubmed/2420826">hypothesized</a>
that G6PD partly 'overlaps' the <a href="http://www.ncbi.nlm.nih.gov/pubmed/22121116">IKBKG</a>
gene confined to the blood. The <a href="http://www.ncbi.nlm.nih.gov/pubmed/2758468">subunit</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/2758468">G6PD</a>),
consists of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/17660836">biochemical</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/2606104">characteristics</a>
of <a href="http://www.ncbi.nlm.nih.gov/pubmed/3012556">531</a>
amino acids. This enzyme is the only process in mature red cells
for <a href="http://www.ncbi.nlm.nih.gov/pubmed/15598086">NADPH</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/3012556">generation</a>
it involves oxidation of glucose as a » <a href="http://www.ncbi.nlm.nih.gov/pubmed/17673345?dopt=Abstract">hexose</a>
« ( <a href="http://www.ncbi.nlm.nih.gov/biosystems/198899">
xenobiotic</a> compounds) pathway ('naturally found in D-* and
the <a href="http://www.ncbi.nlm.nih.gov/pubmed/19248814?dopt=Abstract">unusual
L- </a>Monosaccharide forms or between 2,3-BPG*) pentose and
hexose phosphates, an alternative to glycolysis, <a href="http://www.ncbi.nlm.nih.gov/pubmed/22768742">converts</a>
glucose <a href="http://www.ncbi.nlm.nih.gov/pubmed/18302154">in
which</a> ATP is produced' from the conversion of
glucose-6-phosphate into ribulose 5-phosphate in liver cytosol in
which a residue in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/16934959">dimer</a>
interface (@ <a href="http://www.ncbi.nlm.nih.gov/pubmed/16088936">37°</a> C)
structural <a href="http://www.ncbi.nlm.nih.gov/pubmed/2836867">G6PD</a>
is a <a href="http://www.ncbi.nlm.nih.gov/pubmed/6252822">NADP</a>+
dependent. At the <a href="http://www.ncbi.nlm.nih.gov/pubmed/15858258">tetramer</a>
interface an <a href="http://www.ncbi.nlm.nih.gov/pubmed/18493020">Apoenzyme</a>
(PDB:<a href="http://www.ncbi.nlm.nih.gov/pubmed/22165289">2BH9</a>),
that stimulates G6PD to produce (<a href="http://www.ncbi.nlm.nih.gov/pubmed/18422600?dopt=Abstract">reversible</a>
enzyme <a href="http://www.ncbi.nlm.nih.gov/pubmed/19253370?dopt=Abstract">transketolase</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/12297368?dopt=Abstract">TK</a>)
presence is <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325335/figure/F2/">necessary</a>)
more NADPH. Hemolytic crises or <a href="http://www.ncbi.nlm.nih.gov/pubmed/23185302">dysregulated</a>
NADPH oxidase located in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/3012556">3</a>'
dependent 5' UTR G6PD in humans determines the response, in which
G6PD deficiency is <a href="http://www.ncbi.nlm.nih.gov/pubmed/24188096">prevalent</a>
with development of&nbsp; chronic <a href="http://www.ncbi.nlm.nih.gov/pubmed/6851263">hemolytic</a>
«« anemia (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12680285">CNSHA</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/11112389">HNSHA</a>)
associated with <a href="http://www.ncbi.nlm.nih.gov/pubmed/3012556">food</a>-induced
or a <a href="http://www.ncbi.nlm.nih.gov/pubmed/18177777">exogenous</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/17611006">agent</a> and
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15506519">drug</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/23860572">induced</a> <a href="http://www.pharmgkb.org/gene/PA28469#tabview=tab7&amp;subtab=32">º</a>'
<a href="http://www.genecards.org/cgi-bin/carddisp.pl?gene=G6PD&amp;bioalma_dis=99#novoseek_dis">ª</a>
hemolytic crises which led to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/22993389">discovery</a>
of G6PD deficiency. <i>Sulfatase&nbsp; (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11060442?dopt=Abstract">STS</a>,
EC 3.1.6.2) catalyzes Phenyl-<a href="http://www.ncbi.nlm.nih.gov/pubmed/2943286?dopt=Abstract">Piracetam</a>&nbsp;[</i><a href="http://lnwme.blogspot.com/2013/12/g6pd-exon-12-is-exonic-splicing.html#footnote_4_4236" id="identifier_4_4236" title="">↩</a><i>]&nbsp;it also <a href="http://peaknootropics.com/shop/piracetam/">stacks</a>
well&nbsp; and involves the <a href="http://www.ncbi.nlm.nih.gov/pubmed/16506813?dopt=Abstract">phosphoinositide</a>
3-kinase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16210322?dopt=Abstract">PI
3-k</a>inase) pathway in the employed doses in related induction
of certain enzyme (Glucose 6PD) <a href="http://www.ncbi.nlm.nih.gov/pubmed/6137141?dopt=Abstract">synthesizing</a>
activities (glycolysis) five metabolite levels of&nbsp; insulin
signal transduction.</i> These include, <a href="http://www.ncbi.nlm.nih.gov/pubmed/21238579">Sulforaphane</a>
 or broccoli-sprout extracts increased cell-lysate NAD(P)H:<a href="http://www.ncbi.nlm.nih.gov/pubmed/1740099">quinone</a>
oxidoreductase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21238579">NQO1</a>)
phase <a href="http://www.ncbi.nlm.nih.gov/pubmed/1740099">II</a>
activities (Tanshinone IIA⊕), administered to cells and&nbsp; in
human supplementation studies, were found to be in balance with
green tea extract (GTE), (EGCG) <a href="http://www.ncbi.nlm.nih.gov/pubmed/16506813?dopt=Abstract">epigallocatechin-3-gallate</a>
&nbsp; to generate <a href="http://www.ncbi.nlm.nih.gov/pubmed/15681036">detoxifying</a>
reactions to <a href="http://www.ncbi.nlm.nih.gov/pubmed/10918522?dopt=Abstract" title="acetaminophen dosing">hepatotoxicity</a> (can be
prevented by <a href="http://www.ncbi.nlm.nih.gov/pubmed/10621847?dopt=Abstract">amalika</a>,
Emblica officinalis &nbsp; which supports the chemopreventive
action of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/16643877?dopt=Abstract">silymarin</a>
extract Silibinin , of the milk thistle) preventing nitric oxide-<a href="http://www.ncbi.nlm.nih.gov/pubmed/10098886">mediated</a>
lipid peroxidation (<a href="http://www.ncbi.nlm.nih.gov/pubmed/18308427?dopt=Abstract">LPO</a>)
and antioxidant <a href="http://www.ncbi.nlm.nih.gov/pubmed/12853069?dopt=Abstract">defense</a>
system (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9508091?dopt=Abstract">GSH</a>)
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10098886?dopt=Abstract">glutathione</a>
( <a href="http://www.ncbi.nlm.nih.gov/pubmed/15598086">GSH-Px</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/3757268?dopt=Abstract">GR</a>)
depletion, via an antioxidant response element (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17303087?dopt=Abstract">ARE</a>
⊕) mechanism-based inhibitor, element (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20832465">NRF2</a>)
regulates (ARE)-regulated genes. A lack of NQO1 protein
predisposes cells to <a href="http://www.blogger.com/null">benzene</a>
toxicity and to various forms of <a href="http://www.ncbi.nlm.nih.gov/pubmed/16909693">leukemias</a>
and toward therapeutic modulation (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20648652?dopt=Abstract">Acetylcysteine</a>
 and <a href="http://www.ncbi.nlm.nih.gov/pubmed/10918522?dopt=Abstract">acetaminophen</a>)
of <a href="http://www.ncbi.nlm.nih.gov/pubmed/2040698?dopt=Abstract">pulmonary</a>
oxygen toxicity. G6PD-deficient variants is the result of&nbsp;
various <a href="http://www.ncbi.nlm.nih.gov/pubmed/2990202">enzymopathies</a>
(but not <a href="http://www.ncbi.nlm.nih.gov/pubmed/12737943http://www.ncbi.nlm.nih.gov/pubmed/12737943">GPI</a>-chronic
hemolysis), that <a href="http://www.ncbi.nlm.nih.gov/pubmed/19419973">glucuronidated</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15864125?dopt=Abstract">bilirubin</a>
values (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12439228?dopt=Abstract">UGT1A1</a>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/1210584?dopt=Abstract">genotype</a>)
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15864125?dopt=Abstract">tended
to</a> parallel, (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12680285">CNSHA</a>) <a href="http://www.ncbi.nlm.nih.gov/pubmed/12439228">hyperbilirubinemia</a>
with hemolytic anemias, single amino acid substitutions resulting
in '<a href="http://www.ncbi.nlm.nih.gov/pubmed/3393536">mutation</a>
of variants'. Or to <a href="http://www.ncbi.nlm.nih.gov/pubmed/19112496">inherited</a>³
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/9590495">acquired</a>
physiologic changes in red cell enzyme <a href="http://www.ncbi.nlm.nih.gov/pubmed/19233695">G6PD</a>
deficiency <a href="http://www.ncbi.nlm.nih.gov/pubmed/10698963">leading</a>
to <a href="http://www.ncbi.nlm.nih.gov/pubmed/23065279">favism</a>
( an <a href="http://www.ncbi.nlm.nih.gov/pubmed/22963789">A-</a>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21549219">variant</a>
reaches the <a href="http://www.ncbi.nlm.nih.gov/pubmed/15506519">polymorphism</a>
level the commonest a <a href="http://www.ncbi.nlm.nih.gov/pubmed/3393536">Mediterranean</a>
form, other alleles <a href="http://www.ncbi.nlm.nih.gov/pubmed/2339126?dopt=Abstract">A</a>,
A+, the <a href="http://www.ncbi.nlm.nih.gov/pubmed/2572288">primordial</a>
human type <a href="http://www.ncbi.nlm.nih.gov/pubmed/22848499">B</a>
cell and <a href="http://www.ncbi.nlm.nih.gov/pubmed/3446582">normal</a>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/2836867">B+</a> and a
rare <a href="http://www.ncbi.nlm.nih.gov/pubmed/22848499">B-</a>
phenotype are neutral. <a href="http://www.ncbi.nlm.nih.gov/pubmed/24188096">Malaria</a>-infected
human red cells possess at least <a href="http://www.ncbi.nlm.nih.gov/pubmed/3511989?dopt=Abstract">two
pathways</a> (in a <a href="http://www.ncbi.nlm.nih.gov/pubmed/3515319">dimer</a> --
tetramer <a href="http://www.ncbi.nlm.nih.gov/pubmed/10745013">equilibrium</a>)
where carbonic anhydrase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11718695?dopt=Abstract">CA</a>)
isoenzymes (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21323163">allozymes</a>
are variants often neutral)&nbsp; the <a href="http://www.ncbi.nlm.nih.gov/pubmed/19284595">native
structure</a> may serve different roles [malaria <a href="http://www.ncbi.nlm.nih.gov/pubmed/15718915">resistance</a>]
in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/21376116">
G6PD-deficient</a> erythrocyte) and transmitted biochemical
poly(A) characteristics (58 different -missense-mutations <a href="http://www.ncbi.nlm.nih.gov/pubmed/8364584">account for</a>
97, <a href="http://www.ncbi.nlm.nih.gov/pubmed/6533418">poly(A)</a>
-substitutions-towards mutation of variants) divided into <a href="http://www.ncbi.nlm.nih.gov/pubmed/19323017?dopt=Abstract">5
classes</a> of <a href="http://www.ncbi.nlm.nih.gov/pubmed/8283448?dopt=Abstract">energy</a>
metabolism {<a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234268/figure/pone-0028319-g005/">chart</a>}
enzymes. Where GSH represents red cell enzymes involved in
glycolysis, enolase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/6451861?dopt=Abstract">ENO</a>),
phosphoglycerate kinase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19323017?dopt=Abstract">PGK</a>),
phosphofructokinase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12899918">PFK</a> 
that phosphorylates fructose 6-phosphate (<a href="http://www.ncbi.nlm.nih.gov/pubmed/4064053?dopt=Abstract">PHI</a>)),&nbsp;
hexokinase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12642228?dopt=Abstract">HK</a>),
aldolase (ALD), and <a href="http://www.ncbi.nlm.nih.gov/pubmed/10747271?dopt=Abstract">pyruvate</a>
kinase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/8477954?dopt=Abstract">PK</a>))
activity. From class 1--chronic variants with administration of <a href="http://www.ncbi.nlm.nih.gov/pubmed/448442">8-azaguanine</a>
to class IV--increased enzyme activity. NADP-linked enzymes, malic
enzyme (<a href="http://www.ncbi.nlm.nih.gov/pubmed/7441369?dopt=Abstract">ME</a>,
EC 1.1.1.40) malic dehydrogenase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/6980685">MDH</a>) that
catalyzes&nbsp; (NAD-ME) by the chemical reaction to NADP-ME and <a href="http://www.ncbi.nlm.nih.gov/pubmed/12501358" title="Cunninghamella echinulata">ATP</a>:<a href="http://www.ncbi.nlm.nih.gov/pubmed/15556078">citrate</a>
lyase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12670628?dopt=Abstract">ACL</a>)
and (IDH)-isocitrate dehydrogenase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12501358">NADP-ICD</a>)
channeled NADPH into the <a href="http://www.ncbi.nlm.nih.gov/pubmed/240012">fatty acid</a>
biosynthesis influences carbohydrate metabolism and partly account
for stimulated nucleotide synthesis. Poly(A) <a href="http://www.ncbi.nlm.nih.gov/pubmed/15056564?dopt=Abstract">RNA</a>&nbsp;
by <a href="http://www.ncbi.nlm.nih.gov/pubmed/20211032">carnitine</a>-
<a href="http://www.ncbi.nlm.nih.gov/pubmed/11577713">palmitoyl</a>
(CPT) and acyl (ACO) mRNA, or <a href="http://www.ncbi.nlm.nih.gov/pubmed/12475725">HMG</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15556078" title="DHEA">CoA</a>
oxidase donating activities in <a href="http://www.ncbi.nlm.nih.gov/pubmed/3172984">inhibition</a>
of <a href="http://www.ncbi.nlm.nih.gov/pubmed/17684106">meiotic</a>
maturation, <a href="http://www.ncbi.nlm.nih.gov/pubmed/17684106">acetyl</a>-CoA
<a href="http://www.ncbi.nlm.nih.gov/pubmed/448442">carboxylase</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/12501358">ACC</a>)
was also measured in the forming <a href="http://www.ncbi.nlm.nih.gov/pubmed/9560802?dopt=Abstract" title="thiobarbituric">DNA adducts</a>. The metabolism of <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325335/figure/F2/">xylitol</a>
remains <a href="http://www.ncbi.nlm.nih.gov/pubmed/11087741">intact</a>
to complete the NADPH cycle.&nbsp; The G6PD gene is X-linked, G6PD
synthesis leading to G6PD deficiencies which occurs in the oocyte
where X-inactivation ( Xq13-XIST; <a href="http://omim.org/entry/314670">314670</a>) large deletions
or a loss-of-function mutation does not occur or might be <a href="http://www.ncbi.nlm.nih.gov/pubmed/8364584">lethal</a>,
had affected the red cell and white cell series differently, in
the mouse presumably the polymorphisms of hemoglobin are on the X
chromosome in man, according to hybrid cell studies of a number of
domesticated species.</div>
<div align="justify">
<br /></div>
<div align="justify">
<table align="center" border="1" cellpadding="2" cellspacing="2" style="height: 1997px; width: 400px;">
<tbody>
<tr>
<td valign="top"><div align="justify">
<blockquote>
<big><big>&nbsp;
</big> <small>Exon 12 is an exonic <a href="http://www.ncbi.nlm.nih.gov/pubmed/16980303">splicing silencer</a>¹ containing <a href="http://www.ncbi.nlm.nih.gov/pubmed/15558953">other</a>-(exons II, III-IV, V, VI-VII, VIII, IX, X, and XI-XIII)-spliced exons regions and an exonic splicing enhancer (ESE) in exon 12.
Using the G6PD <a href="http://www.ncbi.nlm.nih.gov/pubmed/23233666">model</a>,
Exon 12, may define <i><a href="http://www.ncbi.nlm.nih.gov/pubmed/1953767">12 base
pairs</a></i>, or two DNA base substitutions in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/1953767">deamano-NADP</a>
(EC 1.1.1.49) utilization. </small></big><big><small><big><big><a href="https://picasaweb.google.com/lh/photo/RQaWQd2vigFzay-b4hPl0tMTjNZETYmyPJy0liipFm0?feat=directlink"><img alt="g6pd" border="0" height="241" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEizFdLQitTX2pvD3uE2F74GNsqpWsDhyphenhyphensP_uEmMcUMS-863IPw-yFf-b8hfCysIxUG5ZVZgTbBJc7A8kJ0RfAy5k7X3nALro5Llsf5YleRtPxEO9G_OYU0NaHV_zfbNgTydmXqb2A/s800/intron12a.png" width="400" /></a></big></big></small></big></blockquote>
</div>
<div align="justify">
<blockquote>
<big><small>
A regulatory element within
exon 12 controls splicing efficiency and the rate of <a href="http://www.ncbi.nlm.nih.gov/pubmed/23631859">intron
removal</a>. The UGT1A1 gene and the exon 12 of G6PD gene
and the polymorphisms of UGT1A1 two DNA base substitutions C1
and C2 for example <a href="http://www.ncbi.nlm.nih.gov/pubmed/22537951">Gly71Arg</a>
from <a href="http://www.ncbi.nlm.nih.gov/pubmed/1953767">Arg
to His</a> are the mutational activities (</small></big><big><small>dimer
</small></big><big><small><b>pink</b> PDB: <a href="http://www.snps3d.org/modules.php?name=SnpAnalysis&amp;locus_ac=2539&amp;FP=T">rasmol_php</a>
SNP: L235F, Figs. 1-2 and 3) of serine-arginine-rich (SR), <a href="http://www.ncbi.nlm.nih.gov/pubmed/23233666"> proteins</a>
located in exon 12 of the G6PD <a href="http://www.ncbi.nlm.nih.gov/pubmed/1953767">gene</a>.</small></big></blockquote>
</div>
<big><small>
</small></big><br />
<div align="justify">
<blockquote>
<big><small><big><big><a href="https://picasaweb.google.com/lh/photo/Oi9xGfu4LGm3MS38SyzUvNMTjNZETYmyPJy0liipFm0?feat=directlink"><img alt="g6pd" border="0" height="241" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgl8cTm27iZ4SyrkO6b9aZFPJrsa9dvjYyeXXxBeCU0r4bruC0seqTZOfsLP-40i4RS-mlk8vJt1wNWkcke6jiwDN11s1FQyaQU0EfihRnCZwjQu9BdV7zkWUAci5CnW39q0IKXlQ/s800/intron12.png" width="400" /></a></big></big> The most common mutations are: 1376 G--&gt;T <a href="http://www.ncbi.nlm.nih.gov/pubmed/1953767">substitution</a>
abnormality (<a href="http://www.ncbi.nlm.nih.gov/pubmed/1953767">C1</a>)
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/16331553">1388</a>
G--&gt;A (G6PD <a href="http://www.ncbi.nlm.nih.gov/pubmed/11499668">Kaiping</a>)
abnormality (C2) is A--&gt;G in <a href="http://www.ncbi.nlm.nih.gov/pubmed/15748456">exon2</a>,
both in <a href="http://www.ncbi.nlm.nih.gov/pubmed/15748456">
exon </a><a href="http://www.blogger.com/null">12</a>
binding to the C-rich motifs (ESE) blocked binding of&nbsp;
the serine-arginine-rich splicing factor 3 (<a href="http://www.ncbi.nlm.nih.gov/pubmed/23631859">SRSF3</a>)
but not <a href="http://www.ncbi.nlm.nih.gov/pubmed/23233666">SRSF4</a>,
PDB</small></big><big><small>-2I2Y</small></big>.</blockquote>
</div>
<div align="justify">
<blockquote>
<big><small><big><big><a href="https://picasaweb.google.com/lh/photo/Oi9xGfu4LGm3MS38SyzUvNMTjNZETYmyPJy0liipFm0?feat=directlink"><img alt="g6pd" border="0" height="241" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgl8cTm27iZ4SyrkO6b9aZFPJrsa9dvjYyeXXxBeCU0r4bruC0seqTZOfsLP-40i4RS-mlk8vJt1wNWkcke6jiwDN11s1FQyaQU0EfihRnCZwjQu9BdV7zkWUAci5CnW39q0IKXlQ/s800/intron12.png" width="400" /></a></big></big> Where </small></big>
G6PD partly 'overlaps' the <a href="http://www.ncbi.nlm.nih.gov/pubmed/22121116">IKBKG</a>
gene PDB: <a href="http://www.rcsb.org/pdb/explore/explore.do?pdbId=2JVX">2JVX</a>-<b>blue</b>-cartoon<big><small>
located in&nbsp; the ribbon with the ESE-<b>red</b>-exon (XII)
12. The G6PD gene is 18 kb long divided into 12 segments
ranging in size from <a href="http://www.ncbi.nlm.nih.gov/pubmed/2428611"><i>12 base
pairs</i></a> to 236 bp and interacts with elements in the
beta-globin HBB common polymorphism site <a href="http://www.ncbi.nlm.nih.gov/pubmed/20203002"> </a>C1311T/<a href="http://www.ncbi.nlm.nih.gov/pubmed/20203002">IVS-II</a>
promoter are more common forms of the protein hemoglobin in
the beta-globin HBB derived from the <a href="http://www.ncbi.nlm.nih.gov/pubmed/2836867">3'-end</a>
of <a href="http://www.ncbi.nlm.nih.gov/pubmed/2910917">intron
7</a> is one of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/15885137">2 types</a>
of subunits in human red cell (<a href="http://www.ncbi.nlm.nih.gov/pubmed/2758468">RBC</a>)
G6PD. An ratio between heterozygote and <a href="http://www.ncbi.nlm.nih.gov/pubmed/2910917">hemizygote</a>
in males and between hetero and homozygote in </small></big><big><small>females of
cellular </small></big><big><small>components evident from the state of G6PD activity
modified by the rate of&nbsp; (<a href="http://omim.org/entry/312070">GdX</a> </small></big><big><small>PMID:
<a href="http://www.ncbi.nlm.nih.gov/pubmed/8786131">8786131</a>,</small></big><big><small> PDB:<a href="http://www.rcsb.org/pdb/explore/explore.do?pdbId=2BH9">2BH9</a>&nbsp;
a deletion variant of G6PD PMID-<a href="http://www.ncbi.nlm.nih.gov/pubmed/17637841">17637841</a>)
intron <a href="http://www.ncbi.nlm.nih.gov/pubmed/23631859">removal</a>
, shows that an intron present on the 5' UTR (located on Fig.
A, the end of <b>blue</b> cartoon situated near the broken <b>blue</b>
strand) of G6PD the first <a href="http://www.ncbi.nlm.nih.gov/pubmed/23631859">intron</a>
of the G6PD genome isozymes can be observed, '<a href="http://www.ncbi.nlm.nih.gov/pubmed/18348143">GdA</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/23065279">
GdB</a>'³ can be bound by <a href="http://www.ncbi.nlm.nih.gov/pubmed/23185302">NADP</a>
by a direct source of ROS effects of high <a href="http://www.ncbi.nlm.nih.gov/pubmed/17303087">glucose</a>,
inhibition of PKA decreased <a href="http://www.ncbi.nlm.nih.gov/pubmed/23185302">ROS</a>
can use a </small></big><big><small>direct repeat-3 (DR3) vitamin D response element
liganded <a href="http://www.ncbi.nlm.nih.gov/pubmed/18348143">vitamin D</a>
receptor</small></big>.
</blockquote>
</div>
<blockquote>
<div align="justify">
<a href="https://picasaweb.google.com/lh/photo/cM57iU-zpT5sFykSzCnLYNMTjNZETYmyPJy0liipFm0?feat=directlink"><big><big><img align="middle" alt="g6pd" border="0" height="367" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh6dCVmjYOcrRQJ5KEoMpaa6O2wrqxXUM5I6yHaaA0oOIAU6g0TQgssZYkz4e0vb12ncKloNLxwkllraOT2-lPtD2ePm5jmy67m1eX6FS5RKMVD6CoNhD-Xqa4VEuCj9KLcTS97Tg/s512/unit4-pdb-2bh9.png" width="400" /></big></big></a></div>
</blockquote>
</td>
</tr>
</tbody>
</table>
<br />
<br />
<li class="footnote" id="footnote_4_4236">.....five metabolite levels of insulin signal transduction.
[<a href="http://lnwme.blogspot.com/2013/12/g6pd-exon-12-is-exonic-splicing.html#identifier_4_4236">↩</a>]</li>
</div>
<div align="justify">
<small><small> </small></small> </div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2013/12/g6pd-exon-12-is-exonic-splicing.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEizFdLQitTX2pvD3uE2F74GNsqpWsDhyphenhyphensP_uEmMcUMS-863IPw-yFf-b8hfCysIxUG5ZVZgTbBJc7A8kJ0RfAy5k7X3nALro5Llsf5YleRtPxEO9G_OYU0NaHV_zfbNgTydmXqb2A/s72-c/intron12a.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-7911512424002123411</guid><pubDate>Tue, 10 Sep 2013 05:17:00 +0000</pubDate><atom:updated>2014-04-13T16:01:56.685-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">beta-globin</category><category domain="http://www.blogger.com/atom/ns#">GATA-1</category><category domain="http://www.blogger.com/atom/ns#">HBB</category><category domain="http://www.blogger.com/atom/ns#">NFE2</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>Intra- and interchromosomal interactions of point mutations occurring in the vicinity of the normal 5-and 3 ends via low and high O(2)-affinities on the beta-globin complex.</title><description>Beta-globin (HBB) locus: 11p15.4&nbsp; [<a href="http://www.ncbi.nlm.nih.gov/gene/3043">§§</a>; <a href="http://www.ihop-net.org/UniPub/iHOP/gs/88959.html?ID=88555">†</a>, <a href="http://www.ncbi.nlm.nih.gov/pubmed/20301551" title="Sickle Cell Disease. Sections">‡</a>-(HbS)] intra- and interchromosomal interactions with element in the beta-globin <a href="http://www.ncbi.nlm.nih.gov/pubmed/22028795" title="pdb 4HHB before and after mutation">HBB</a> is one of the 2 types of an asymmetric <a href="http://www.ncbi.nlm.nih.gov/pubmed/16877501" title="two adjacent replicators">purine</a> : <a href="http://www.ncbi.nlm.nih.gov/pubmed/16848606" title="transition from monomers">pyrimidine</a> sequences in beta-thalassemia <a href="http://www.ncbi.nlm.nih.gov/pubmed/4531009" title="Aspirin acetylates chromatin">patients</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/14722738" title="Hydroxyurea in the treatment">Hydroxyurea</a>) and normal (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17654503" title="occur at different frequencies">nonthalassemic</a>) individuals from the standard <a href="http://www.ncbi.nlm.nih.gov/pubmed/23431002" title="representing 14 populations">neutral</a> – <a href="http://www.ncbi.nlm.nih.gov/pubmed/17490901" title="he beta globin gene">model</a>, to any one or more of <a href="http://www.ncbi.nlm.nih.gov/pubmed/12955718">200</a> different <a href="http://www.uniprot.org/uniprot/P68871#section_features">mutations</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21075281">unstable</a> free globin chain subunits), a <a href="http://www.ncbi.nlm.nih.gov/pubmed/11159543">heterotetramer</a> subunits assembly <a href="http://www.ncbi.nlm.nih.gov/pubmed/20301551">composed of</a> ‡ <a href="http://www.ncbi.nlm.nih.gov/pubmed/1552945" title="The need to develop">two α-</a>hemoglobin chains and two β-hemoglobin chains. In adult (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21077758" title="1,863MexicanMestizo patients">Hb</a>) hemoglobin, the <a href="http://www.ncbi.nlm.nih.gov/pubmed/21333566" title="seven most common mutations">IVS</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/10556289?dopt=Abstract" title="target sites in intron 2">2</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/16184579" title="three novel polymorphisms">intron</a>“‘ <a href="http://www.ncbi.nlm.nih.gov/pubmed/16990440" title="three polymorphisms">promoter</a> a coregulator of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/11167015" title="all GATA sites">GATA</a>1 can serve a similar function as <a href="http://www.ncbi.nlm.nih.gov/pubmed/14585970" title="more compatible with modifying">NF-E2</a> here; <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8326917.html?nr=2&amp;pmid=10523648" title="HS2 element mutated in its GATA">chromatinized </a>minichromosome associations in <a href="http://www.ncbi.nlm.nih.gov/pubmed/16537808">erythroid</a> cells. These data indicate (<a href="http://www.ncbi.nlm.nih.gov/pubmed/22705794">CTCF</a>-CCCTC binding factor, interactions affects spatial distances) observations that favor <a href="http://www.ncbi.nlm.nih.gov/pubmed/9737959?dopt=Abstract" title="a target for genetic control">EKLF’s</a> red cell (RBC) activators erythroid specificity.&nbsp; A <a href="http://www.ncbi.nlm.nih.gov/pubmed/16418531">self-organizing</a> process, proposed <a href="http://www.ncbi.nlm.nih.gov/pubmed/10652365" title="EKLF to activate reporter genes">role</a> activates an <a href="http://www.ncbi.nlm.nih.gov/pubmed/9668528" title="phosphorylation">adjacent</a> promoter as both (human <a href="http://www.ncbi.nlm.nih.gov/pubmed/9516123" title="the developmental switch">fetal</a> (gamma)-<a href="http://www.ncbi.nlm.nih.gov/pubmed/8901569" title="the first transcription factor participating">to adult</a> (beta)-globin) are important, however not sufficient (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10523648" title="basai apparatusPMID: 16858401">basal</a>) stabilizing interactions,&nbsp; -both were in <a href="http://www.ncbi.nlm.nih.gov/pubmed/11163187?dopt=Abstract" title="Nonsense-mediated decay (NMD)">cis</a> and in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/11336979.html?nr=1&amp;pmid=16508016" title="factors that participate in stabilizing HBB">trans</a> distinct from <a href="http://www.ncbi.nlm.nih.gov/pubmed/16508016">alpha-globin</a> mRNA, the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/4745332.html?nr=1&amp;pmid=6539594" title="a 28-kDa or a 24-kDa polypeptide">2 types</a> of polypeptide chains interrupted by <a href="http://www.ihop-net.org/UniPub/iHOP/pm/5217181.html?nr=8&amp;pmid=3025666" title="prealbumin gene two DNA elements">2 intervening</a> sequences the <a href="http://www.ncbi.nlm.nih.gov/pubmed/1512262">so-called</a>** “<a href="http://www.ncbi.nlm.nih.gov/pubmed/21816820" title="PDB=1BBB, R and R2 structures">switch</a>“* <a href="http://www.ncbi.nlm.nih.gov/pubmed/1571556" title="simple deletions beta-globin gene">region</a> (that is, <a href="http://www.ncbi.nlm.nih.gov/pubmed/2578614" title="OMIM (cited)">gamma</a>—-beta -the average zeta potential, of externalized <a href="http://www.ncbi.nlm.nih.gov/pubmed/19503809" title="Applications Annexin">phosphatidylserine</a> minimal for <a href="http://www.ncbi.nlm.nih.gov/pubmed/11159543" title="Embryonic zeta">zeta</a>-globin HBZ&nbsp; <a href="http://www.ncbi.nlm.nih.gov/pubmed/11782463" title="double and quadruple mutant">dissociation</a> constants (<a href="http://www.ncbi.nlm.nih.gov/pubmed/1487420" title="Two abnormal hemoglobins">fast</a> or slow* moving), to an embryonic <a href="http://www.ncbi.nlm.nih.gov/pubmed/11300346">alpha</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/11582643" title="test of cord blood">like</a> hemoglobin),.&nbsp; Gene-proximal acting <a href="http://www.ncbi.nlm.nih.gov/pubmed/16943425?dopt=Abstract" title="">cis-regulatory</a> DNA elements (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11778661" title="DNase I-HS,s">chromatin</a>) are maintained that contain <a href="http://www.ncbi.nlm.nih.gov/pubmed/11486027">informative mutations</a> ‘one’ on the 3-prime <a href="http://www.ncbi.nlm.nih.gov/pubmed/9375381" title="">side</a> of the beta-globin gene ‘and a leftward’ rate of <a href="http://www.ncbi.nlm.nih.gov/pubmed/10666717">neutral mutation</a> (in the 5-prime direction) the <a href="http://www.wikigenes.org/e/ref/e/6314332.html">centromere</a> (beta-globin within the <a href="http://www.ncbi.nlm.nih.gov/pubmed/11997516?dopt=Abstract" title="CTCF sites at 5HS5 and 3HS1">chromatin</a> domain) which contains a ‘<a href="http://www.ncbi.nlm.nih.gov/pubmed/17688704" title="Classical sickle beta-globin">hotspot</a>‘ (<a href="http://www.ncbi.nlm.nih.gov/pubmed/7539330?dopt=Abstract" title="regions of three genesby chance">mutations</a> causing diseases at <a href="http://www.ncbi.nlm.nih.gov/pubmed/8402619?dopt=Abstract">HRAS1</a>, D11S at one or more 11p<a href="http://www.ncbi.nlm.nih.gov/pubmed/2722195?dopt=Abstract">15.5</a> loci in the HBB region from D11S and <a href="http://www.ncbi.nlm.nih.gov/pubmed/8518793?dopt=Abstract" title="">IGF2</a>: <a href="http://www.ncbi.nlm.nih.gov/pubmed/8858347?dopt=Abstract" title="(HBB) and markers D11S">INS</a> are <a href="http://www.ncbi.nlm.nih.gov/pubmed/2892398?dopt=Abstract" title="The INS and D11S12 systems">systems</a> found to be <a href="http://www.ncbi.nlm.nih.gov/pubmed/10652365?dopt=Abstract" title="a CACC-less beta-globin transgene">dependent</a> on <a href="http://www.ncbi.nlm.nih.gov/pubmed/16858401?dopt=Abstract" title="the Locus Control Region and HBB">EKLF</a>&nbsp;) for recombination in the HBB gene region&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/6196781" title="">3-prime</a> to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/22734587">beta-globin</a> gene (<a href="http://www.ncbi.nlm.nih.gov/pubmed/22734501">β-thal</a>) mutations (led to <a href="http://www.ncbi.nlm.nih.gov/pubmed/1639982" title="diamino-phenyl-indole">DAPI</a> lentiviral vectors (LVs) particles <a href="http://www.ncbi.nlm.nih.gov/pubmed/16339671" title="studies using LVs">expression</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15292064" title="human beta-globin cassette">cassette</a> detection: genetic diagnosis (<a href="http://www.ncbi.nlm.nih.gov/pubmed/7745052">PGD</a>) Preimplantation. And targeted integration of the adeno-associated virus (<a href="http://www.ncbi.nlm.nih.gov/pubmed/18496574" title="used for gene transfer,">AAV</a>).) at 5-prime <a href="http://www.ncbi.nlm.nih.gov/pubmed/10556289" title="aberrant 5 splice sites suppression of">splice</a> sites (A <a href="http://www.ncbi.nlm.nih.gov/pubmed/1984681?dopt=Abstract">gamma</a>-) globin (HBG1) are held to be responsible for human genetic disease of <a href="http://www.ncbi.nlm.nih.gov/pubmed/1383089?dopt=Abstract" title="embryonic and early fetal gene">fetal</a> ‘Aγ and Gγ’ hemoglobin (<a href="http://www.ncbi.nlm.nih.gov/pubmed/2445400" title="fetal genes (G gamma and A gamma)">HPFH</a>/<a href="http://www.ncbi.nlm.nih.gov/pubmed/6202341" title="hereditary persistence">beta o-tha</a> the <a href="http://www.ncbi.nlm.nih.gov/pubmed/18245381">BCL11A</a> variant is associated with the same variable HbF) by (tagging with <a href="http://www.ncbi.nlm.nih.gov/pubmed/23272095" title="fluorescent proteins">GFP</a>) a single initial deletion followed by spread of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/7829533?dopt=Abstract" title="CACCCbox mutations">mutation</a>, naturally <a href="http://www.ncbi.nlm.nih.gov/pubmed/8288615?dopt=Abstract" title="naturally occurring point mutations">occurring</a> allele-(<a href="http://www.ncbi.nlm.nih.gov/pubmed/20099768" title="locus with two alleles denoted">Hardy</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/19903589" title="5 and 3 haplotypes (Hps)">Weinberg</a> principle),&nbsp; <a href="http://www.ncbi.nlm.nih.gov/pubmed/16990440" title="three polymorphisms">locus</a> with two alleles denoted, and a second abnormal allele of an HBB mutation (e.g.,&nbsp; the <a href="http://www.ncbi.nlm.nih.gov/pubmed/11812133" title="related to pathogenesis">sickle</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/10791557">cell</a> haemoglobin gene <a href="http://www.ncbi.nlm.nih.gov/pubmed/11965279">Hb S</a>, a <a href="http://www.ncbi.nlm.nih.gov/pubmed/12454462" title="PDB: 1K1K">naturally occurring</a> mutant <a href="http://www.ncbi.nlm.nih.gov/pubmed/16175509" title="originated 5,000 years ago">Hb C</a>, β-thalassemia), with subsequent crossovers between the 5-and 3-prime and gene conversion and the <a href="http://www.ncbi.nlm.nih.gov/pubmed/10556289?dopt=Abstract" title="mutations that create 5-3 intron 2">creation</a> of 2 others (e.g.,<a href="http://www.ncbi.nlm.nih.gov/pubmed/2456798"> Comparison</a>‘s of the normal <a href="http://www.ncbi.nlm.nih.gov/pubmed/728996?dopt=Abstract" title="5-delta--beta-3">5-and 3</a> ends, the processive <a href="http://www.ncbi.nlm.nih.gov/pubmed/3179447?dopt=Abstract">region 3′</a> to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/68958" title="3-terminal UTR">3′ UTR</a> messenger <a href="http://www.blogger.com/null">mRNP</a> complexes <a href="http://www.ncbi.nlm.nih.gov/pubmed/8806182">ribonucleoprotein</a> breakpoint via mutations or HS deletions (β-globin HS5 or 3′HS1) that contributes to the abnormal <a href="http://www.ncbi.nlm.nih.gov/pubmed/15615768">expression</a>,
or as RNA stability, maturation and transcriptional termination) for
recombination (crossing-over or gene conversion) both in cis and in
trans intra- and interchromosomal interactions of point mutations
occurring in the vicinity of the beta-globin complex,&nbsp; in cis to the
gene mutations, were physically intact. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19247486?dopt=Abstract" title="Matrix attachment regions (MARs)">SATB1</a> takes part in affecting the HBB higher order chromatin structure <a href="http://www.ncbi.nlm.nih.gov/pubmed/12799453" title="Nuclear matrix-associated regions">Matrix</a> attachment <a href="http://www.ncbi.nlm.nih.gov/pubmed/11997516">regions</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19247486" title="SATB1 to the MARs">MARs</a>) within the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/775375.html?nr=1&amp;pmid=8918890" title="HBB-AR hemaglobin activating region">locus control region</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/8118043" title="interacts with more than one HBB">LCR</a> located at the <a href="http://www.ncbi.nlm.nih.gov/pubmed/14645507">5′ end</a>, flanked by <a href="http://www.ncbi.nlm.nih.gov/pubmed/16103151" title="adeno-associated virus (AAV)">AAV</a>),&nbsp; the <a href="http://www.ncbi.nlm.nih.gov/pubmed/15979088" title="locus control region">HS2</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/17056066" title="chromatin structure">3′HS1</a> active <a href="http://www.ncbi.nlm.nih.gov/pubmed/15870261" title="chromatin HS2 and HS3">chromatin</a> hub (ACH), remote <a href="http://www.ncbi.nlm.nih.gov/pubmed/9744863?dopt=Abstract" title="DNase I hypersensitive sites (5 HS1-5)">5-prime</a> element genes (a member of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/12555809?dopt=Abstract" title="interactions between cis-elements">HMGB-2</a> high-mobility group protein 2 <a href="http://www.ncbi.nlm.nih.gov/pubmed/21075288" title="an Hmga2 gene">family</a>) in cis to the deletion a single initial deletion is the beta <a href="http://www.ihop-net.org/UniPub/iHOP/pm/3362016.html?nr=4&amp;pmid=478302">zero</a> type of&nbsp; a coexisting thalassemia component and if so, if it is α-thalassemia or Beta (<a href="http://www.ncbi.nlm.nih.gov/pubmed/6153459?dopt=Abstract" title="anaemia in newborns which develops">gamma-beta</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15795925" title="a serious health problem">Thalassaemia</a> and (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20301551" title="associated with mutations in HBB">SCD</a>-Hemoglobin) Hb SS anemia, <a href="http://www.ncbi.nlm.nih.gov/pubmed/15795541" title="a complex multifactorial process">sickle</a> cell disease) and <a href="http://www.ncbi.nlm.nih.gov/pubmed/16216127?dopt=Abstract" title="prehistoric attribute predisposition">malaria</a>&nbsp; has some <a href="http://www.ncbi.nlm.nih.gov/pubmed/18772456" title="high cerebral velocities">protective effect</a> from increased risk of <a href="http://www.ncbi.nlm.nih.gov/pubmed/16356170?dopt=Abstract" title="where resources are limited">G6PD</a> deficiency, with beta-globin <a href="http://www.ncbi.nlm.nih.gov/pubmed/21075280" title="alpha thalassemia-family">co-inheritance</a> a <a href="http://www.ncbi.nlm.nih.gov/pubmed/1383089?dopt=Abstract" title="epsilon-globin a embryonic gene">fetal adult</a> gene as a <a href="http://www.ncbi.nlm.nih.gov/pubmed/10022837?dopt=Abstract" title="fetal gamma- to adult beta-globin">cofactor</a> involving the first non-coding near the 5-prime end of <a href="http://www.ncbi.nlm.nih.gov/pubmed/8650154?dopt=Abstract">3 exons</a>&nbsp; plus a single <a href="http://www.ncbi.nlm.nih.gov/pubmed/6527389?dopt=Abstract">pseudogene</a> termed <a href="http://www.ncbi.nlm.nih.gov/pubmed/6599969?dopt=Abstract" title="the lagomorph beta-globin gene">psi beta 1</a> ( <a href="http://www.ncbi.nlm.nih.gov/pubmed/3456593?dopt=Abstract" title="beta-globin cluster reside within">epsilon</a>, beta and <a href="http://www.ncbi.nlm.nih.gov/pubmed/18667698?dopt=Abstract" title="potentially heritable modifier of a disease">gamma</a> are complementary to the structure of genes is <a href="http://www.ncbi.nlm.nih.gov/pubmed/19245215" title="of site mutants">coincidental</a> of site mutants that are turned <a href="http://www.ncbi.nlm.nih.gov/pubmed/12920025">on and off</a> ( H3 <a href="http://www.ncbi.nlm.nih.gov/pubmed/20068219" title="H4R3">acetylation</a>-(H4/<a href="http://www.ncbi.nlm.nih.gov/pubmed/19288145" title="R(deoxy) and RR bands">R3</a>* in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8980683">R</a> state having T/R** low and high <a href="http://www.ncbi.nlm.nih.gov/pubmed/21703224">O(2)</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/19740759">affinities</a>)-K4 <a href="http://www.ncbi.nlm.nih.gov/pubmed/20080971" title="fast k(O2), and k(NO) PDB:2DN1">demethylation</a>) the mechanism is more complex as <a href="http://www.ncbi.nlm.nih.gov/pubmed/2269427?dopt=Abstract" title="">development</a> proceeds) the Dominant Control Region (<a href="http://www.ncbi.nlm.nih.gov/pubmed/2357964?dopt=Abstract" title="">DCR</a>) and <a href="http://www.ncbi.nlm.nih.gov/pubmed/21978377" title="HBB has three exons and two introns">introns</a>“‘ 1-5 both single <a href="http://www.ncbi.nlm.nih.gov/snp?LinkName=protein_snp&amp;from_uid=4504349" title="1 to 20 of 423">nucleotide</a>“‘ substitutions of the beta-globin gene to the deletion ‘<a href="http://www.wikigenes.org/e/ref/e/14517543.html" title="spatial cluster cis-regulatory">in cis</a>‘ a region designated LCRB, locus control region. (<a href="http://www.ncbi.nlm.nih.gov/pubmed/3899525?dopt=Abstract" title="">INS</a>) the insulin gene was also mapped to this same region.<br />
<br />
<div align="center">
<br /></div>
<div align="center">
<div style="text-align: start;">
<br /></div>
<div style="text-align: start;">
</div>
<div style="margin: 0px; text-align: start;">
<a href="https://plus.google.com/photos/100787464692550241934/albums/5921775298049485697/5921775386336616226?banner=pwa&amp;pid=5921775386336616226&amp;oid=100787464692550241934"><img alt="hbb" border="0" height="270" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEio6Qnmm8nWSHm3nFCO4TIHQUpo6bkxWKFNzlPE4ePMKMqCyKMl_EHJf16IFEHCGcFD9BFeSx6ioh4MFXel8xBsymkJ1oYY8QocZGm0af5JT3pywRbO1C_BKlK5iyd0qOsTb1Z4Mw/w493-h508-no/Redalpha-blubeta.png" width="262" /></a></div>
<div align="justify">
<div style="margin: 0px;">
(1)&nbsp; the "hinge region" of the alpha 1 beta 2 interface PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/1567857">1567857</a>&nbsp;were partitioned into components of ( PDB:1J7Y_colored in reds is Hb-alpha ) SNP PDB:1IRD HBA1 and 2 structure rearrangement,&nbsp; the interface from the mutation site is site (B) about protein sequence 4L7Y-B alpha and D-beta:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197589/#s3title">Results</a>are for rs33930165 on Reference Sequence: NP_000509.1 [PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/22028795">22028795</a>] attainment number&nbsp;<a class="tag_hotlink" href="http://www.ncbi.nlm.nih.gov/protein/56749856" id="__tag_235452173">P68871</a><span class="tag_hotlink">&nbsp;verified by refinement of the a entire&nbsp; molecule&nbsp;</span><span class="tag_hotlink">was confined to residues at the central cavity close to the 2,3-DPG found in the&nbsp;</span><span class="tag_hotlink"><a href="http://www.ncbi.nlm.nih.gov/protein/NP_000509.1">NP_000509.1</a>&nbsp;hemoglobin (PDB: 4L7Y) subunit beta.</span><span class="tag_hotlink">&nbsp;1J7Y_Reds Hb-alpha,_Blues Hb-beta. With The effect of mutagenesis on O(2), CO, &nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;and NO binding to mutants 1J7Y HBB.H116R_D test&nbsp;</span><span class="tag_hotlink"><span style="color: red;">Disease Gene</span>:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?&amp;db=omim&amp;orig_db=omim&amp;term=HBB%5BGN%5D" target="_blank">HBB</a>&nbsp; protein/<a href="http://www.ncbi.nlm.nih.gov/protein/NP_000509.1">NP_000509.1</a>structure arrangement. The alpha (HBA) and beta (HBB) loci determine the structure resolution analysis reported here implies...&nbsp;&nbsp;</span>the structure of genes is</div>
<div style="margin: 0px;">
<span class="tag_hotlink"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19245215" title="of site mutants">coincidental</a>&nbsp;of site mutants that are turned&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/12920025">on and off</a>&nbsp;( H3&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/20068219" title="H4R3">acetylation</a>-(H4/<a href="http://www.ncbi.nlm.nih.gov/pubmed/19288145" title="R(deoxy) and RR bands">R3</a>* in the&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/8980683">R</a>&nbsp;state having T/R** low and high&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/21703224">O(2)</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/19740759">affinities</a>)-K4<a href="http://www.ncbi.nlm.nih.gov/pubmed/20080971" title="fast k(O2), and k(NO) PDB:2DN1">demethylation</a>) the mechanism is&nbsp; more complex as development proceeds) e.g.&nbsp; not present in the final mature HBB gene product.</span></div>
</div>
<div style="margin: 0px; text-align: start;">
<br /></div>
<div style="margin: 0px; text-align: start;">
<img alt="hbb" height="190" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgDVT73wtOP-JUIKhvq72jqBgVFc9n4vkGIZnAOIqEaY9RE7dAfggI0_6lLc9RHc95XljKR33AXYfbglm1wzwzELvR113O4UlR79CNcmfERq81pqDm7rAEU8q4IYhzuA-mE7VPBIw/w547-h396-no/Capture1.PNG" width="262" /></div>
<div style="margin: 0px; text-align: start;">
<br /></div>
<div style="margin: 0px; text-align: start;">
<br /></div>
<div align="justify">
<div style="margin: 0px;">
<span class="tag_hotlink">(2)&nbsp; Behaviour of a natural haemoglobin and a mutant variant in the central cavity close to the 2,3-diphosphoglycerate pocket&nbsp; 4L7Y-D a band migrating in the Hb F_ a solvation band-position-PDB: rasmol_php (DiseaseE6K_33930165_F_[solvent- is&nbsp;</span><span class="tag_hotlink">nonbonded spheres</span><span class="tag_hotlink">&nbsp;on 4L7Y-D Hb-beta Red fig. (1)) and its reactions with 2,3-DPG and inositol hexaphosphate-PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/6526653">6526653</a>: accounts for the reduced oxygen affinity of haemoglobin;&nbsp; by the oppositely charged side-chains residue that project into or are missing in the heme pocket, and result in a thalassemic and/or hemolytic -like phenotype the result of decreased alpha 1 beta 1 interactions.</span></div>
<div style="margin: 0px;">
<span class="tag_hotlink"></span></div>
</div>
<div style="margin: 0px; text-align: start;">
<span class="tag_hotlink"></span><a href="https://plus.google.com/photos/100787464692550241934/albums/5921775298049485697/5922957783427417346?banner=pwa&amp;partnerid=gplp0&amp;pid=5922957783427417346&amp;oid=100787464692550241934"><img alt="hbb" border="0" height="191" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg3b3jl8f701XhoL2322X88SQ7-c0vCei2IhKCZy4ez81EDtm_23eiKRHyDpiF6hFfWgGwyVdFCoKxDA_29dZd_3kJWrpuc51u51sUAGwPV9qCcAS_We2UEFoHRHN7X1f9ukhnM_g/w663-h483-no/noe7b.jpg" width="262" /></a></div>
<div style="margin: 0px; text-align: start;">
HBB Network visualized with Cytoscape. The inverse of the inverse not inferable from Figure (4) overlaps the hinge region for exon selection 3'5'duplications. pubmed/21269460 [#35]</div>
<div style="margin: 0px; text-align: start;">
<br /></div>
<div style="text-align: start;">
</div>
<div style="text-align: start;">
</div>
<div style="margin: 0px; text-align: start;">
<a href="https://plus.google.com/photos/100787464692550241934/albums/5921775298049485697/5921775456181947010?banner=pwa&amp;pid=5921775456181947010&amp;oid=100787464692550241934"><img alt="hbb" border="0" height="232" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgpbl2z_SgamQOje_D47gO-at1cYE-aCSF1wqr5VATYhXZnQLceHaBdSA4H_VYglid4niLZa5dmiYUu-AuRyELW9LsjWq7AQ1CI5kQ2_XOBoUmlGD8EE-bKECYQU5iUZFc_LfJqAw/w573-h508-no/intronexon2.png" width="262" /></a></div>
<div style="margin: 0px; text-align: start;">
<br /></div>
<div align="justify">
<div style="margin: 0px;">
<span class="tag_hotlink">&nbsp;(3) 4L7Y-B inhibits the rate of ligand binding HIS'147 the native imidazole side chain is 4L7Y-D modification at each site is a function of the position of these 2 hemoglobin alpha and beta introns the electrostatic attraction or repulsion by the oppositely charged side-chains therefore the efficiencies of intron 1, PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/6599969">6599969</a>&nbsp;and intron 2, PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/16184579">16184579</a>&nbsp;are unaffected residue near the 3' end (Blue color) (4L7Y_B/B/LEU'3/CA) of the intron on a mechanism that measures the distance, the first intron might facilitate splicing (</span><span class="tag_hotlink">aligned as B-D, B-D) of the second intron (Orange) 4L7Y and desease HBB locus gene in which intron 1 PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/18266765">18266765</a>&nbsp;accommodates the 5' end (Orange). Introns are not present in the final HBB gene product mature RNA with SNP:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=33949930">rs33949930</a>, &nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;amplified from exon (Blue) 1 + 2 (PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/8226093">8226093</a>) of the beta-globin gene:&nbsp;</span><span class="tag_hotlink"><span class="undefined"></span><a class="undefined" href="http://www.ncbi.nlm.nih.gov/nuccore/28380636?report=graph&amp;noslider=1&amp;tracks=[key:sequence_track,name:Sequence,display_name:Sequence,id:STD1,category:Sequence,annots:Sequence,ShowLabel:false][key:SNP_track,name:SNP,display_name:SNP,id:STD3,category:Variation,subcategory:dbSNP,annots:SNP,Layout:Adaptive][key:SNP_Bins_track,name:Clinical%20Variants,display_name:Clinical%20Channel,id:STD7,category:Variation,subcategory:dbSNP,annots:NA000001755.3][key:SNP_Bins_track,name:Cited%20Variants,display_name:Cited%20Variants,id:STD8,category:Variation,subcategory:dbSNP,annots:NA000001759.1][key:gene_model_track,name:Genes,display_name:Genes,id:STD9,category:Genes,annots:Unnamed,Options:ShowAll,SNPs:true,CDSProductFeats:false,ShowLabelsForAllFeatures:false,HighlightMode:2][key:alignment_track,name:Alignments,display_name:Alignments,id:STD10,category:Alignments,annots:Unnamed,Layout:Adaptive1000,StatDisplay:15,Color:Show%20Differences,sort_by:,LinkMatePairAligns:true,ShowAlnStat:false,AlignedSeqFeats:false,Label:true]&amp;appname=ncbientreznuccore&amp;mk=70599%7Crs33949930%7Cgreen%7C1&amp;color=0&amp;label=0&amp;decor=0&amp;spacing=0&amp;v=70099:71099&amp;c=800080&amp;gflip=false&amp;select=gi%7C28380636-000114a0-0001157e-011d-032a54d3-ffea8d58" target="_blank" title="NG_000007.3">NG_000007.3</a><span class="undefined"></span><span class="undefined">,&nbsp;</span>(a neutral mutation [ SNP:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=33949930">rs33949930</a>&nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;Position 70599&nbsp;<a href="http://tinyurl.com/nhut5yf">http://tinyurl.com/nhut5yf</a>]). Present in SNP to nucleotide allele T.</span></div>
</div>
<div style="margin: 0px; text-align: start;">
<a href="https://plus.google.com/photos/100787464692550241934/albums/5921775298049485697/5921786362640124706?banner=pwa&amp;pid=5921786362640124706&amp;oid=100787464692550241934"><img alt="hbb" border="0" height="179" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg_JAibflgw2wms-5KQoox5gJb7oTp0ua0Ax4vPJiD8cxQ_NW3-mtZ9qwIQpGApYyEAwizVYD0yDTobUS0wMCLGBkOAQbBrbyb_eg61eNp5HQ21ab1WmQVB2PxjHibLFBxr4aLtsg/w743-h508-no/3end.png" width="262" /></a></div>
<div align="justify">
<div style="margin: 0px;">
<span class="tag_hotlink">(4)&nbsp; Correlated inversely. The intron is linked both in the intron-exon sequence and nearer the (Blue) 3' end (an adaptation to endurance PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/16990440">16990440</a>&nbsp;) of the intron upstream from the 3' terminus to the 3'-side of the beta-globin gene PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/478302">478302</a>&nbsp;of the intron (Orange) on 4L7Y-B beta-globin gene should remain active together with all other&nbsp;</span><span class="tag_hotlink">(PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/11559912">11559912</a>&nbsp;alleles</span><span class="tag_hotlink">) forms of the same HBB gene multiallelic loci&nbsp; PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/15315794">15315794</a>&nbsp;involved in beta-thalassemia along with the unrecognized allelism found in&nbsp;&nbsp;<a href="http://www.snps3d.org/modules.php?name=SnpAnalysis&amp;locus_ac=3043">PDB:1IRD</a>&nbsp;among a new neutral mutation.&nbsp;<a href="http://www.snps3d.org/modules.php?name=SnpAnalysis&amp;locus_ac=3043">V2E, A, G, L</a>, SNP&nbsp;<a href="http://www.ncbi.nlm.nih.gov/snp/?term=33949930">33949930</a>&nbsp;(hydrophobic interaction decreased;&nbsp;</span><span class="tag_hotlink"><a href="http://www.snps3d.org/cgi-bin/rasmol_php?seq_ac=NP_000509&amp;&amp;snp=V2E&amp;snp_chain=B"><img alt="hbb" border="0" src="http://www.snps3d.org/image/rasmol.jpg" height="16" width="16" /></a>&nbsp;<a href="http://www.snps3d.org/cgi-bin/jmol?seq_ac=NP_000509&amp;&amp;snp=V2E&amp;snp_chain=B&amp;&amp;message=hydrophobic%20interaction%20decreased;&amp;&amp;locus_ac=3043&amp;&amp;symbol=HBB"><img alt="hbb" border="0" src="http://www.snps3d.org/image/java.gif" height="16" width="16" /></a>&nbsp;)&nbsp; the single nucleotide polymorphisms&nbsp;<a href="http://www.snps3d.org/modules.php?name=SnpAnalysis&amp;locus_ac=3043">NP_000509</a>. The remaining 95% of the SNPs for prediction in which a variant could be detected, would have been sufficient in these cartoons, however may be&nbsp;</span><span class="tag_hotlink">misleading.&nbsp; These results suggest that e.g.</span><span class="tag_hotlink">&nbsp;the introns (PMID:&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/11860449">11860449</a>) or the entire Hb-beta locus may be&nbsp; missing in beta(0) or be impeded ( O(2)-affinities) in Hb SS anemia beta-thalassemia and if so, α-thalassemia or Beta (gamma-beta-Thalassaemia and (Sickle Cell SCD-Hemoglobin)&nbsp; Hb SS anemia, sickle cell disease.</span></div>
</div>
<div style="text-align: start;">
<br /></div>
</div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2013/09/intra-and-interchromosomal-interactions_9.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEio6Qnmm8nWSHm3nFCO4TIHQUpo6bkxWKFNzlPE4ePMKMqCyKMl_EHJf16IFEHCGcFD9BFeSx6ioh4MFXel8xBsymkJ1oYY8QocZGm0af5JT3pywRbO1C_BKlK5iyd0qOsTb1Z4Mw/s72-w493-h508-c-no/Redalpha-blubeta.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-5133206788756694507</guid><pubDate>Sat, 08 Jun 2013 22:01:00 +0000</pubDate><atom:updated>2013-06-21T09:58:55.199-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">ZFPM1</category><title> A DNA-binding protein GATA1 with a biological unit FOG1 Zinc finger Protein molecule is 'synergistic' to the region of the X chromosome which occurred at a exome splice site X-linked involving the GATA-type zinc finger domain.</title><description><div align="justify">
<span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">The
human <a href="http://www.ncbi.nlm.nih.gov/pubmed/1990287?dopt=Abstract">ERYF1</a>
gene (summary) </span><span data-mce-style="font-size: 13px;
line-height: 19px; color: #333333; font-family: Georgia,'Times
New Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><a href="http://www.ihop-net.org/UniPub/iHOP/pm/6525684.html?nr=2&amp;pmid=2320113">NF-E1</a>
DNA-binding protein <a href="http://www.ncbi.nlm.nih.gov/pubmed/18930124">GATA1</a>,
locus <a href="http://atlasgeneticsoncology.org/Genes/GATA1ID40689chXp11.html">Xp11.23</a>
[</span><a href="http://www.ncbi.nlm.nih.gov/gene?db=gene&amp;cmd=retrieve&amp;list_uids=2623"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">§§</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">;&nbsp;</span><a href="http://www.ihop-net.org/UniPub/iHOP/gs/88555.html?ID=124833"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">†</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">] containing <a href="http://www.ncbi.nlm.nih.gov/pubmed/2300555">2 'finger'</a>
motifs referred to as ERYF1 of an erythroid-specific gene. The
cDNA for the human ERYF1 gene is almost identical to that of
chicken and mouse <a href="http://www.ncbi.nlm.nih.gov/pubmed/2104960">GATA1</a>
gene consisting of 2 zinc finger' type motifs its activator
domain contains the binding sites for protein GATA1 and the <a href="http://www.ncbi.nlm.nih.gov/pubmed/10523648?dopt=Abstract">CACCC</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/10523648?dopt=Abstract">HS2</a>)^
region. FOG is specific to this complex corresponding cDNA and
interacts with element in the beta-globin&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/7499351?dopt=Abstract" title="human beta globin gene (beta IVS2)"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">IVS2</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;promoter
from&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/19447160?dopt=Abstract" title="gamma-globin mRNA and hemoglobin"><span data-mce-style="font-size: 13px;
line-height: 19px; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">hemoglobin</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;protein
subunit promoters (</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/16151640?dopt=Abstract" title="pro-B cell line, FL5.12. Alpha globin"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">alpha</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">-chain <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10846126.html?nr=3&amp;pmid=16428815">gene</a>‡,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19447160?dopt=Abstract">gamma</a><span style="font-size: small;">,</span> <a href="http://www.ncbi.nlm.nih.gov/pubmed/15358512?dopt=Abstract">epsilon</a>^
and&nbsp; (</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/9553070?dopt=Abstract" title="human embryonic (epsilon) globin gene"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">embryonic</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">), </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> a switch from <a href="http://www.ncbi.nlm.nih.gov/pubmed/2467208">fetal to
adult</a> haemoglobin </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">-or- </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><a href="http://www.ncbi.nlm.nih.gov/pubmed/2017165?dopt=Abstract">relative</a>
to the T to C substitution of fetal hemoglobin (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15613485">HPFH</a>),
implications for fetal hemoglobin - </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><a href="http://www.ncbi.nlm.nih.gov/pubmed/8529108?dopt=Abstract">HbF</a>``)
distinct for <a href="http://www.ncbi.nlm.nih.gov/pubmed/16540647?dopt=Abstract">erythroid</a>
(<a href="http://www.ihop-net.org/UniPub/iHOP/pm/11312018.html?nr=6&amp;pmid=16540647">INHBA</a>)
and megakaryocyte differentiation, in vertabrate though, the <a href="http://www.ncbi.nlm.nih.gov/pubmed/19654328">N- and C</a>-terminal
thirds of the human protein.&nbsp;</span><span data-mce-style="font-size:
13px; line-height: 19px; color: #333333; font-family:
Georgia,'Times New Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> Friend of
GATA-1, </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18665838?dopt=Abstract">FOG1</a></span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">; ZFPM1, zinc finger protein region a&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/14715908?dopt=Abstract" title="chromatin confers coregulation"><span data-mce-style="font-size: 13px;
line-height: 19px; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">coregulator</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;of the
GATA1 associations facilitates a&nbsp;</span><a href="http://www.ihop-net.org/UniPub/iHOP/pm/12232599.html?nr=7&amp;pmid=16980610" title="expression of GATA-1 and GATA-2"><span data-mce-style="font-size: 13px;
line-height: 19px; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">chromatin</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp; locus
control region</span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">-</span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">(<a href="http://www.ncbi.nlm.nih.gov/pubmed/17196618?dopt=Abstract">LCR</a>)</span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> </span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">modifying <a href="http://www.ncbi.nlm.nih.gov/pubmed/19114560?dopt=Abstract">proximity</a>
fetal to adult (</span><span data-mce-style="font-size: 13px;
line-height: 19px; color: #333333; font-family: Georgia,'Times
New Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19447160">gamma</a>)
</span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px;
line-height: 19px; color: #333333; font-family: Georgia,'Times
New Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">to</span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> <a href="http://www.ncbi.nlm.nih.gov/pubmed/18586828">beta
globin</a></span><span data-mce-style="font-size: 13px;
line-height: 19px; color: #333333; font-family: Georgia,'Times
New Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> including the erythroid (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12556498?dopt=Abstract">EKLF
</a></span><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">krüpple-like</span><span data-mce-style="font-size: 13px;
line-height: 19px; color: #333333; font-family: Georgia,'Times
New Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">) factor DNAse1^ </span><span data-mce-style="font-size:
13px; line-height: 19px; color: #333333; font-family:
Georgia,'Times New Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18586828?dopt=Abstract">histone</a>&nbsp;</span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> <a href="http://www.ncbi.nlm.nih.gov/pubmed/21609963">hypersensative</a></span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> </span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">site </span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">(<a href="http://www.ncbi.nlm.nih.gov/pubmed/17196618?dopt=Abstract">HS</a>)^
</span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">locus (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11867225">LCR</a>)
GATA1 establishes, facilitates interactions</span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> with
immunoprecipitation, cross-regulatory roles <a href="http://www.ncbi.nlm.nih.gov/pubmed/12857954?dopt=Abstract">reduced
histone</a>, acetylation and antagonism (EKLF-<a href="http://www.ncbi.nlm.nih.gov/pubmed/12724402">FlI-1</a>)
mechanisms. <a href="http://www.ncbi.nlm.nih.gov/pubmed/11023493">PU.1</a>
- of the Ets family is '<a href="http://www.ncbi.nlm.nih.gov/pubmed/9230307">synergistic</a>' to the major basic
protein, (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12202480">MBP</a>)
handles <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13586788.html?nr=5&amp;pmid=19165316">bistability</a>
in the erythroid-'<a href="http://www.ncbi.nlm.nih.gov/pubmed/19825991">myeloid
switch</a> </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">« </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">directed by <a href="http://www.ncbi.nlm.nih.gov/pubmed/16861236">PU.1</a>,'
influenced <a href="http://www.ncbi.nlm.nih.gov/pubmed/15784168?dopt=Abstract">DNA</a>
binding and is&nbsp; involved with <a href="http://www.ncbi.nlm.nih.gov/pubmed/16428815?dopt=Abstract">MZF-1</a>
(myeloid zinc finger 1), it interacts with the 'C-terminal
zinc finger « (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16861236?dopt=Abstract">CF</a>)' of GATA1. A <a href="http://www.ncbi.nlm.nih.gov/pubmed/12576332?dopt=Abstract">bipotential</a>
function in multiple contexts (</span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><a data-mce-href="http://www.ncbi.nlm.nih.gov/pubmed/12202480?dopt=Abstract" href="http://www.ncbi.nlm.nih.gov/pubmed/12202480?dopt=Abstract">erythroid</a>
versus</span><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> </span><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17383723?dopt=Abstract" title="important biologic characteristics of
leukemic cells">megakaryocytic</a>
myeloid cells, GATA1 switches myeloid cell fate into <a href="http://www.ncbi.nlm.nih.gov/pubmed/12045236?dopt=Abstract">eosinophils</a></span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">)° as two&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/19654328?dopt=Abstract"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">multi-protein</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;complexes
when </span><span data-mce-style="font-size: 13px;
line-height: 19px; color: #333333; font-family: Georgia,'Times
New Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">segregated into two types (factor <a href="http://www.ncbi.nlm.nih.gov/pubmed/18780834?dopt=Abstract">P-TEFb</a>)
</span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">one of the
characteristics of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8410094.html?nr=7&amp;pmid=10783395">(TAL-1</a>,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19941826">T-cell
acute</a>-) leukemic (SCL) <a href="http://www.ncbi.nlm.nih.gov/pubmed/12239153">stem</a>
cells is both</span><span data-mce-style="font-size: 13px;
line-height: 19px; color: #333333; font-family: Georgia,'Times
New Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> types in circulating blood, for&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/8562972?dopt=Abstract"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">both</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;the
downregulation of GATA-1 and with the upregulation of&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/12432220?dopt=Abstract"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">GATA-2</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> <span style="font-size: small;">(<a href="http://www.ncbi.nlm.nih.gov/pubmed/15138998?dopt=Abstract">3q21</a>)°
that </span></span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><span style="font-size: small;">CD34␠
</span></span></span><span style="font-size: small;"><span data-mce-style="font-size:
13px; line-height: 19px; color: #333333; font-family:
Georgia,'Times New Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><span style="font-size: small;">has the t</span>ranscription
capacity <a href="http://www.ncbi.nlm.nih.gov/pubmed/8353273?dopt=Abstract">observed</a>
in <a href="http://www.ncbi.nlm.nih.gov/pubmed/12432220?dopt=Abstract">immature</a>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9012505?dopt=Abstract">hematopoietic
</a>progenitor <a href="http://www.ncbi.nlm.nih.gov/pubmed/16728561?dopt=Abstract">stem</a>
cells, specific regions of each (Sequencing of <a href="http://www.ncbi.nlm.nih.gov/pubmed/12483298?dopt=Abstract">FOG1</a>
with <a href="http://www.ncbi.nlm.nih.gov/pubmed/15659837?dopt=Abstract">GATA1</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/16980610?dopt=Abstract">GATA2</a>),
requires&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/10364157?dopt=Abstract"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">intact DNA</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">-binding
domains.&nbsp; The C-terminal zinc finger (CF)&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/16861236?dopt=Abstract"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">basic tail</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;shares,
in an&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/12202480?dopt=Abstract"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">antagonistic</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;fashion '<a href="http://www.ncbi.nlm.nih.gov/pubmed/16840187">mutation</a><a href="http://www.ncbi.nlm.nih.gov/pubmed/16840187">s</a>' in
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12649131">exon</a>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15916804">2</a>‡
(-<a href="http://www.ncbi.nlm.nih.gov/pubmed/20064153">GATA1s</a>
is a <a href="http://www.ncbi.nlm.nih.gov/pubmed/14744791">shorter</a>
GATA1 isoform (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12172547">sf</a>)
found </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">in <a href="http://www.ncbi.nlm.nih.gov/pubmed/14512321">DS</a>
(Down syndrome) a transient leukemia (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12586620">TL</a>)-<a href="http://www.ncbi.nlm.nih.gov/pubmed/20679399">AMKL</a>)
that lacks the <a href="http://www.ncbi.nlm.nih.gov/pubmed/12649131">transactivation</a>'"
domain, in <a href="http://www.ncbi.nlm.nih.gov/pubmed/12432220?dopt=Abstract">cis-acting</a>&nbsp;</span><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">GATA <a href="http://www.ncbi.nlm.nih.gov/pubmed/15265794">element</a>,
</span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">identification
requires intact long forms (lf) of NF-E1 DNA-binding domain.
Two novel&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/2320112?dopt=Abstract"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">zinc-finger</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;domains
demonstrate that the&nbsp;</span><a href="http://www.labome.com/review/gene/human/GATA-1-antibody-all-methods.html"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">NFE1</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;gene
cDNA-binding protein is assigned the human locus located in
Xp11.23, required for normal megakaryocytic and erythroid
development. A mutation in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/12483298">FOG1</a>-GATA1&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/12483298?dopt=Abstract"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">N-terminal</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;zinc
finger (N-finger of leukemic cell (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19924028">Igs</a>)-immunoglobulins)
or lacking the&nbsp;</span><a href="http://www.ihop-net.org/UniPub/iHOP/pm/12111622.html?nr=6&amp;pmid=16628190"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">N-terminal</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;activation
the binding of Fog1 and the N-finger in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/14691578">DNA face</a>
of Fog1, with non X-linked associations (16q</span><a data-mce-href="http://www.ncbi.nlm.nih.gov/pubmed/8683991?dopt=Abstract" href="http://www.ncbi.nlm.nih.gov/pubmed/8683991?dopt=Abstract" title="presence of&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br
/&gt; chromosome 16q22 abnormalities">22</a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">-<a href="http://www.ncbi.nlm.nih.gov/pubmed/12483298?dopt=Abstract">24</a>)
if different clinical entities linking to <a href="http://www.ncbi.nlm.nih.gov/pubmed/11809723">X-linked</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/11724781">X is</a> any <a href="http://www.ncbi.nlm.nih.gov/pubmed/10700180">amino</a> acid, <a href="http://www.ncbi.nlm.nih.gov/pubmed/11675338">substitution</a> in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/2300555">DNA-binding</a> <span style="font-size: small;">(Nf) </span>region) thrombocytopenia in males-(<a href="http://www.ncbi.nlm.nih.gov/pubmed/17209061?dopt=Abstract">XLTT</a>*'-GATA1)
with <a href="http://www.ncbi.nlm.nih.gov/pubmed/15208642?dopt=Abstract">anemia</a>
low platelet levels traces discernable steps as <a href="http://www.ncbi.nlm.nih.gov/pubmed/17132730?dopt=Abstract">embryos</a>
with a <i><a href="http://www.ncbi.nlm.nih.gov/pubmed/17132730">defect</a></i>
in forming erythroid burst-forming units <i><a href="http://faroucheombre.wordpress.com/2013/03/03/spectrin-alpha-erythrocytic-1-isoform-gata1-strand-b-cdna-containing-the-ef-hand-domain-of-p17678-gata3-and-a-heterodimer-assembly-complexed-with-transmembrane-scf-neural-cell-slc4a1-band-3-aspect/">BFU-E</a></i>
☞ (<i>summary - of all DNA that is transcribed which occurred
at a </i><i><a href="http://www.ncbi.nlm.nih.gov/pubmed/22706301">exome
splice</a></i><i> site</i>), to Minimal residual disease <a href="http://www.ncbi.nlm.nih.gov/pubmed/15916804?dopt=Abstract">MRD</a>
- (cancer, "preleukemia" - myeloproliferative disorder (<a href="http://www.ncbi.nlm.nih.gov/pubmed/14636651">TMD</a>),
</span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><a href="http://www.ncbi.nlm.nih.gov/pubmed/15390312?dopt=Abstract">myeloid</a>
leukaemia-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9264003.html?nr=7&amp;pmid=12417757">AML</a>,
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17579412?dopt=Abstract">SCL</a>°
and megakaryocytic <a href="http://www.ncbi.nlm.nih.gov/pubmed/16492768?dopt=Abstract">AMKL</a>)
the GATA1-<a href="http://www.ncbi.nlm.nih.gov/pubmed/22164220">HS2</a>-modified
vector allowed remission in blood component and <a href="http://www.ncbi.nlm.nih.gov/pubmed/18191920?dopt=Abstract">heme</a>
(Protoporphyrinogen) at the <a href="http://www.ncbi.nlm.nih.gov/pubmed/21041734?dopt=Abstract">seventh</a>
GATA site in <a href="http://www.ncbi.nlm.nih.gov/pubmed/18191920?dopt=Abstract">exon
1</a>*'/<a href="http://www.ncbi.nlm.nih.gov/pubmed/15123623?dopt=Abstract">intron-7</a>°
as a cofactor involving 6 non-coding exons and transactivation
by <a href="http://www.ncbi.nlm.nih.gov/pubmed/16225938">USF1
and GATA1</a>. A DNA Cytosine mechanism ara-c (</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/14744791?dopt=Abstract"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">Arabinofuranosylcytosine</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">) short (sf)
and (lf) long forms is used to kill these&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/15687366"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">megakaryocytic</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;cancer
cells; clarifies that <a href="http://www.ncbi.nlm.nih.gov/pubmed/19411634?dopt=Abstract">GATA-1</a>
controls genes that manipulate the cell cycle and apoptotic
cell death underlying <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10742353.html?nr=1&amp;pmid=16107690">normal</a>
(PI3K) and <a href="http://www.ncbi.nlm.nih.gov/pubmed/15208642?dopt=Abstract">pathologic</a>
(PU.1) erythropoiesis - 'differentiation' is </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">(FKBP12) </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">lacking <a href="http://www.ncbi.nlm.nih.gov/pubmed/17332341">basal
expression</a>'" in contrast</span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> to <a href="http://www.ncbi.nlm.nih.gov/pubmed/10381501?dopt=Abstract">Bcl</a>
when Bcl-X(L) is </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">cleaved by <a href="http://www.ncbi.nlm.nih.gov/pubmed/17167422?dopt=Abstract">caspases</a><span style="font-size: small;">.</span> <span style="font-size: small;">A</span>nti-apoptotic <a href="http://www.ncbi.nlm.nih.gov/pubmed/17167422?dopt=Abstract">Hsp70</a>
protects GATA-1 during the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8529108?dopt=Abstract">switching</a>ª
of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/20410505">erythroleukemia</a>␠
cells that fail to complete <a href="http://www.ncbi.nlm.nih.gov/pubmed/10381501?dopt=Abstract">maturation</a><span style="font-size: small;">, </span>proteolysis undergoing cell death in both
the <a href="http://www.ncbi.nlm.nih.gov/pubmed/2320113?dopt=Abstract">megakaryocytic</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/17167422?dopt=Abstract">erythroid</a>
cells, established that phospholipase C (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12031797?dopt=Abstract">PLC</a>)ª
is involved in the signalling pathway</span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> </span><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">(PI3K)/<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10742353.html?nr=1&amp;pmid=16107690">Akt</a>
equally expressed 'as' a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13012602.html?nr=8&amp;pmid=18665838">probable</a>
negative <a href="http://www.ncbi.nlm.nih.gov/pubmed/10438528?dopt=Abstract">FOG</a>
regulator<span style="font-size: small;">, interacts with the <a href="http://www.ncbi.nlm.nih.gov/pubmed/12724402?dopt=Abstract">PU.1</a>
related <a href="http://www.ncbi.nlm.nih.gov/pubmed/12556498?dopt=Abstract">Ets</a>
domain of&nbsp; glycoprotein <a href="http://www.ncbi.nlm.nih.gov/pubmed/12359731">(GP)(1)
VI</a>*' by expressing thrombopoietin activation of
platelets in megakaryocytic cell lines, expressing both </span></span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><span style="font-size: small;"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17383723?dopt=Abstract">Fli-1</a></span></span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><span style="font-size: small;"> and GATA-1.</span> A weak loss of&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/11418466?dopt=Abstract"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">aspartate</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">&nbsp;in the
amino-N-terminal zinc finger (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19924028">Nf</a>) loop GATA1's&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/11809723"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">three</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"> base
substitution <a href="http://www.ncbi.nlm.nih.gov/pubmed/19633202">mutations</a>
results in <a href="http://www.ncbi.nlm.nih.gov/pubmed/19965638">incomplete</a>
megakaryocyte/platelet maturation as assessed by the DNA
demethylating agent&nbsp;</span><a href="http://www.ncbi.nlm.nih.gov/pubmed/7689871?dopt=Abstract"><span data-mce-style="font-size: 13px; line-height: 19px;
font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">5-azacytidine</span></a><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">, activity in
the presence of <a href="http://www.ncbi.nlm.nih.gov/pubmed/22110660">ara-c</a>
which occurred at<span style="font-size: small;"> <span style="font-size: small;">a</span></span>
<i>exome</i> splice site<span style="font-size: small;">.</span> GATA1 appears
to interact with RNA-mediated basal expression against these
pathways, associated protein or mammalian targets</span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><span style="font-size: small;"> </span>clarified that the <a href="http://www.ncbi.nlm.nih.gov/pubmed/10523648">basal
transcription</a> apparatus with <a href="http://www.ncbi.nlm.nih.gov/pubmed/12490288">transcription
factors</a>`` appears to interact with an HS2 region mutated
in its GATA motif </span></span><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px; color:
#333333; font-family: Georgia,'Times New Roman','Bitstream
Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;">-<a href="http://www.ncbi.nlm.nih.gov/pubmed/20064153">GATA1s</a>
a <a href="http://www.ncbi.nlm.nih.gov/pubmed/14744791">shorter</a>
GATA1 isoform. </span></span>&nbsp; </span></span></div>
<span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><span style="font-size: small;"><span class="gphoto-photocaption-caption"></span>
</span></span></span><span style="font-size: small;"><span data-mce-style="font-size:
13px; line-height: 19px; color: #333333; font-family:
Georgia,'Times New Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><span style="font-size: small;"><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"></span></span></span> </span></span>
<br />
<br />
<table align="center" border="0" cellpadding="2" cellspacing="2" style="width: 50%px;">
<tbody>
<tr>
<td align="center" valign="middle"><span style="font-size: small;"><span data-mce-style="font-size: 13px; line-height: 19px;
color: #333333; font-family: Georgia,'Times New
Roman','Bitstream Charter',Times,serif;" style="color: #333333; font-family: Georgia, 'Times New Roman', 'Bitstream Charter', Times, serif; line-height: 19px;"><a href="https://picasaweb.google.com/100787464692550241934/GATA1LocusXp112302#5886493570424066338"><img align="right" alt="sequence [AT]GATA[AG] upper left" border="0" height="133" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjNLGrxGiob2X55EpjU3v2vy3VU76ltNQx_JA6Tjwk9CTThRHMNfYcGp326ogIPzjdwCmMKGUXZSmJi6e9KMdMDmzOLdXvgL9fQqulKnzmo16XgJdhWcezIP2_decFRqLEtUxTrag/s200/1yoj-a-3vd6.png" width="200" /></a></span></span></td>
<td align="center" valign="middle"><a href="https://picasaweb.google.com/100787464692550241934/GATA1LocusXp112302#5886522945211393986"><img alt="4 Angstroms of PDB 1GAT in this 4 Angstrom PDB 3VD6 r" border="0" height="149" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjRU7yYwynnZAz5wWnV5tH1E1nKxQo5HsIzstXJ4tp0biW3MSYr_Fx_C-CogPjrhd0X9bWOEn_6ZLB11fcvA0ZWpNlx3juVW0Cnu1abdrk3GceBRmfRMTZFRtPDT7qobRN_Ec2Fig/s200/1gat-3vd6-1yoj-a.png" width="200" /></a></td>
</tr>
<tr>
<td align="justify" valign="top"><small><span class="gphoto-photocaption-caption">Figure 1: PDB 1y0j-a&nbsp; (MMDB ID: <a href="http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?Dopt=s&amp;uid=31470">31470</a>; Mus musculus A). superimpos<wbr></wbr>ed on -3vd6 4 Angstrons ogf DNA, <a href="http://atlasgeneticsoncology.org/Genes/GATA1ID40689chXp11.html">six</a> finger Znf DNA potential&nbsp;</span></small><small><span class="gphoto-photocaption-caption">('X is any amino acid, substitution')</span></small><small><span class="gphoto-photocaption-caption"> to&nbsp; co-ordinat<wbr></wbr>e <a href="http://www.ncbi.nlm.nih.gov/pubmed/11675338">C2H2</a><a href="http://www.blogger.com/null"> znf</a>-1y0j-B (Protein chain B, </span></small><small><span class="gphoto-photocaption-caption"><small><span class="gphoto-photocaption-caption">MMDB ID: <a href="http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?Dopt=s&amp;uid=31470">31470</a></span></small>), and the original structure of <a href="http://pir.georgetown.edu/cgi-bin/ipcSF?id=PIRSF003027">DNA_GATA1</a>_HUMA<wbr></wbr>N PDB: 1Y0J_unipr<wbr></wbr>ot/P15976 ProteinMod<wbr></wbr>elPortal P15976. / PDB: _3vd6; Names: GATA1 :ERYF1, GF1 with the consensus seqence [AT]GATA[A<wbr></wbr>G] upper left DNA fragment seen in <a href="http://vixra.org/abs/1302.0078">SPNA1</a>&nbsp; DNA binding&nbsp; an essential determinan<wbr></wbr>t of specific GATA 1 Fig.2 binding, wraps around into the minor groove seen as the lower RNA representi<wbr></wbr>ng PDB 1GAT in this single PDB 3VD6 rendering with PDB: 1YOJ- element-A DNA-bindin<wbr></wbr>g protein GATA1 RNA Mus musculus eg. the red tail is the assumed Adjacent GATA DNA binding of PDB: 3DFV (Structure<wbr></wbr>|id=PIRSF0<wbr></wbr>03027)</span></small></td>
<td align="justify" valign="top"><small><small><span class="gphoto-photocaption-caption"></span><big><span class="gphoto-photocaption-caption">Figure 2: 4 Angstroms of PDB
1GAT in this 4 Angstrom PDB 3VD6 rendering of 1YOJ-A RNA, modifyed to
complete Fig.1. both are manually defined selected to provide The two
zinc fingers functional<wbr></wbr>ity that contains <a href="http://www.uniprot.org/uniprot/P17679#section_comments">2 GATA-type</a> zinc fingers
(See; Figure 3: FOG1_B Zinc finger Protein (MMDB ID: 31470) has an
absence of the PDB: 1YOJ- element- A DNA-bindin<wbr></wbr>g protein GATA1 RNA thereby The two (Znf) fingers are functional<wbr></wbr>ly distinct bridging two separate DNA fragments (Structure<wbr></wbr>|ids=<a href="http://pir.georgetown.edu/cgi-bin/ipcSF?id=PIRSF003027">PIRSF</a><wbr></wbr><a href="http://pir.georgetown.edu/cgi-bin/ipcSF?id=PIRSF003027">003027</a>).</span></big></small></small></td>
</tr>
</tbody>
</table>
<br />
<table align="center" border="0" cellpadding="2" cellspacing="2" style="width: 50%px;">
<tbody>
<tr>
<td align="center" valign="middle"><div class="separator" style="clear: both; text-align: center;">
<a href="https://picasaweb.google.com/100787464692550241934/GATA1LocusXp112302#5886502378937130066" style="clear: left; float: left; margin-bottom: 1em; margin-right: 1em;"><img align="right" alt="gata1 biological unit ara-C (Arabinofuranosylcytosine) Cytarabine (CID_6253; SDF File (.sdf)) = ara-c (MMDB ID: 23600 PDB ID: 1P5Z)" border="0" height="190" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh9gvOyPZkNJF2JbqrRW1CMuj0CuTRj1SzJaUzRhK6_oolSLrydTpSFNM5KcnSEzr5BgV9riP3-R4RyJOKZ_RLHLH96PHdGpSsHFfskZ9R8mwU6mWaX5Vi5uPjw8o0u4ULvaphX-g/s200/1y0ja-b-cid-2fap-a.png" width="200" /></a></div>
</td>
<td align="center" bgcolor="#663366" valign="middle"><a href="https://picasaweb.google.com/100787464692550241934/GATA1LocusXp112302#5884993449543750914"><img alt="Swiss PDB-viewer SPDBV" border="0" height="144" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhrODiH26c2oIHXY6YEYtOykqyI7w-vFWPI-q70Zr1msPjoP9ZZsj2BEJxL3UFywtFFooFUkniM6e-xfhskGm4n4YQbmoSAypoRlRNw0Coh3iyPACISBvSw8MK9NSzundcve0iW6A/s200/1yojimg2.png" width="200" /></a></td>
</tr>
<tr>
<td align="justify" valign="top"><small><span class="gphoto-photocaption-caption">Figure 3: This incorporat<wbr></wbr>es PDB 1YOJ_A_B the Sructural basis of GATA1_A erythroid trascripti<wbr></wbr>on factor and FOG1_B Zinc finger Protein (MMDB ID: 31470; Mus musculus A- Drosophila melanogast<wbr></wbr>er-B) interactio<wbr></wbr>ns with Human components of&nbsp; Complexed With a molecue biological unit ara-C (Arabinofu<wbr></wbr>ranosylcyt<wbr></wbr>osine)
Cytarabine (CID_<a href="http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=6253">6253</a>; SDF File (.sdf)) = ara-c (MMDB ID: 23600 PDB ID:
1P5Z) short (sf) and (lf) long forms&nbsp; 2 'finger' motifs of GATA 1 (lf)
and FOG (sf) with&nbsp; (FKBP12) basal expression PDB 2FAP_compo<wbr></wbr>nent A represente<wbr></wbr>d as the ligand surface partially framing the FOG heterodime<wbr></wbr>r prevents formation of DNA component PDB: 1GAT-cDNA when lacking basal expression<wbr></wbr>. This apparatus appears to interact with an HS2 region mutated in its GATA motif.</span></small></td>
<td valign="top"><div align="center">
<small>Zinc fingers as protein recognition motifs: structural basis for the GATA-1/Friend of GATA interaction</small><big><br />
<br />
</big><small>Rendered with Swiss PDB-viewer SPDBV</small><big><br />
</big><small>about a horizontal axis of the Structures Image in the plane of the page</small><big><br />
</big><small>http://www.rcsb.org/pdb/explore/explore.do?pdbId=1Y0J</small><big><br />
</big><small>Refernce:</small><big><br />
</big><small>Mol Cell Biol. 2005 Feb;25(4):1215-27.</small><big><br />
</big><small>GATA1 function, a paradigm for transcription factors in hematopoiesis.</small><big><br />
</big><small>PMID:</small><big><br />
</big><small>&nbsp;&nbsp;&nbsp; 15684376</small><big><br />
</big><small>Swiss-pdb viewer software (http://www.expasy.org/spdbv/)</small></div>
<br /></td>
</tr>
</tbody>
</table>
<br />
<br /><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2013/06/a-dna-binding-protein-gata1-with.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjNLGrxGiob2X55EpjU3v2vy3VU76ltNQx_JA6Tjwk9CTThRHMNfYcGp326ogIPzjdwCmMKGUXZSmJi6e9KMdMDmzOLdXvgL9fQqulKnzmo16XgJdhWcezIP2_decFRqLEtUxTrag/s72-c/1yoj-a-3vd6.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-352364237483230827</guid><pubDate>Sun, 03 Mar 2013 20:10:00 +0000</pubDate><atom:updated>2013-03-03T10:10:23.125-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">phosphatidylinositol</category><category domain="http://www.blogger.com/atom/ns#">slc4a1</category><title>Spectrin alpha, erythrocytic 1 isoform GATA1 strand B cDNA containing the EF hand domain of P17678- GATA3 and a heterodimer assembly complexed with transmembrane SCF neural cell (Slc4a1) band 3 aspect of the alpha complex analogue Spna1.</title><description><div style="text-align: justify;">
<a href="https://picasaweb.google.com/100787464692550241934/SPNA1ProteinP17687?authkey=Gv1sRgCNSY7_bgz7G14gE#5850930310069706898"><img align="right" alt="SPNA1 PDB:1OWA Protein PDB: 1HYN Band 3, and GATA1 DNA strand B PDB:1GAT" border="0" height="176" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgFWK6Yqc4EkMqBubEVczpnj14fX3tPQMNLlfwoHEZWdfFkEP8Ous1C8e5rMSLaMXDX7G3gZq_vp7K7nS79i3AkvfHKQy9dpVgIyGi3h02tOJTVoo4z1N9AKtd-QsUYPajtKXHB0w/s576/1owa-dne-b-p17678.png" title="SPNA1 PDB:1OWA Protein PDB: 1HYN Band 3, and GATA1 DNA strand B PDB:1GAT" width="200" /></a> Spectrin alpha, erythrocytic 1 [ Mus musculus ] [<a href="http://www.ncbi.nlm.nih.gov/gene/20739">§§</a>;
<a href="http://www.ihop-net.org/UniPub/iHOP/gs/124833.html;jsessionid=9607AE25786909D83E357E4F6CCCD2F3.tc1?ID=124836">†</a>,
‡] anchored to the cytoplasmic face of the plasma membrane via
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/7267299.html?nr=2&amp;pmid=1385865" title="erythroid ankyrin, alpha-spectrin, and beta-spectrin"> ankyrin</a>, which binds to <a href="http://faroucheombre.wordpress.com/2013/02/12/spnb2-protein-family-architecture-perspective-and-differences-in-complex-form-of-exonintron-usage/" title="a nonerythroid spectrin analogue alpha Spna-1 see Fig. 1">beta-spectrin</a> and is anchored to the
cytoplasmic face affecting the conversion of spectrin <a href="http://www.ncbi.nlm.nih.gov/pubmed/11154235" title="spectrin dimer- to-tetramer conversion">dimers</a> to
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12393645" title="Tetramers of alpha-spectrin heterodimers"> tetramers</a> erythroid alpha- or <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1772088.html?nr=6&amp;pmid=10037687" title="two binding sites for GATA-1 and one site for CACCC-related proteins">beta-spectrin</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/10233879?dopt=Abstract" title="viral enhancer in the U3 region of the 3' LTR propagated to the 5' LTR">Retrotransposon</a> long terminal repeat 3' LTR <a href="http://www.ihop-net.org/UniPub/iHOP/pm/7527167.html?nr=7&amp;pmid=1571559" title="alpha 2 and alpha 1 are equal in the embryo and subsequently shift">alpha 1</a> and the 5' LTR <a href="http://www.rcsb.org/pdb/explore.do?structureId=2fot" title="human alphaII-spectrin">alpha 2</a> gene sequence <a href="http://www.rcsb.org/pdb/explore.do?structureId=1gat" title="erythroid transcription factor GATA-1 and its cognate DNA site">GATA</a> factor,&nbsp; <a href="http://www.ncbi.nlm.nih.gov/pubmed/2885153?dopt=Abstract" title="a c-DNA clone of the mouse alpha-spectrin">cDNA</a> contributes <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1403319.html?nr=6&amp;pmid=9514155" title="a promoter 8 kb upstream to the erythroid exon I of mouse GATA-1 mRNA">one strand</a> a single gene that encodes the <a href="http://www.ncbi.nlm.nih.gov/pubmed/3000887" title="characterized as the site of the molecular defect">alpha-subunit</a> limiting the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8195289" title="lacking in the (hbd) cells irregular shape and fragility in culture">lateral</a> mobility of overall membrane glycolytic enzymes (GE) or membrane <a href="http://www.ncbi.nlm.nih.gov/pubmed/8195289" title="lateral mobility of integral membrane glycoproteins">glycoproteins</a> available to significantly modulate hemoglobin (Hb) in erythroid cells, <a href="http://www.ncbi.nlm.nih.gov/pubmed/10910904?dopt=Abstract" title="GATA factor complementary DNAs (cDNAs)">mediates</a> the
binding of the whole <a href="http://www.ncbi.nlm.nih.gov/pubmed/1385865" title="alpha-spectrin, beta-spectrin, and ankyrin">complex</a> to a transmembrane
protein&nbsp;ubiquitous neural <a href="http://www.ihop-net.org/UniPub/iHOP/pm/7085630.html?nr=10&amp;pmid=2055499" title="functions are anion transport, ankyrin binding, and apoptosis">band 3</a>, (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/6965435.html?nr=2&amp;pmid=2011587" title="performs the same functions as those of erythroid band 3">Slc4a1</a>) performs the same functions as that of erythroid glycolytic multienzyme (<a href="http://www.ncbi.nlm.nih.gov/pubmed/18698006" title="on the inner surface of human erythrocyte membranes">GE</a>) complexes on <a href="http://www.ihop-net.org/UniPub/iHOP/pm/6965435.html?nr=2&amp;pmid=2011587" title="Structural similarity of brain and erythroid band 3">band
3</a> via m<a href="http://www.ncbi.nlm.nih.gov/pubmed/6234993" title="six mutations occurring at three distinct loci (nb, ja, sph)">RNA</a>s for (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16728274?dopt=Abstract" title="EKLF-responsive regions">Ank1</a>) erythroid ankyrin and the function of various isoforms. <a href="http://www.ncbi.nlm.nih.gov/pubmed/10772878" title="RBCs with exposed PS phosphatidylserine does not correlate with thrombotic risk">Band 3</a> deficiency is used to
characterize the alpha-chain and the <a href="http://www.ncbi.nlm.nih.gov/pubmed/20585040" title="spectrin-actin-4.1R complex">Actin</a> binding in proteins containing the <a href="http://www.ncbi.nlm.nih.gov/pubmed/20585040" title="Spectrin and protein 4.1R crosslink F-actin called the EF domain">EF hand</a> domain and the
non-erythroid analogue <a href="http://lnwme.blogspot.com/2013/02/spnb2-protein-family-architecture.html" title="non-erythroid spectrin analogue to alpha Spna-1">Spnb2</a>
beta-spectrin (erythroid <a href="http://www.ncbi.nlm.nih.gov/pubmed/3186715?dopt=Abstract" title="the erythroid beta-spectrin gene. The brain alpha-spectrin (alpha-fodrin) gene">spectrin-like fodrin</a>
protein) subunits, cellular differentiation in erythroid alpha-spectrin mRNA <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9154532.html?nr=2&amp;pmid=11711537" title="target of an erythroid-enriched endoribonuclease (ErEN) 3-utr activity">alpha-globin</a> region <a href="http://www.ncbi.nlm.nih.gov/pubmed/10637233?dopt=Abstract" title="(3-UTR) from an erythroid-enriched, sequence-specific">3'-UTR</a> aspect of the alpha complex. And the retention of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13267317.html?nr=7&amp;pmid=17493269" title="for both competent and active genes during mitosis">DNase I</a>-sensitive active sites within the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10275380.html?nr=8&amp;pmid=14970235" title="three functional globin genes (5 UTR-zeta2-alpha2-alpha1-3 UTR)">human alpha</a>-globin† (SCF) complex information on M-phase in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13267317.html?nr=7&amp;pmid=17493269" title="mitotic chromosomes remained associated with its Spna1 binding sites">mitotic</a>
chromosomes cell nucleus which divides genetically into two identical cells through <a href="http://www.ncbi.nlm.nih.gov/pubmed/656625?dopt=Abstract" title="erythroid cells underwent two rounds of cell division">cell division</a> during <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10744187.html?nr=10&amp;pmid=15621811" title="AML1/ETO promotes the maintenance of physiologic differentiation">Cellular differentiation</a> in Embryonic Stem (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11420675?dopt=Abstract" title="described for primitive hematopoietic progenitors">ES</a>) cells in fact, all erythroid (RBC) <a href="http://www.ncbi.nlm.nih.gov/pubmed/2249770" title="NF-E1, a DNA-binding protein consensus motif WGATAR">cell-specific</a> genes have a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8126430.html?nr=3&amp;pmid=8164666" title="n erythroid, megakaryocyte, and mast cell lineages">WGATAR</a> sequence to <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10621565.html?nr=4&amp;pmid=15659837" title="GATA-1 mutations in the zinc fingers can cause deregulation">DNA</a> at the <a href="http://www.ncbi.nlm.nih.gov/pubmed/11012179?dopt=Abstract" title="GATA-1 is a central regulator in both the erythroid and megakaryocytes">consensus</a> motifs. Erythroid iron assimilation, intestinal iron
transport and erythroid <a href="http://www.ncbi.nlm.nih.gov/pubmed/2462936?dopt=Abstract" title="cell types that manifest a special requirement for iron">iron utilization</a> are the mechanisms
necessary for (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/7085630.html?nr=10&amp;pmid=2055499" title="homeostasis is a general physiologic process">homeostasis</a>) normal erythroid cells in Hemoglobin, or <a href="http://www.ihop-net.org/UniPub/iHOP/pm/425659.html?nr=7&amp;pmid=7492791" title="the immediate precursor of a normal erythrocyte assoc. w. spherocytosis">normoblastosis</a> compared to
iron deficiency anemia and linked to induction loci (<a href="http://www.ncbi.nlm.nih.gov/pubmed/3186715?dopt=Abstract" title="the inherited hemolytic anemias of mouse and man">spherocytosis</a> and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1247258.html?nr=9&amp;pmid=9373273" title="suggests kidney failure rather than the fibrotic heart lesions as the major cause of death">jaundice</a>) induced erythroid <a href="http://www.ihop-net.org/UniPub/iHOP/pm/11913117.html?nr=4&amp;pmid=14569985" title="those induced with Friend virus">burst</a> formation (BFU-E) of a mouse Hemoglobin deficit
(hbd) <a href="http://www.ihop-net.org/UniPub/iHOP/pm/5050452.html?nr=5&amp;pmid=2995992" title="strain of Friend virus (FV-P) causes a multistage erythroleukemia">erythroleukemia</a>.&nbsp; <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13222687.html?nr=2&amp;pmid=17412320" title="regulate the choice between erythroid and myelomonocytic fates">PU.1</a>
bears a resemblance to&nbsp; hemopoietic progenitors CFU-E/<a href="http://www.ihop-net.org/UniPub/iHOP/pm/7690964.html?nr=1&amp;pmid=8462658" title="granulocyte-macrophage progenitors [CFU-GM">CFU-GM</a>, and an 'RNA element' found
during hemopoietic stem cell factor (SCF) development inhibits the erythroid program
regulating the <a href="http://www.ncbi.nlm.nih.gov/pubmed/10205175?dopt=Abstract" title="cell lines representing the fetal/adult erythroid stage">switch</a>-of-<a href="http://www.ncbi.nlm.nih.gov/pubmed/7008862?dopt=Abstract" title="research on embryonic hemoglobins in humans">fetal</a> to <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13267317.html?nr=7&amp;pmid=17493269" title="both competent and active genes during mitosis">adult</a>† hemoglobin by binding to <a href="http://www.ihop-net.org/UniPub/iHOP/pm/7165213.html?nr=2&amp;pmid=1650452" title="suggested the following scheme of erythroid differentiation">GATA-1</a> motifs and the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1772088.html?nr=6&amp;pmid=10037687" title="suggesting that additional regulatory elements are required">CACCC</a>-binding motif were <a href="http://www.ihop-net.org/UniPub/iHOP/pm/696234.html?nr=4&amp;pmid=8806693" title="both of which are crucial for promoter activity in erythroid cells">essential</a> for activity, and inhibit the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8663555.html?nr=6&amp;pmid=11001896" title="GATA-1 and PU.1 were found to associate through DNA binding domain">DNA-binding</a> activities of <a href="http://www.ncbi.nlm.nih.gov/pubmed/7722440?dopt=Abstract" title="GATA-1 necessary for in vivo erythroid expression only">each other</a>^, in <a href="http://www.ncbi.nlm.nih.gov/pubmed/8570210?dopt=Abstract" title="expression of GATA-1 or the Epo receptor(EpoR)">Epo</a> the erythroid '<a href="http://www.ncbi.nlm.nih.gov/pubmed/6611199?dopt=Abstract" title="an erythroid colony-forming system stimulated by erythropoietin (1 unit/ml)">burst-forming</a> system (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/282663.html?nr=9&amp;pmid=7601257" title="restricted in its expression to the relatively mature cells">BFU-E</a>)' that recruit increased <a href="http://www.ncbi.nlm.nih.gov/pubmed/1174706?dopt=Abstract" title="model system for the study of erythroid cells">proliferation</a> of early erythroid cells, which <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10956520.html?nr=3&amp;pmid=15801171" title="fixation and storage required for such space biology experiments">lead</a> to '<a href="http://www.ncbi.nlm.nih.gov/pubmed/1059142?dopt=Abstract" title="Erythroid colonies could be produced without EPO">erythropoietin-independent</a>' erythropoiesis. Permanent <a href="http://www.ncbi.nlm.nih.gov/pubmed/6944438?dopt=Abstract" title="CFU-E reproducible production and isolation of Friend virus-induced erythroid cell lines">cell lines</a> can be <a href="http://www.ihop-net.org/UniPub/iHOP/pm/5353004.html?nr=3&amp;pmid=3455754" title="a reproducible model system this function continuously since 1981">established</a>. And unlike the suggested following scheme of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10621565.html?nr=4&amp;pmid=15659837" title="functional network GATA, PU.1, and CBP">CBP</a> also
coimmunoprecipitate from spectrin alpha, erythrocytic 1. The
erythroid specific&nbsp; D-Aminolevulinic acid (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/5393529.html?nr=1&amp;pmid=3080960" title="different features in hepatic and erythropoietic porphyrias">ALA</a>) synthase gene
specifies an erythroid-specific mitochondrially located
biosynthesis of the porphyrin <a href="http://www.ncbi.nlm.nih.gov/pubmed/1214110?dopt=Abstract" title="haem (British English) or heme">heme</a> cofactor, the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/7905160.html?nr=4&amp;pmid=8078893" title="loss of NF-e2 contributes to erythroleukemia progression">NF-E2</a> gene is essential for globin transcription, alpha and the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/22971.html?nr=3&amp;pmid=2263468" title="fragment spanning erythroid specific Spna1">region of</a> the human <a href="http://www.ncbi.nlm.nih.gov/pubmed/7499351?dopt=Abstract" title="utilized binding sites for the erythroid regulatory factor GATA-1">Beta
globin</a> (beta IVS2) are more common forms of the protein hemoglobin, in most
red blood cells (RBC) derived from haematopoietic stem cells (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8810389.html?nr=13&amp;pmid=11301110" title="differentiation of hematopoietic cells">SCF</a>). There are <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9524500.html?nr=8&amp;pmid=12149209" title="Two alternatively spliced SCF which differ">two</a>† forms, the latter newly formed
erythrocytes, known as <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12876532.html?nr=6&amp;pmid=18623629" title="induction of autophagy in erythroid cells">reticulocytes</a>
these induce mitochondrial autophagy, cell degradation of
cellular components. Early erythroid progenitors [BFU-Es]
stage express in blood volume <a href="http://www.ncbi.nlm.nih.gov/pubmed/444660?dopt=Abstract" title="three distinct modal populations of CFU-e">some erythropoietin</a> receptor (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/11243939.html?nr=16&amp;pmid=16089085" title="esponse to rhEPO during recovery from blood-loss anemia">Epo</a>R)&nbsp; in the
presence of only erythropoietin (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8810389.html?nr=13&amp;pmid=11301110" title="erythropoietin-stimulated erythroid colony growth">Epo</a>)
induces '<a href="http://www.ihop-net.org/UniPub/iHOP/pm/2412117.html?nr=4&amp;pmid=1167207" title="associated with a diminution of the normal marrow-peripheral blood barrie">increased</a>' signals for erythroid differentiation.&nbsp; When <a href="http://www.ihop-net.org/UniPub/iHOP/pm/710816.html?nr=4&amp;pmid=8810316" title="related to erythroid like-ANK-1 factor, EKLF">epsilon-globin</a> is no longer expressed <a href="http://www.ncbi.nlm.nih.gov/pubmed/9646181?dopt=Abstract" title="Hematopoiesis is the process by which">Hematopoietic</a> embryo stem cells (HSCs) can than be identified as
[BFU-Es] murine erythroid <a href="http://www.ncbi.nlm.nih.gov/pubmed/6679874?dopt=Abstract" title="Erythropoietin-responsive progenitor cells (CFU-E)">progenitors</a> in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/7536513?dopt=Abstract" title="myeloid progenitors on these cells were also allowed">CFU-E</a> Myeloid
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/6476568.html?nr=3&amp;pmid=2543869" title="ability to abrogate the growth factor requirements of hematopoietic progenitor cells">stage</a>, an assay derivative of the term <a href="http://www.ihop-net.org/UniPub/iHOP/pm/7330842.html?nr=12&amp;pmid=1552741" title="immunologically compatible as to allow for transplantation">syngeneic</a> cell-lines^ in the hematopoietic stem cells
colonies and lineages these functions perform to predict the mechanism that modulates <a href="http://en.wikipedia.org/wiki/Hematopoietic_stem_cell#Nomenclature_of_hematopoietic_colonies_and_lineages" title="Nomenclature of hematopoietic colonies and lineages">erythrocyte</a> alpha-spectrin and the function of various isoforms that comprise this gene however, supports up or downstream of this site the study of numerous molecular regulating mechanisms.</div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2013/03/spectrin-alpha-erythrocytic-1-isoform.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgFWK6Yqc4EkMqBubEVczpnj14fX3tPQMNLlfwoHEZWdfFkEP8Ous1C8e5rMSLaMXDX7G3gZq_vp7K7nS79i3AkvfHKQy9dpVgIyGi3h02tOJTVoo4z1N9AKtd-QsUYPajtKXHB0w/s72-c/1owa-dne-b-p17678.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-676971319108803222</guid><pubDate>Tue, 12 Feb 2013 19:41:00 +0000</pubDate><atom:updated>2013-02-12T10:42:57.451-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">beta2</category><category domain="http://www.blogger.com/atom/ns#">phosphatidylinositol</category><category domain="http://www.blogger.com/atom/ns#">SH3</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>Spnb2 protein family architecture perspective and differences in complex form of exon/intron usage </title><description><div style="text-align: justify;">
<a href="https://picasaweb.google.com/100787464692550241934/Spnb2?authkey=Gv1sRgCPi91ZzE8o_EKw#5844145206071853586"><img align="right" alt="Figure 3: Spnb2 instances of intron/exon usage" border="0" height="196" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiymo9KojJo8twPZUTpeSu7P-ybYvbMwpo8E0THUV5tUJRTJpe6IV8qLe04xUT2Y2KGSLTzBViqeE24B3Q0ibiAwsC1nwEvjSLe9rgTxcohEbEUtjcawn2ibgYtBPVyPopg8t1iZA/s470/1mph-1btn-1btn.pdb2.png" title="Figure 3: Spnb2 instances of intron/exon usage" width="200" /></a>Spectrin isoforms are <a href="http://www.wikigenes.org/e/ref/e/9593709.html" title="erythroid and nonerythroid cells">found in</a> erythroid and nonerythroid cells. Spectrin is a <a href="http://www.ncbi.nlm.nih.gov/pubmed/6389784?dopt=Abstract" title="an immunoreactive and structural analogue">component</a> (known as the postsynaptic density (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16452087" title="respond to neurotransmitter released from presynaptic axon terminals">PSD</a>)) for the maintenance of cell&nbsp; <a href="http://www.ncbi.nlm.nih.gov/pubmed/21566095" title="the main fibrous component of which is spectrin">cytoskeleton</a> shape&nbsp; the main fibrous component of which is spectrin of the erythrocyte membrane controlling <a href="http://www.ncbi.nlm.nih.gov/pubmed/22541060" title="the interaction with Smad proteins and β-2 Spectrin">Smad3</a>/<a href="http://www.ncbi.nlm.nih.gov/pubmed/15566516" title="Smad2 and Smad3 insufficiency leads to a loss of bile ducts">4</a> subcellular localization in <a href="http://www.ncbi.nlm.nih.gov/pubmed/15610403" title="(TGF)-beta signal transduction, and Smad4">TGFβ</a>/Smad signalling resulting in nuclear <a href="http://www.ncbi.nlm.nih.gov/pubmed/16884701" title="neuroepithelial stem cell phenotype">translocation</a>&nbsp; of activated <a href="http://www.ncbi.nlm.nih.gov/pubmed/15610403" title="roles of Smads 2 and 3 in transforming growth factor-beta">Smad4</a>. Nonerythroid brain spectrin (<a href="http://www.citeulike.org/user/dvdvcr63/article/11789116" title="the official name for mouse is Spnb2">Spnb-2</a> Beta-II spectrin), <a href="http://www.ncbi.nlm.nih.gov/pubmed/16288220" title="(ELF), a beta-Spectrin originally identified in endodermal stem/progenitor cells">Elf</a>, embryonic liver beta-<a href="http://www.ncbi.nlm.nih.gov/pubmed/9927192" title="beta-spectrin elf (embryonic liver beta-fodrin)">fodrin</a>, are a <a href="http://www.ncbi.nlm.nih.gov/pubmed/16650383" title="disrupts TGF-beta signaling through Smad3 and Smad4">stem cell</a> adaptor protein, [<a href="http://www.ncbi.nlm.nih.gov/gene/20742" title="Sptbn1 spectrin beta, non-erythrocytic 1 [ Mus musculus ]">§§</a>;
<a href="http://www.ihop-net.org/UniPub/iHOP/gs/124836.html?ID=92693">†</a>, <a href="http://www.uniprot.org/uniprot/Q62261#section_x-ref">‡</a>] )&nbsp; or beta- <a href="http://www.ncbi.nlm.nih.gov/pubmed/8219239?dopt=Abstract" title="DISCUSSION Abstract Full Text">fodrin</a> (gene band <a href="http://www.ncbi.nlm.nih.gov/pubmed/8406479?dopt=Abstract" title="identity with that of erythroid beta-spectrin">2p21</a>, SPTAN1- <a href="http://www.ncbi.nlm.nih.gov/pubmed/9551868" title="fodrin (betaSpIIsigmaI) Elf1">betaSpIIsigmaI</a>) produces the <a href="http://www.ncbi.nlm.nih.gov/pubmed/9927192" title="(betaSpIIsigma1) at the nucleotide and amino acid level">amino</a>-terminal
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9115173" title="composed of 106-amino-acid segments">fragment</a> of the erythroid, beta subunit-fodrin, <a href="http://www.ncbi.nlm.nih.gov/pubmed/6383455?dopt=Abstract" title="erythrocyte spectrin does not affect the expression of Brain spectrin-like protein">spectrin-like</a> protein, is a <a href="http://www.ncbi.nlm.nih.gov/pubmed/6383455?dopt=Abstract" title="erythrocyte membranes could be detected">nonerythroid</a> spectrin analogue alpha Spna-1 <a href="http://www.ncbi.nlm.nih.gov/pubmed/8406479?dopt=Abstract" title="beta-fodrin, the nonerythroid form of beta-spectrin">related</a> to <a href="http://www.ncbi.nlm.nih.gov/pubmed/3862089" title="A cDNA clone described for human erythroid alpha- and beta-spectrin">human</a> erythrocytic 1 (h<a href="http://www.citeulike.org/user/dvdvcr63/article/11789116" title="human Spectrin, beta, nonerythrocytic 1 (SPTBN1)">SPTBN1</a>).
Beta-fodrin was&nbsp; detected primarily at the <a href="http://www.ncbi.nlm.nih.gov/pubmed/18796539" title="betaII spectrin is restricted to a dense apical network">apical</a> membrane of epithelia,
Spnb-2 binds only to <a href="http://www.ncbi.nlm.nih.gov/pubmed/3308110?dopt=Abstract" title="molecular form of the three neural cell adhesion molecules">N-CAM180</a> with reduced lateral mobility, <a href="http://www.ncbi.nlm.nih.gov/pubmed/17620337" title="Ankyrin-G and beta-2-spectrin co-localize with E-cadherin in preimplantation">E-cadherin</a>-beta-catenin complexes is required to form the first cytoplasmic lateral membrane. <a href="http://www.ncbi.nlm.nih.gov/pubmed/9927192" title="have cloned three isoforms embryonic liver beta-fodrin">Three</a> isoforms of brain spectrin contains <a href="http://www.ncbi.nlm.nih.gov/pubmed/8479293?dopt=Abstract" title="this non-erythroid beta spectrin comprises">three</a> structural domains, a cellular and
dendritic isoform, <a href="http://www.ncbi.nlm.nih.gov/pubmed/1467942" title="formation of cell-cell contacts, formation of dendritic processes and postsynaptic contacts">240/235</a>- erythroid (RBCs) <a href="http://www.ihop-net.org/UniPub/iHOP/pm/7020802.html?nr=7&amp;pmid=1742606" title="235 kDa brain beta-spectrin subunit">beta-spectrin</a> cDNA- <a href="http://www.ncbi.nlm.nih.gov/pubmed/8479293" title="nucleotide sequence of complementary DNA (SPNB2) clones">Complementary</a> DNA synthesized from a messenger <a href="http://lnwme.blogspot.com/2012/12/human-tgf-beta-type-ii-receptor.html" title="(ancestral C-509T-allele and G-875A variant in TGFBR2)">mRNA</a>*,&nbsp; contains a <a href="http://www.ncbi.nlm.nih.gov/pubmed/8208297" title="the PH domain of the cytoskeletal protein spectrin">PH domain</a>&nbsp; that <a href="http://www.ncbi.nlm.nih.gov/pubmed/9211987" title="genes that are rapidly up- or down-regulated">interact</a> extensively with <a href="http://www.ncbi.nlm.nih.gov/pubmed/7588597" title="bind specifically to pleckstrin homology (PH) domains">Phosphoinositide</a>s (PtdIns) of <a href="http://www.ncbi.nlm.nih.gov/pubmed/15566516" title="Ankyrin-B is a spectrin-binding protein required for...">inositol</a> 1,4,5-trisphosphate and receptor where the synapse <a href="http://www.ncbi.nlm.nih.gov/pubmed/15572359" title="a small number of kinases phosphorylate many proteins">phosphoproteome</a> is functionally organized) binds with a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/7020802.html?nr=7&amp;pmid=1742606" title="f a nonerythroid beta-spectrin subunit">nonerythroid</a> 9 Kb mRNA which encodes neuronal <a href="http://www.ncbi.nlm.nih.gov/pubmed/1467942" title="brain spectrin (240/235E) The 9 kb transcript">beta SpIIa</a> occurs also in neonatal <a href="http://www.ncbi.nlm.nih.gov/pubmed/17074766" title="lateral membrane biogenesis">cardiomyocytes</a> with <a href="http://www.ncbi.nlm.nih.gov/pubmed/15262991" title="required for localization of inositol 1,4,5-trisphosphate receptor">ankyrin-B</a> and ELF&nbsp; (Spnb-2), a new isoform of&nbsp; <a href="http://www.ncbi.nlm.nih.gov/pubmed/12149647" title="ELF, a new isoform of beta-G-spectrin">beta-G-spectrin</a>&nbsp; or any <a href="http://www.ncbi.nlm.nih.gov/pubmed/22159418/" title="is crucial in vertebrates for cell spreading, tissue patterning and organ development">spectrin-ankyrin</a> to cross-react with human erythrocyte beta subunit <a href="http://www.ncbi.nlm.nih.gov/pubmed/2420811" title="diversity in human erythrocyte and brain beta spectrin">spectrin-ankyrin</a> scaffold in restoring similarity of structure to <a href="http://www.ncbi.nlm.nih.gov/pubmed/17074766" title="ankyrin-G and beta(2)-spectrin are functional partners">lateral membrane</a> biogenesis. (<a href="http://www.blogger.com/www.ihop-net.org/UniPub/iHOP/pm/6545754.html?nr=2&amp;pmid=2124223" title="brain spectrin and erythrocyte Erp1 spectrin">Spnb2</a>) represents a nonerythroid beta-spectrin subunit <a href="http://www.ncbi.nlm.nih.gov/pubmed/6383455" title="sph, spectrin alpha 1">alphaI</a>-(SH3) domain (human chromosome <a href="http://www.wikigenes.org/e/ref/e/9593709.html" title="the candidate spectrin Src homology 3 (SH3) domain">10p11.2</a> -- p12.) 235-<a href="http://www.ncbi.nlm.nih.gov/pubmed/1467942?dopt=Abstract" title="involved in differentiated functions of the neuron">E</a> and A,&nbsp; cellular and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/4551421.html?nr=4&amp;pmid=6389784" title="little detectable spectrin antigen">axonal</a> neuron
<a href="http://www.ncbi.nlm.nih.gov/pubmed/22632975" title="αII and βII-spectrin axonal cytoskeleton">isoform</a>, but not dendrites; and an isoform specific for astrocytes. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12955571.html?nr=1&amp;pmid=18704924" title="inhibition of ELF raised retinoblastoma protein (pRb) levels nearly fourfold">ELF</a>, is a <a href="http://lnwme.blogspot.com/2012/11/transforming-growth-factor-beta-1.html" title="activation of Type I and binding to the type II">TGF-beta1</a> adaptor and signaling molecule, and transform cells similar to <a href="http://lnwme.blogspot.com/2012/12/human-tgf-beta-type-ii-receptor.html" title="bind and transform cells similar to RB protein">RB protein</a>*. <a href="http://www.ncbi.nlm.nih.gov/pubmed/6389784?dopt=Abstract" title="cross-reacts alpha and beta subunits Elf3">Erythrocyte</a> spectrin <a href="http://www.ncbi.nlm.nih.gov/pubmed/9927192?dopt=Abstract" title="overall similarity to mouse beta-spectrin (betaSpIIsigma1)">Elf -3</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15899814" title="ELF, a beta-spectrin from stem/progenitor cells">Spnb-2</a>) and apical to luminal <a href="http://www.ncbi.nlm.nih.gov/pubmed/18263735?dopt=Abstract" title="two to four cells per 30-50,000 cells express stem cell proteins">stem cell</a> peripheral blood <a href="http://www.ncbi.nlm.nih.gov/pubmed/11298995?dopt=Abstract" title="phosphorylcholine [PC] T-cell suppressor">T cell</a>
differentiation protein successfully manipulate mouse brain
beta-G-spectrin with two known genes encoding the actin-cross-linking protein <a href="http://www.ihop-net.org/UniPub/iHOP/pm/5275165.html?nr=5&amp;pmid=2420811" title="None reacted with brain spectrin">alpha</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/9115173" title="Spectrin is a tetramer of two antiparallel alphabeta-dimers">chain</a>, and the <a href="http://www.ncbi.nlm.nih.gov/pubmed/11564759" title="the spectrin-protein 4.1 interaction">Actin</a> binding <a href="http://www.ncbi.nlm.nih.gov/pubmed/8776664" title="beta-spectrin-actin interaction">N-terminal</a> domain of <a href="http://www.ncbi.nlm.nih.gov/pubmed/12149647?dopt=Abstract" title="five genes encoding the beta-chain">beta</a>-chain a form of <a href="http://www.ncbi.nlm.nih.gov/pubmed/12149647?dopt=Abstract" title="ELF, a new isoform of beta-G-spectrin">exon/intron</a> usage of two antiparallel dimers. Spectrin contains an Src homology 3 (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9593709?dopt=Abstract" title="Src homology 3 alphaII/betaII spectrin colocalize">SH3</a>) domain and share multiple exons by correlation to a known amino acid sequence of human brain <a href="http://www.ncbi.nlm.nih.gov/pubmed/8406479?dopt=Abstract" title="band 2p21. beta-Fodrin SPTBN1">beta-fodrin</a> (h<a href="http://www.ncbi.nlm.nih.gov/gene?db=gene&amp;cmd=retrieve&amp;dopt=default&amp;rn=1&amp;list_uids=6711" title="composed of two antiparallel dimers of alpha- and beta- subunits">SPTBN1</a>, gene ID 6711)
. <img align="middle" alt="a" height="22" src="http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/templates/gif/species/transparent/mou_temp.gif" width="39" /></div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2013/02/spnb2-protein-family-architecture.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiymo9KojJo8twPZUTpeSu7P-ybYvbMwpo8E0THUV5tUJRTJpe6IV8qLe04xUT2Y2KGSLTzBViqeE24B3Q0ibiAwsC1nwEvjSLe9rgTxcohEbEUtjcawn2ibgYtBPVyPopg8t1iZA/s72-c/1mph-1btn-1btn.pdb2.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-8702080115563159321</guid><pubDate>Mon, 31 Dec 2012 03:06:00 +0000</pubDate><atom:updated>2014-07-03T08:38:34.455-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">base excision repair (BER)</category><category domain="http://www.blogger.com/atom/ns#">beta2</category><category domain="http://www.blogger.com/atom/ns#">Cervico-vaginal foetal fibronectin MMP1-2</category><category domain="http://www.blogger.com/atom/ns#">dynein</category><category domain="http://www.blogger.com/atom/ns#">ECM extracellular matrix</category><category domain="http://www.blogger.com/atom/ns#">epigallocatechin</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>Human TGF-beta Type II Receptor</title><description><div style="text-align: justify;">
<a href="https://picasaweb.google.com/100787464692550241934/TGFBR2#5827921702810138274"><img align="right" alt="human TbetaR2 ectodomain--TGF-beta3 complex with ELF-3DNA" border="0" height="167" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiAbimzPBmuqiQxjGQJpvFXZ9DFPzd1PHOKUKsAxfUC2IZZOkMnJF5I4chC0Whh9PE8jVFZhWCBhe4V7H-vUh8v7JgZipSkOrKr_ThycdixYppMeTuG0Yd3PN-rtGokF_QEVGRCnA/s640/influblk3.png" title="human TbetaR2 ectodomain--TGF-beta3 complex with ELF-3DNA" width="240" /></a>TGFBR type II receptors (TGFBR2) are <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8683458.html?nr=3&amp;pmid=11212236" title="Transmembrane signaling by TGF-beta occurs via a complex of the serine [?]/threonine kinases">transmembrane</a> tyrosine kinases
or associated with&nbsp;<a href="http://www.ihop-net.org/UniPub/iHOP/pm/1735634.html?nr=6&amp;pmid=9926943" title="identified human cyclin B2 as a direct physical partner of TGFbeta RII">cytoplasmic</a> tyrosine kinases** related to
resistance to <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1016428.html?nr=4&amp;pmid=9158007" title="specific anti-TbetaRII antibodies confirm these observations">TGF-beta</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/923659.html?nr=3&amp;pmid=9041203" title="cellular TGFbeta responsiveness often correlates with TGFB2">inhibition</a>
of cell proliferation and trap TGF-beta I from access to <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12372879.html?nr=2&amp;pmid=17117417" title="reconstitution of wild-type TGFBR2 expression">wild</a>-type receptors, the growth-inhibitory and proapoptotic activities of the cytokine, human chromosome <a href="http://www.ncbi.nlm.nih.gov/pubmed/8020936" title="TGFBR2 maps to human chromosome band 3p22">3p22</a>-p21: [<a href="http://www.ncbi.nlm.nih.gov/gene/7048">§§</a>; <a href="http://www.ihop-net.org/UniPub/iHOP/gs/92693.html?ID=92691">†</a>, <a href="http://www.uniprot.org/uniprot/P37173" title="Interacts with TCTEX1D4 a dynein">‡</a>]. A <a href="http://www.ncbi.nlm.nih.gov/pubmed/16530041" title="link between TGF-beta signaling and arterial hypertension">cysteine</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/1310899" title="type II receptor and expressed in E. coli can phosphorylate itself">rich</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/17680270" title="genotypes (-509CT/TT) of TGFB1compared with -509CC wild-type homozygote">wildtype</a>º <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14751062.html?nr=1&amp;pmid=18095113" title="sequencing of exon 4 of the transforming growth factor-beta receptor type II gene">SNP</a>-(<a href="http://www.ncbi.nlm.nih.gov/pubmed/22431140" title="the T (ancestral allele)">ancestral</a> C-509T-<a href="http://www.ncbi.nlm.nih.gov/pubmed/18095113" title="based on analysis of peripheral blood cell">allele</a> and G-875A variant in <a href="http://www.ncbi.nlm.nih.gov/pubmed/17187359" title="TGF-beta1 and its receptor TGF-betaRII have been correlated">TGFBR2</a>) transition (exon 4) not an <a href="http://www.ncbi.nlm.nih.gov/pubmed/9163705?dopt=Abstract" title="There were no mutations in exons 1, 2, 4, 5, 6 and 7.">active mutation</a> in the
(constitutional) cDNA <a href="http://www.ihop-net.org/UniPub/iHOP/pm/800602.html?nr=2&amp;pmid=8947046" title="extracellular matrix formation">extracellular</a> domain <a href="http://www.ncbi.nlm.nih.gov/pubmed/7959019" title="belong to the transmembrane (TM) receptor serine/threonine kinase family">transmembrane</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12515396" title="synthesis and turnover of a variety of ECM components delivery of adenoviral vector">ECM</a>)
receptors <a href="http://www.wikigenes.org/e/ref/e/9926943.html" title="inactivation of cyclin B/Cdc2 kinase the TGFbeta RII-cyclin B2-Cdc2 complex">cyclin</a>-dependent kinases (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16108056" title="(BAT-RII) GF-beta can regulate the expression of a variety of cyclins">cdks</a>)º also <a href="http://www.ncbi.nlm.nih.gov/pubmed/9926943" title="Cyclin B1 had the same capacity to bind TGFbeta RII">binds</a>º to TGFBR2. <a href="http://www.wikigenes.org/e/ref/e/15520171.html" title="ACVR2 gene is frequently mutated in microsatellite-unstable colon cancers">ACVR2</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9872992?dopt=Abstract" title="in addition to TGF-beta1 and -beta3, endoglin interacts with activin-A">activin</a>)
a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/800602.html?nr=2&amp;pmid=8947046" title="Activin receptor Activin type">GS
domain</a>** member of the type II&nbsp; receptor family<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9393382.html?nr=4&amp;pmid=11850637" title="ecTbetaR1 and ecTbetaR2 bind at adjacent positions on the ligand surface and directly contact each other via protein--protein interactions pdb ID: 1KTZ">
ligand</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/12729750" title="binding to three types of cell surface receptors, the type I, II and III TGF-beta">binding</a> domain and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13050548.html?nr=1&amp;pmid=18941508" title="exon 3 of TGFBR2 and exon 10 of ACVR2 MMR as TGFBR2 and ACVR2.M1 (dim, representing heteroduplexes) and M2 (bright, representing full mutants)">TGFBR type II</a>* receptor, and mutations in <a href="http://www.ncbi.nlm.nih.gov/pubmed/17985359" title="t a polyadenine tract in exon 3 of TGFBR2, called BAT-RII">exon 3</a> the polyadenine tract (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16108056?dopt=Abstract" title="Colon cancers with mutant BAT-RII">BAT-RII</a>, replication error-RER(+) in <a href="http://www.ncbi.nlm.nih.gov/pubmed/12825850" title="within coding regions of exon 4 (1/72 samples)">exons 4 </a>phenotype, and 10-<a href="http://www.ncbi.nlm.nih.gov/pubmed/16380996" title="TGFBR2 and ACVR2, encoding TGFbeta superfamily receptors">ACRV2</a>* have <a href="http://www.ncbi.nlm.nih.gov/pubmed/12121646" title="the TBRII is significantly longer than in ActRII">premature</a> termination codons (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13237213.html?nr=7&amp;pmid=17456004" title="PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD) system">PTCs</a>)-<a href="http://www.ncbi.nlm.nih.gov/pubmed/20067791" title="(TGFbetaR2) mRNA harboring a PTC">mRNA</a>s can be regulated by <a href="http://www.ncbi.nlm.nih.gov/pubmed/22684895/" title="miR-590-5p downregulated the expression of TGF-beta RII by targeting the 3'UTR of mRNA">miRNA</a>s (endogenous non-coding <a href="http://www.ncbi.nlm.nih.gov/pubmed/21666718" title="The miRNA expression profile described in this study">RNAs</a>) this <a href="http://en.wikipedia.org/wiki/Survivin#As_a_drug_target" title="in normal cells, survivin promoter is not active, and, thus, the siRNA will not be expressed under an inactive survivin promoter">is a use</a> for <a href="http://www.ncbi.nlm.nih.gov/pubmed/21757750" title="high survivin expression with epigenetically silenced TGFβRII might potentially benefit from the use o">inhibitors</a> that can target,&nbsp; PTC siRNA the effect could silence proteins using any C-terminal such as the gene promotor 5'UTR, <a href="http://www.ncbi.nlm.nih.gov/pubmed/22072622" title="microRNA-21 (miR-21)">mainly</a> in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/22684895" title="MicroRNA-590-5p">3'UTR</a> of <a href="http://www.ncbi.nlm.nih.gov/pubmed/21666718" title="3'UTR of transforming growth factor-β receptor II">mRNA</a>) »» alter the
response <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9157330.html?nr=8&amp;pmid=11741970" title="relative to activin a farnesylated protein(s) exerts a repressive effect on T beta R-II">relative
to</a> TGF-beta (a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8860653.html?nr=1&amp;pmid=11444526" title="biological effects of TGF-beta are mediated by the TGF-beta receptor complex, a multimer composed of">multimer</a>)
that <a href="http://www.ncbi.nlm.nih.gov/pubmed/15993480?dopt=Abstract" title="Disabling of TGF-beta signaling is thought to be involved in development of a variety of tumors">inhibits</a> epithelial cell growth, however <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14063188.html?nr=1&amp;pmid=19161338" title="TGF-beta2 gain-of-function variants">TGF-beta2</a> differs in that it <a href="http://www.ncbi.nlm.nih.gov/pubmed/12939140" title="PDB: 1PLOseveral residues that comprise the TGFbeta binding surface">bind</a>s the TGF-betaR-II isoform restricted to <a href="http://www.ncbi.nlm.nih.gov/pubmed/16824508" title="Tgfbr2 regulates the developing axial skeleton">cells</a> of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8676814.html?nr=1&amp;pmid=11157754" title="TbetaRII-B is restricted to cells originating from tissues such as bone where the isoform TGF-beta2 has a predominant role">bone</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/11381720.html?nr=10&amp;pmid=16388503" title="cancer cells mediate growth inhibition and differentiation of bone marrow endothelial cells">marrow</a> (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/11987396.html?nr=9&amp;pmid=17003501" title="e cross talk between endothelial cells (ECs) and vascular smooth muscle cells in-vivo preoperative VSMCs">EC</a> 'vectors') endothelial cells; induction of growth inhibition «« (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13244315.html?nr=3&amp;pmid=17146441" title="during metabolic synthesis-G to S transition 3,5,7,2,4-pentahydroxyflavone (Morin) inhibits TGF-beta binding to TbetaR-II">Morin (flavonol)</a>, <a href="http://www.ncbi.nlm.nih.gov/pubmed/22571197" title="an enzyme which hydrolyzes mannose">mannosidase</a> and an molecular <a href="http://en.wikipedia.org/wiki/Bortezomib#Pharmacology" title="catalytic threonine residue whose activity is blocked by the presence of bortezomib">Bortezomib</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/9169454" title="not only on serine and threonine also tyrosine">PTK</a>/<a href="http://en.wikipedia.org/wiki/Protein_Tyrosine_Kinase" title="attach phosphate groups to other amino acids (serine and threonine)">STK</a> characterisation of <a href="http://lnwme.blogspot.com/2012/11/transforming-growth-factor-beta-1.html" title="specificity of T beta R-I for the critical C-terminal serines of Smad2">TβRI</a> suggest a novel mechanism an <a href="http://www.sciencedirect.com/science/article/pii/S0167488912000572" title="Chondrocytes were treated with an etoposide Bortezomib counteracts in TGFB proteins">etoposide</a> Epigallocatechin <a href="http://en.wikipedia.org/wiki/Bortezomib#Drug_interactions" title="found to reduce the effectiveness of bortezomib">E.gallate</a> provided by a <a href="http://www.ncbi.nlm.nih.gov/pubmed/12215842?dopt=Abstract" title="TGFB1 C-509T and TGFBR2 G-875Aconsisted of (A)10 in the TGF beta RII, (G)8 in the BAX">(G)8</a>, by reaction provides an unusual, <a href="http://www.ncbi.nlm.nih.gov/pubmed/21737283" title="TGF-β1-509 cytosine/thymine (C/T) genotypes">C/T</a> allele <a href="http://www.ncbi.nlm.nih.gov/pubmed/15522964" title="PKC-zeta caused an aggregation of endoglin or TbetaRII on cell surface">PKC</a> interaction (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9169454" title="a role for tyrosine autophosphorylation in TGF-beta receptor signaling">autophosphorylation</a>)** that is better able than <a href="http://www.ncbi.nlm.nih.gov/pubmed/9155023" title="a hyperactive receptor that is better able than wild-type at autophosphorylation">wild-type</a>º to <a href="http://www.ncbi.nlm.nih.gov/pubmed/9155023" title="TbetaRI activation and subsequent cell cycle arrest">induce</a> a the <a href="https://picasaweb.google.com/100787464692550241934/TGFBR2#5827921668350827858"><img align="right" alt="Influenza virus to maintain 3d cohesion of delivery (EGCG) binds with the anti-cancer drug Bortezomib=PMID:17634290" border="0" height="145" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgMlKzYi4GTzxHerTIZh6WnAzqGW8B5yTtYVO8CbcWA081OzOu1lUBJ74Q6lshzh-4Nht-OGDL8pN5FV87T2qMuBPmZ__G_e-i2HvT1RWHhRH3T0uKqSOd0oCfFiaUIjk7BsIgLmQ/s640/influblk.png" title="Influenza virus to maintain 3d cohesion of delivery (EGCG) binds with the anti-cancer drug Bortezomib=PMID:17634290" width="294" /></a>dual kinase cytoplasmic domain specificity soluble <a href="http://www.ncbi.nlm.nih.gov/pubmed/8106553" title="(TGFBR3), is a cell-surface chondroitin sulfate / heparan sulfate proteoglycan">betaglycan</a> the <a href="http://www.ncbi.nlm.nih.gov/pubmed/11323414" title="the phosphorylation of the cytoplasmic domain of the type III receptor by the type II receptor">type III</a> receptor acts as potent <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1735634.html?nr=6&amp;pmid=9926943" title="Utilizing the cytoplasmic tail of tgfbr2">type II</a>º inhibitor)
and the loss of <a href="http://www.wikigenes.org/e/ref/e/7878020.html" title="TGF-beta RI transphosphorylated by the coexpressed TGF-beta RII">trans</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8683458.html?nr=3&amp;pmid=11212236" title="in replication error-positive mutations either loss or activation of trans-phosphorylation in type 1 receptor">phosphorylation</a>
or constitutive activation of <a href="http://www.wikigenes.org/e/ref/e/11212236.html" title="TGF-beta type 1 receptor or constitutive activation of trans-phosphorylation">TGF-beta1</a>
mediated (homozygous and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1386356.html?nr=10&amp;pmid=9496536" title="T beta R-I and T beta R-II differed">heterozygous</a>
polymorphism (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13050548.html?nr=9&amp;pmid=18941508" title="How these mutations occur in real time">heteroduplexes</a>)» functionally related tentative (MMP) involvement of «<a href="http://www.ncbi.nlm.nih.gov/pubmed/20197483?dopt=Abstract" title="the mutant fraction, replication fidelity in mononucleotide, dinucleotide, and tetranucleotide repeats">three</a> major systems as the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10763082.html?nr=3&amp;pmid=15861007" title="Mutation spectrum of FBN1 and TGFBR2 in relation to phenotype">Marfan syndrome type II</a> gene) growth control or <a href="http://www.ncbi.nlm.nih.gov/pubmed/8388126" title="growth inhibition and hypophosphorylation">hypophosphorylation</a>.&nbsp; The functional inactivation of the Germline (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10255669.html?nr=1&amp;pmid=15146427" title="Adenoviral vectors were generated for TGFbetaRI (AdTGFbetaRI), TGFbetaRII (AdTGFbetaRII), and kinase-deficient TGFbetaRII (AdDeltakRII)">Adenoviral</a>
-mediated <a href="http://www.ncbi.nlm.nih.gov/pubmed/15942678" title="[soluble type II TGF-beta receptor (sTGF-betaIIR)]">soluble</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10186659.html?nr=5&amp;pmid=14568254" title="prevents hepatofibrogenesis in vivo">vectors</a> bind and <a href="http://www.ncbi.nlm.nih.gov/pubmed/12915548" title="nitially placing the cell in a tumor-like state">transform cells</a> similar to <a href="http://www.ncbi.nlm.nih.gov/pubmed/17546056?dopt=Abstract" title="ELF and TBRII decreases cyclin D1 as well as hyperphosphorylated- retinoblastoma (hyperphosphorylated-pRb">RB</a> protein
<a href="http://www.ncbi.nlm.nih.gov/pubmed/19737884?dopt=Abstract" title="resistant to transforming growth factor-beta (TGF-beta) because they do not express the TGF-beta type II receptor">retinoblastoma</a>)-gene <a href="http://www.ncbi.nlm.nih.gov/pubmed/12077447" title="TBRII(27-136) yielded large single crystals from hanging drops using the vapor-diffusion procedure">product</a> (a dominant negatively acting mutant <a href="http://www.ncbi.nlm.nih.gov/pubmed/11777969" title="successfully blocked the autocrine TGF-beta-negative regulatory loop">TbetaRIIDN</a>) regulated by TGFBR type II receptors polyadenine <a href="http://www.ihop-net.org/UniPub/iHOP/pm/2154283.html?nr=6&amp;pmid=10699890" title="hese genes regulate cell growth or repair DNA mismatches">(A)(10)</a> tract&nbsp; can result in
microsatellite instability (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10854944?dopt=Abstract" title="Frameshift mutations in the transforming growth factor beta receptor type II (TGF-betaRII)">MSI</a>) of the microsatellite mutator phenotype (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/1786623.html?nr=5&amp;pmid=10190568" title="single repeat sequences in these genes provide one major route for carcinogenesis">MMP</a>) as RER(+), for
'replication errors' exhibiting, <a href="http://www.ncbi.nlm.nih.gov/pubmed/20565851?dopt=Abstract" title="MSI phenotype include somatic mutations in the transforming growth factor beta receptor typeII">somatic</a> type I receptor hereditary
mutations <a href="http://www.nature.com/ng/journal/v23/n2/full/ng1099_222.html#B6" title="Ewing sarcoma and other ETS transcription factors which bind DNA">ETS</a> transcription factors (<a href="http://www.wikigenes.org/e/ref/e/12825850.html" title="There was no relationship between TGFBR2 expression in the epithelium">Ewing </a>sarcoma
EWS and related peripheral <a href="http://www.ncbi.nlm.nih.gov/pubmed/10508522" title="other ETS transcription factors (which bind DNA">primitive</a> tumors, mononucleotide (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/11384384.html?nr=10&amp;pmid=16380996" title="70% harbored TGFBR2, 63% BAX and only 4.5% ACVR2 mutations">MSI-H</a> microsatellite<a href="http://www.ncbi.nlm.nih.gov/pubmed/18339844" title="missense mutations of the(TGFBR2) are associated with at least two different phenotypes"> instability</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/21949851" title="data dose not support those mutations as prognostic biomarkers (beyond MSI) in colorectal carcinoma">high</a>) hereditary <a href="http://www.ihop-net.org/UniPub/iHOP/pm/11384384.html?nr=7&amp;pmid=16380996" title="tumor volume were associated with mutant ACVR2, but not TGFBR2 or BAX mutations">TGFBR2</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/21949851" title="TGFBR2 and BAX mononucleotide mutations were detected in 74% (117/159) and 30% (48/158) of MSI-high tumors">BAX</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12215842?dopt=Abstract" title="SNP (ancestral T/C-allele) G to A transition in DNA sequences of mono-, di-, and trinucleotide repeats">G</a>)8 mononucleotide mutation guanine/adenine (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21737283" title="the frequencies of the G allele of IL-17A-197 G/A and TGFR-β2-875 A/G">G/A</a>) with cytosine/thymine 'C/T' colon tumors) a putative tumor suppressor
gene mutations, epithelial-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8944762.html?nr=8&amp;pmid=11514049" title="TGFBR2 shown to often be a mesenchymal cell-derived growth factor">mesenchymal</a> transition (EMT). <a href="http://www.connotea.org/article/0ad85a5ae1fcd6f9046bb873987e7f59" title="(CAT)-construct expressing ETS related with 2 comments">ETS</a>
supression requires functional TGFBR2, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12372879.html?nr=2&amp;pmid=17117417" title="a mutated transmembrane domain and loss of kinase domai">truncated</a> type II receptors
dominant-negative mutants that selectively <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14311383.html?nr=1&amp;pmid=18199825" title="this pathway is blocked in Kaposi sarcoma herpesvirus (KSHV)-infected primary effusion lymphoma">block</a> type II
receptor signaling to TGF-beta induction (cell <span class="tltbox"><a href="https://picasaweb.google.com/100787464692550241934/TGFBR2#5828711176523072754"><img align="right" alt="ESE ELF3 (ESE1/ESX), ets transcription factor binds to the TGF-beta RII promoter. Autophosphorylation" border="0" height="137" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjIUskciI4FYBVOKzLf1C5TVIWcKmygEJcrfEub0cgipGZ3hvRVtDH4fP24-tm-6Yq-MmW1BwY2DQeLUp1WWTl2Wcf7YMBtGe-DgK_Y3SQrDd3XfP87Bgi799My1PidWWcx-lVOTA/s576/borin2.png" title="ESE ELF3 (ESE1/ESX), ets transcription factor binds to the TGF-beta RII promoter. Autophosphorylation" width="276" /></a></span>proliferation and
differentiation and type I receptors <a href="http://www.ncbi.nlm.nih.gov/pubmed/8388126" title="regulates cell proliferation and differentiation and extracellular matrix production.">ECM</a> production) by inducing the
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/1016428.html?nr=4&amp;pmid=9158007" title="inducing cancer cells to escape the growth-inhibitory effect of TGF-beta">escape</a>
of cells from TGF-beta-mediated growth control in the TGFBR2 gene characterized by <a href="http://www.ncbi.nlm.nih.gov/pubmed/10772416?dopt=Abstract" title="germline mutations associated with a HNPCC syndrome">germline</a> plus <a href="http://www.ncbi.nlm.nih.gov/pubmed/19503063" title="mutated genes were ACVR2 (92%),TAF1B (84%), ASTE1/HT001 (80%) and TGFBR2 (77%)">induces</a> secondary <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10561005.html?nr=5&amp;pmid=15350299" title="carry a limited panel of RER, including a framesift at the (A)(10) tract of TGFBR2">somatic</a> mutations. Once the presence of TGFBR2 mutator mechanisms for <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13966185.html?nr=6&amp;pmid=19503063" title="the appearance of potentially immunogenic neopeptides associated with tumor progression (TNM stage, wall invasion and tumor diameter)">germline</a>
mutations are generated, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12536702.html?nr=2&amp;pmid=17546056" title="hepatocarcinogenesis cyclin-dependent kinase">links</a> (soluble <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10186659.html?nr=5&amp;pmid=14568254" title="prevents hepatofibrogenesis in vivo">vectors</a>) have a <a href="http://www.ncbi.nlm.nih.gov/pubmed/20079749" title="(mTbetaR-II(DNA)). Elf3 contacts">Elf3</a> 'C-terminal' DNA-binding ETS-related domain <a href="http://www.wikigenes.org/e/ref/e/10644990.html" title="The epithelium-specific transcription factor,ELF3, binds to the TGF-beta RII promoter">retroviral</a>
(CAT)-<a href="http://www.wikigenes.org/e/ref/e/14582709.html" title="Chloramphenicol acetyltransferase a bacterial enzyme prevents chloramphenicol from binding to ribosomes">construct</a> expressing microsatellite instability (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10601582.html?nr=2&amp;pmid=16108056" title="(MSI) and carry frameshift mutations in a polyadenine tract (BAT-RII) in TGFBR2">MSI</a>)
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/11381716.html?nr=6&amp;pmid=16388502" title="t frameshift mutations in mononucleotide repeats"> related to</a> DNA-mismatch repair (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13050548.html?nr=9&amp;pmid=18941508" title="TGFbeta family receptors is abrogated in DNA Mismatch repair (MMR)">MMR</a> proficient and deficiencies) sequences of « <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15470689.html?nr=8&amp;pmid=20701609" title="of a panel of 157 miRNAs Of these eight down-expressed miRNAs, three remained down-regulation in a validation">Three</a>''' specific small interfering RNAs (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21725601" title="designed for targeting human TGFβRII">siRNAs</a>)''' <a href="http://www.ncbi.nlm.nih.gov/pubmed/12215842?dopt=Abstract" title="These repeats consisted of (A)10 in the TGF beta RI">mono-, di-, and tri-</a>nucleotide repeat hypermutable sequences targets many mRNAs mainly in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/22684895" title="One miRNA targets many mRNAs, which can be regulated by many miRNA">3'UTR</a>''' of mRNA at the <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=11709717" title="the poly(A)(10) tract compared to other regions of the TGFBR2 gene">poly(</a>A)(<a href="http://www.ncbi.nlm.nih.gov/pubmed/20197483?dopt=Abstract" title="5-ASA Mesalazine increases replication fidelity in mononucleotide, dinucleotide, and tetranucleotide repeats">10</a>) tract MMR (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9091478.html?nr=4&amp;pmid=11709717" title="hypermutable sequences Repetitive tracts within the coding regions of TGFBR2 and BAX">MRC-1</a>) deficiency, results in intestinal epithelial defects of genes <a href="http://www.ncbi.nlm.nih.gov/pubmed/12661003?dopt=Abstract" title="mutated in MSI(+) cancer (TGFBR2, IGF2R, BAX).">known to be</a> mutated, <a href="http://www.wikigenes.org/e/ref/e/11507078.html" title="Deoxycytidine , a component of deoxyribonucleic acid.can be phosphorylated by deoxycytidine kinase">deoxycytidine</a>
(DCK) restores TGF-beta type II receptor (MMR 'initiated' Apc mutation) in many cancer cell lines.</div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2012/12/human-tgf-beta-type-ii-receptor.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiAbimzPBmuqiQxjGQJpvFXZ9DFPzd1PHOKUKsAxfUC2IZZOkMnJF5I4chC0Whh9PE8jVFZhWCBhe4V7H-vUh8v7JgZipSkOrKr_ThycdixYppMeTuG0Yd3PN-rtGokF_QEVGRCnA/s72-c/influblk3.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-398267044476254369</guid><pubDate>Thu, 08 Nov 2012 21:07:00 +0000</pubDate><atom:updated>2013-01-01T11:18:37.014-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">FK506</category><category domain="http://www.blogger.com/atom/ns#">phosphatidylinositol</category><category domain="http://www.blogger.com/atom/ns#">TGFB</category><title>Transforming growth factor beta 1</title><description><div style="text-align: right;">
</div>
<div style="text-align: justify;">
<table cellpadding="0" cellspacing="0" class="tr-caption-container" style="float: right; margin-left: 1em; text-align: right;"><tbody>
<tr><td style="text-align: center;"><a data-mce-href="https://picasaweb.google.com/100787464692550241934/TGFBR?authkey=Gv1sRgCOi39aOe8MujKg#5813747125641898962" href="https://picasaweb.google.com/100787464692550241934/TGFBR?authkey=Gv1sRgCOi39aOe8MujKg#5813747125641898962" style="clear: right; margin-bottom: 1em; margin-left: auto; margin-right: auto;"><img align="left" alt="" border="0" data-mce-src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhsm1e2Wrt4JuAsy4oYRiWTKIgQYpUioE0iwLOw7_FxFhvPYNUW3Zbz8weIzasUsXID0M0a4LQqsFFfR_iy4QfFdwNHs7AGI7_aGPRrp6XAT9wdwfQHP0CFwmNDYKNwv1NIaTrrtA/s320/+2+TGFBR1+molecules+ternary.png" height="310" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhsm1e2Wrt4JuAsy4oYRiWTKIgQYpUioE0iwLOw7_FxFhvPYNUW3Zbz8weIzasUsXID0M0a4LQqsFFfR_iy4QfFdwNHs7AGI7_aGPRrp6XAT9wdwfQHP0CFwmNDYKNwv1NIaTrrtA/s320/+2+TGFBR1+molecules+ternary.png" width="320" /></a></td></tr>
<tr><td class="tr-caption" style="text-align: center;">synthetic ideas receptor complex of 2 TGFBR1 molecules</td></tr>
</tbody></table>
TGFBR1 are transmembrane tyrosine kinases or associated with
cytoplasmic tyrosine kinase <a href="http://www.uniprot.org/citations/18333754" title="TGF-beta a multifunctional regulator of chondrocyte proliferation, differentiation, and extracellular matrix production">TGF-β</a>'s » specificity with type II receptors <a href="http://www.ncbi.nlm.nih.gov/pubmed/22617150" title="onceptually a simple and linear signaling pathway">activating</a> type I receptors, has the <a href="http://www.ncbi.nlm.nih.gov/pubmed/21821041" title="a signaling superfamily with more than 30 members they signal through a highly restricted subset of receptors known as TGF-β type I receptor (TβR-I) and TGF-β type II">pre-helix</a> extension and its role in binding are present on the plasma membrane (cytoplasmic domain) both as monomers and <a href="http://www.ncbi.nlm.nih.gov/pubmed/9472030" title="TbetaRII in the absence of ligand is a homodimer on the cell surface">homo-</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/19147499" title="TbetaRI.TbetaRII hetero-oligomerization">hetero-oligomers</a> chromosome 9q22.33. 6 : [<a href="http://www.ncbi.nlm.nih.gov/gene/7046">§§</a>; <a href="http://www.ihop-net.org/UniPub/iHOP/gs/92691.html?ID=86233">†</a>, <a href="http://www.uniprot.org/uniprot/P36897">‡</a>]. <a href="http://www.ncbi.nlm.nih.gov/pubmed/9892009" title="Activins and other members of the transforming growth factor-beta-like superfamily">Activin</a> receptor-like kinase 5 (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9562209.html?nr=5&amp;pmid=12384983" title="differences in transcriptional regulation patterns between ALK-1 and ALK-5">ALK-5</a>)
is a TGF-beta <a href="http://www.ncbi.nlm.nih.gov/pubmed/9233797" title="the association of TbetaR-I with TbetaR-II">type I</a> receptor, activation of <a href="http://www.ncbi.nlm.nih.gov/pubmed/9417915?dopt=Abstract" title="i.e. he TGFBR1 gene that encodes the C-terminal portion of the serine-threonine kinase domain">Type I</a> and
binding to the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/490491.html?nr=4&amp;pmid=8576253" title="type I and type II receptors form distinct subgroups in the serine/threonine kinase receptor family">type II</a> receptors (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15702480?dopt=Abstract" title="the auxiliary TGF-beta receptor endoglin interact with ALK-1 (a type I TGF-beta receptor)">as well</a> as <a href="http://www.ncbi.nlm.nih.gov/pubmed/19736306?dopt=Abstract" title="Endoglin has been found to be part of the TGF-beta1 receptor complex">Endoglin</a>, <a href="http://www.ncbi.nlm.nih.gov/pubmed/18974388?dopt=Abstract" title="2 different isoforms (L, long; S, short) of endoglin">ENG</a> (p.<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13740536.html?nr=10&amp;pmid=19299629" title="Novel variants (mutations) identified in ENG (p.A60E) and TGFBR3 (p.W112R)">A60E</a>) may increase <a href="http://www.ncbi.nlm.nih.gov/pubmed/15702480" title="endoglin potentiates TGF-beta/ALK1 signaling">susceptibility</a> to various types of <a href="http://www.uniprot.org/citations/15382067" title="TGF-beta signaling is frequently perturbed in many human cancers">cancer</a>, or augmented (<a href="http://www.uniprot.org/citations/15661740" title="early endosome antigen 1 ((EEA-1) Phosphatidylinositol 3-phosphate) non-lipid raft-associated pools results in augmented TGF-beta1 Smad signaling">PtdIns3P</a>) phosphorylation in (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17452325" title="Smads in a non-canonical Smad signaling pathway">non-Smad</a> signalling pathways) integrated ( <a href="http://www.uniprot.org/citations/16314481">syndecan 4</a>) procontractile AJ interactions « in disease states.) are <a href="http://www.ncbi.nlm.nih.gov/pubmed/20101143" title="Type II distinction between bronchioloalveolar carcinoma and other adenocarcinomas">detected</a> and blocked by a <a href="http://www.ncbi.nlm.nih.gov/pubmed/11356828" title="X-linked inhibitor of apoptosis protein (XIAP) is a potent suppressor of apoptotic cell death">anti</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/9435577" title="treatment of cells with TGF-beta 1 mediate apoptosis, cell cycle analysis and DNA ladder studies">apoptotic</a> TGFbeta1-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15961557" title="dopamine and the dopamine agonist bromocriptine stimulated TGFbeta1 secretion and TGFbeta1 mRNA expression">neutralizing antibody</a> (To understand the expressions of TGFBR1,) at the cell surface transducing the TGF-beta <a href="http://www.ncbi.nlm.nih.gov/pubmed/19736306" title="endoglin is phosphorylated on cytosolic domain threonine residues by the TGF-beta type I receptors">signal</a> to the cytoplasm (where the <a href="http://www.ncbi.nlm.nih.gov/pubmed/9759503" title="cell-specific manner, the multifunctional nature of TGF-beta">SMAD proteins</a>, <a href="http://www.ncbi.nlm.nih.gov/pubmed/17146441" title="Smad2 and expression of a TGF-beta target gene Smad7">phosphorylate</a> where they interact with <a href="http://www.ncbi.nlm.nih.gov/pubmed/17452325" title="primary intracellular mediators of TGF-beta signaling Smad2">DNA</a> and move into the <a href="http://www.ncbi.nlm.nih.gov/pubmed/9525694" title="TGF-beta signalling involves a direct pathway from the cell surface receptors to the nucleus">nucleus</a>) involved in
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20301312" title="TGFBR1 and TGFBR2, the only two genes known to be associated with LDS">type II </a>cell-matrix interactions, <a href="http://www.ncbi.nlm.nih.gov/pubmed/18243111" title="TGF-beta3 in complex with the extracellular domains of both pairs of receptors">ALK1 </a>and <a href="http://www.uniprot.org/citations/19506300" title="disruption of either pathway leads to disease">ALK5</a>** adherens junction (<a href="http://www.ncbi.nlm.nih.gov/pubmed/12000714" title="TGF-beta 1 led to loss of cell-cell contact and disassembly of both adherens and tight junctional">AJ</a>)
complex (more basal than TJs) display <a href="http://www.ncbi.nlm.nih.gov/pubmed/18333754" title="identified ALK1 as a second type I TGF-beta receptor">opposing</a> functions... <a href="http://www.ihop-net.org/UniPub/iHOP/pm/7630736.html?nr=6&amp;pmid=8242743" title="TGF beta involves the formation of a heteromeric complex of two different serine/threonine kinase receptors">Both</a> are: transmembrane
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9856985" title="(TbetaR-I) and type II (TbetaR-II) serine-threonine kinase receptors">serine</a> / <a href="http://www.ncbi.nlm.nih.gov/pubmed/9417915" title="Both are transmembrane serine-threonine receptor kinases">threonine</a> kinase also known as activin-like kinase (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20571025" title="serine/threonine receptor, specifically the TGF-beta type I receptor">ALK</a>) V*, epithelial-to-<a href="http://www.uniprot.org/citations/20086175" title="TGFbeta-Smad signaling provides an &quot;epigenetic memory&quot; to maintain silencing of critical genes">mesenchymal</a>
transition (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19375841?dopt=Abstract" title="findings suggest that co-cultivation with hPMSCs leads to epithelial to mesenchymal transition (EMT)">EMT</a>) <a href="http://www.ncbi.nlm.nih.gov/pubmed/20086175" title="a hyperactive TGFbeta-TGFbetaR-Smad2 signaling axis needed to maintain epigenetic silencing of critical EMT genes">responses</a>, <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=17724140" title="BMP7 expression in prostate cancer cell lines">BMP7</a> can <a href="http://www.ncbi.nlm.nih.gov/pubmed/15270668?dopt=Abstract" title="common variants of the TGF-beta pathway ligand and receptors that alter TGF-beta signaling modify cancer risk">counteract</a> with down-regulation of "'<a href="http://www.ncbi.nlm.nih.gov/pubmed/15761153" title="Occludin regulates TGFbeta type I receptor localization for efficient TGFbeta-dependent dissolution of tight junctions">occludin</a> for efficient
TGF-beta-dependent 'dissolution' (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13775624.html?nr=1&amp;pmid=19255252" title="(Smurf2), a HECT type E3 ubiquitin ligase, is an important regulator of the TGF-beta signaling pathway">E3</a>-proteasome-mediated <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9172401.html?nr=3&amp;pmid=12151385" title=", it failed to induce the ubiquitination and degradation of TbetaR-I">TbetaR-I</a>〃 associated type II degradation and <a href="http://www.uniprot.org/citations/20663871" title="Smad7 (MH2) has two modes of interaction with type I receptors">Smad7</a> inhibition)&nbsp; during follicular
development (where Smad expression is <a href="http://www.ncbi.nlm.nih.gov/pubmed/10077159" title="expression by estrogens and androgens">not regulated</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/21791611" title="TSC-22 forms a teranary~ complex with TRB-1 and TBR-II">TSC-22</a> is dependent on ~ can be attributed to <a href="http://www.proteinmodelportal.org/query/uniprot/P17813" title="No experimental structures found">Endoglin</a>) from the plasma membranes <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13820995.html?nr=9&amp;pmid=19319146" title="tight junction (TJ) protein expression leading to changes in BBB functional integrity">tight
junctions</a> (TJ) <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13820995.html?nr=9&amp;pmid=19319146" title="TJ proteins (i.e., claudin-5, occludin, zonula occluden (ZO-1))">protein</a>*"' expression conducive to spermatozoa <a href="http://www.ncbi.nlm.nih.gov/pubmed/21957188" title="the distribution pattern of tight junction proteins occludin">maturation and storage</a>. (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8700038.html?nr=1&amp;pmid=11102446" title="through the cooperation of the type I and II serine/threonine kinase receptors">TGF-beta</a>) signaling proceeds from the cell membrane to the nucleus, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14210235.html?nr=5&amp;pmid=19998449" title="; TGFBR1: 9A/6A and IVS7G+24A; FURIN: C-229T worse survival for FURIN C-229T heterozygotes (hazard ratio: 1.63, 95%CI: 1.08-2.46)">AAV</a> (<a href="http://www.uniprot.org/citations/19494318" title="Adenovirus overexpressing constitutive active ALK5 transfection to TGFB a protective factor for cartilage">adenovirus</a>)**-<a href="http://www.ncbi.nlm.nih.gov/pubmed/20368424" title="(TGFBR1) polymorphisms, particularly a coding CGC insertion (rs11466445, TGFBR1*6A/9A) in exon 1,">TGF-beta1</a>^ gene transfer integration <a href="http://lnwme.blogspot.com/2010/02/agc1-novel-neoepitopes-n-and-c.html" title="AAV-site 1, (adeno-associated virus integration site 1)">site 1</a> (allele-<a href="http://www.ncbi.nlm.nih.gov/pubmed/20052600" title="the protective effect of the C allele">specific</a> (C <a href="http://www.ncbi.nlm.nih.gov/pubmed/19916025" title="the 45 bp nucleotide deletions in exon 1 of the receptor... A deletion in the polyadenine tract of exon 3 of TGF-beta RII">to;</a> T) expression^ (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19509225" title="germline ASE results in a lowered expression of one of the TGFBR1 alleles">germline</a>** allele-<a href="http://www.ncbi.nlm.nih.gov/pubmed/19538729" title="disequilibrium of the TGFBR1*6A allele with mutations that cause allele-specific expression">specific</a> expression <a href="http://www.ncbi.nlm.nih.gov/pubmed/19672284" title="Genotyping of allele of one SNP in TGFBR1 and two SNPs in TGFBR2">ASE</a>)) <a href="http://www.ncbi.nlm.nih.gov/pubmed/21127043" title="Adenoviral overexpression of GATA6 in turn enhanced angiogenic function">including</a> growth differentiation factor-<a href="http://lnwme.blogspot.com/2012/06/follistatin-natural-antagonist-of.html" title="Follistatin correlated with Smads (of intron 1‡) and GDF9 to varied degrees">9</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15483083?dopt=Abstract" title="indicated a key role for this signaling mediator in ovarian folliculogenesis">GDF9</a> both at the <a href="http://www.ncbi.nlm.nih.gov/pubmed/19363708" title="the mRNA and protein expression levels of TGF-beta1, TGF-beta ReceptorI (TbetaRI ()), TGF-beta ReceptorII (TbetaRII ()), Smad2 (), Smad4 (//) and Smad7">protein</a> and <a href="http://www.uniprot.org/citations/20427239" title="TGFbetaR1 mRNA transcripts were identified in granulosa cells and oocytes">mRNA</a> expression levels of TGF-beta1specificity) are regulated by members of <a href="http://www.ncbi.nlm.nih.gov/pubmed/20427239" title="TGFBR and mRNA levels suggests that GDF9 may have functions in human preantral follicles">TGF-beta</a>, and activin*. TGF-beta binds to these receptor's 17alpha-hydroxylase/<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13947384.html?nr=1&amp;pmid=19701832" title="It is found in the zona reticularis of the adrenal medulla">17,20</a> lyase activity, ALK5 (TbetaRII) <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12836590.html?nr=11&amp;pmid=18333754" title="results show that ALK1 inhibits, whereas ALK5 potentiates">inhibitors</a>* coexpression is mediated by the <a href="http://www.ncbi.nlm.nih.gov/pubmed/19639490" title="ALK5 in activating the NGF (Nerve growth factor) system in PSC (pancreatic stellate cells)">ALK5</a> receptor; TGF-beta induces <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10992847.html?nr=7&amp;pmid=15546867" title="analyzed the receptors through which TGF-beta1 controls expression of BGN">BGN</a> [biglycan] <a href="http://www.ncbi.nlm.nih.gov/pubmed/20571025?dopt=Abstract" title="growth factors modify the structure of the glycosaminoglycan (GAG) chains on biglycan leading to enhanced LDL binding">expression</a> through (the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9574692.html?nr=6&amp;pmid=12202987" title="(TGF-beta1) is a multifunctional cytokine, (TGFBR2), SMAD2 gene (SMAD2), SMAD3 gene (SMAD3), SMAD4 gene (SMAD4), and SMAD7 gene (SMAD7), all of which compose the TGF-beta1 signaling pathway.">Smad</a>-activating <a href="http://www.ncbi.nlm.nih.gov/pubmed/12151385" title="the C2 domain of Smurf1 and is essential for the inhibitory effect of Smad7 in the transforming growth factor-beta">function of</a>〃)... <a href="http://www.ncbi.nlm.nih.gov/pubmed/12446693" title="TGF-beta type I receptors (also termed ALK5s) functional ALK5 protein. Mutation in the L45 loop region did not affect the binding of inhibitory Smads">ALK5</a>〃• that <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13821174.html?nr=7&amp;pmid=19494318" title=". Adenovirus overexpressing constitutive active ALK5 transfection">varies</a>** between <a href="http://www.ihop-net.org/UniPub/iHOP/pm/16163416.html?nr=6&amp;pmid=21624477" title="normal and osteoarthritis (OA) human cartilages (CAs) damage in post-injury OA results primarily from biomechanical, cell biologic and mediator changes that promote a fibroblastic phenotype in joint cells">tissues</a>.
There is a conserved <a href="http://peds.oxfordjournals.org/content/12/2/155.abstract" title="not all residues could be tolerated at this nearly invariant aspartate in kinase subdomain IX">aspartic
acid</a> residue, which is <a href="http://www.ebi.ac.uk/interpro/IEntry?ac=IPR008271#PUB00005145" title="In the central part of the catalytic domain there is a conserved aspartic acid residue">important</a>
for the catalytic <a href="http://prosite.expasy.org/PDOC00100#ref6" title="IntEnz Enzyme Nomenclature EC 2.7.11.7 (EC 2.7.11.30 receptor protein serine/threonine kinase)PROSITE:PDOC00100 myosin-heavy-chain kinase">activity</a> (<a href="http://www.ebi.ac.uk/intenz/query?cmd=SearchEC&amp;ec=2.7.11" title="EC 2.7.11.7 myosin-heavy-chain kinase EC 2.7.11.30 receptor protein serine/threonine kinase">Note:</a>
the suggested <a href="http://www.uniprot.org/citations/15247277" title="indicating a novel cross-talk between serine/threonine kinase receptors and G-protein coupled receptors">PTK</a>~<a href="http://www.ncbi.nlm.nih.gov/pubmed/9435577" title="enhanced PI 3-kinase activity associated with the type I TGF-beta receptor">probability</a>, with <a href="http://www.ihop-net.org/UniPub/iHOP/pm/7630736.html?nr=1&amp;pmid=8242743" title="the formation of a heteromeric complex of two different serine/threonine kinase receptors">two</a>
protein kinase signatures the type I and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1390568.html?nr=12&amp;pmid=9525694" title="the type II receptor transphosphorylates and activates the type I receptor kinase">type
II</a> receptors, is close to 100%,) of the enzyme. <a href="http://www.ncbi.nlm.nih.gov/pubmed/9233797" title="(TGFbeta) signaling requires phosphorylation of the type I receptor TbetaR-I by TbetaR-II">TGFB1</a>
regulates cell cycle progression; involves its binding to TGFBR2 and
activation of TGFBR1. The formation of the receptor complex composed
of 2 TGFBR1 and 2 TGFBR2 molecules results in the phosphorylation
and the activation. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15063558.html?nr=6&amp;pmid=20101206" title="Such soluble matrix components, including collagens, fibronectin and laminin in TGF-beta type I receptor recruitment to the ligand">Ligand</a> binding may be a natural ligand
Immunophilins <a href="http://www.ncbi.nlm.nih.gov/pubmed/11583628" title="FKBP12 by switching the GS region from a binding site for an inhibitor into a binding surface for substrate">FKBP12</a>␠ (where <a href="http://www.ncbi.nlm.nih.gov/pubmed/9346894" title="actions of the drug FK506 in whose presence FKBP12">FKBP12</a> predominated in <a href="http://www.ncbi.nlm.nih.gov/pubmed/8530343" title="T beta R-I specifically interacts with farnesyl-protein transferase (FT alpha) in the yeast two-hybrid system">yeast</a> specifically with » <a href="http://www.ncbi.nlm.nih.gov/pubmed/9215638?dopt=Abstract" title="formation of Smad2/Smad4 complexes and mutations in Smad7 that interfere with receptor binding disrupt its inhibitory activity">mutationally</a>₮ activated <a href="http://www.ncbi.nlm.nih.gov/pubmed/7518616" title="the immunophilin FKBP-12, a target of the macrolides FK506">TbetaR-I</a> , (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/1412444.html?nr=8&amp;pmid=9545258" title="employing the triple mutation L193A,P194A,T204D in a yeast two-hybrid system">TRAP-1</a>) can distinguish <a href="http://www.ncbi.nlm.nih.gov/pubmed/19214138?dopt=Abstract" title="Cells were particularly prone toward radiation toxicity when carrying, in addition to (TGFBR1) *6A, the variant allele of rs11568785">*the receptor</a> from wild-type receptor) in response to transient (Variant alleles with the deletion of <a href="http://www.ncbi.nlm.nih.gov/pubmed/19390964" title="A polymorphic 9-bp deletion in exon 1 of TGFBR1 (TGFBR1*6A)">exon-1</a> designated 6A) expression of TGFBR-(<a href="http://www.ncbi.nlm.nih.gov/pubmed/18316594" title="TGFBR1*6A is a common hypomorphic variant of the type 1 TGFB">type</a>)-1<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10801739.html?nr=7&amp;pmid=15833881" title="variants of the TGFBR1*6A allele and for the TGFB1 T29C and *TT">*6A</a> (rs<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13490089.html?nr=4&amp;pmid=19004027" title="the TGFBR1*6A allele (rs11466445)">11466445</a>)
there are&nbsp; <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9801021.html?nr=3&amp;pmid=12446693" title="generated TGF-beta type I receptors (also termed ALK5s) with mutations in the L45 loop of the kinase domain, termed ALK5(D266A) and ALK5(3A)">distinct</a> (binding of <a href="http://www.ncbi.nlm.nih.gov/pubmed/12082094" title="molecular markers characteristic of pre- and hypertrophic chondrocytes, such as...">X</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/12446693" title="mutation in the L45 loop region did not affect the binding of inhibitory Smads but did abrogate...">linked</a>〃• inhibitor) receptor-initiated intracellular pathways that are found to occur also« which bind <a href="http://www.ncbi.nlm.nih.gov/pubmed/10025408" title="in complex with the FK506-binding protein FKBP12 in the cytoplasmic portion of the TGFBR1 receptor">FK506</a>␠ (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12900981.html?nr=5&amp;pmid=18684975" title="generate, activate latent TGFbeta">Tacrolimus</a>) immunosuppressive drugs - (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19494318" title="ALK1 Smad1/5/8, ALK5 Smad2/3 markers: an increased Id-1 (inhibitor of DNA binding-1)/PAI-1 (plasminogen activator inhibitor-1) ratio expression in human cartilage">PAI1</a>; <a href="http://www.ncbi.nlm.nih.gov/pubmed/10498890" title="response to TGF-beta1, without altering TGF-beta1 - mediated induction of PAI-I">plasminogen</a>
activator inhibitor-1), by the <a href="http://www.ncbi.nlm.nih.gov/pubmed/22610405/" title="HA-promoted angiogenesis, which involved RHAMM-TGFβRI signaling">levels</a> of <a href="http://www.ncbi.nlm.nih.gov/pubmed/22100658" title="radiotherapy can increase cardiovascular disease (CVD) risk examined the effects of two polymorphisms, TGFβ1 29C&gt;T and PAI-1 5G&gt;4G, on CVD incidence">activated </a>receptors
required to maintain active intracellular messengers SMADs
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/21172820" title="TGFβ receptor (TβR) activates R-Smad-dependent pathways, such as Smad2/3">SMAD2</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/17099224" title="TGF-beta RNA-binding protein with multiple splicing (RBPMS), a member of the RNA-binding protein family, physically interacts with Smad2, Smad3 and Smad4 both in vitro and in vivo">SMAD4</a>) RNA-binding protein with multiple splicing (<a href="http://www.ncbi.nlm.nih.gov/pubmed/17099224" title="TGF-beta RNA-binding protein with multiple splicing (RBPMS), a member of the RNA-binding protein family, physically interacts with Smad2, Smad3 and Smad4 both in vitro and in vivo">RBPMS</a>) complex, however <a href="http://www.ncbi.nlm.nih.gov/pubmed/17099224?dopt=Abstract" title="RNA-binding protein with multiple splicing (RBPMS) physically interacts with Smad2, Smad3 and Smad4 both in vitro and in vivo">Smad3</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/21068203" title="Variation in TGFβ1, TGFβR1, and Smad3 seemed to influence survival after diagnosis of colon and rectal cancer">partners</a> subsequently translocated binds <a href="http://www.ncbi.nlm.nih.gov/pubmed/14718519?dopt=Abstract" title="TbetaRI mediated by Smad7 is an effective mechanism for governing negative feedback in TGFbeta signaling">Smad7</a>₮ to <a href="http://www.ncbi.nlm.nih.gov/pubmed/20663871" title="Smad7 has two modes of interaction with type I receptors">type I</a> receptor (TGFbeta RI (<a href="http://www.ncbi.nlm.nih.gov/pubmed/18830930" title="xpression patterns of TGFB () signaling protein">ALK5</a>)) that the effect is dependent on TGFB-induced transcription (rapidly activate <a href="http://www.ncbi.nlm.nih.gov/pubmed/12974945" title="Systematic analysis of the TGF-beta / Smad signalling pathway">TGFbeta/Smad</a> signaling) in the cytoplasm shuttle into the nucleus through <a href="http://www.ncbi.nlm.nih.gov/pubmed/14729511" title="may be an important mechanism in the vessel wall for controlling TGF-beta responses in endothelial cells">Smad</a> proteins as primary intracellular mediators.</div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2012/11/transforming-growth-factor-beta-1.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhsm1e2Wrt4JuAsy4oYRiWTKIgQYpUioE0iwLOw7_FxFhvPYNUW3Zbz8weIzasUsXID0M0a4LQqsFFfR_iy4QfFdwNHs7AGI7_aGPRrp6XAT9wdwfQHP0CFwmNDYKNwv1NIaTrrtA/s72-c/+2+TGFBR1+molecules+ternary.png" height="72" width="72"/><thr:total>1</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-7746751100782321896</guid><pubDate>Thu, 16 Aug 2012 22:36:00 +0000</pubDate><atom:updated>2012-08-16T12:54:30.834-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">BMP</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>CRYSTAL STRUCTURE OF ACTIVIN RECEPTOR TYPE II KINASE DOMAIN FROM HOMO SAPIENS</title><description><div style="text-align: justify;">
<a href="https://picasaweb.google.com/100787464692550241934/ACVR2B#5777392506621428962"><img align="right" alt="TITLE CRYSTAL STRUCTURE OF ACTIVIN RECEPTOR TYPE II KINASE DOMAIN TITLE 2 FROM HUMAN" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgoksqAmXpkvx8dCfYWm4Cd49gjRqoGTFQ-DTIFp459h7i-ibKiOtCjXN768M2Y7Bvd471O8ISm_AmcsuM0meh2GueofmGOQ1JHowoEbWNmnPuMPRS1SHYa6eatmRsAXgTx4BOoRQ/s512/2QLU-organic2.png" style="border: 0px solid; height: 236px; width: 200px;" title="TITLE CRYSTAL STRUCTURE OF ACTIVIN RECEPTOR TYPE II KINASE DOMAIN TITLE 2 FROM HUMAN" /></a><a href="http://www.ncbi.nlm.nih.gov/pubmed/17893364" title="The crystal structure reveals...">ACVR2B</a> of <a href="http://www.ncbi.nlm.nih.gov/pubmed/15304227" title="achieved by binding to two ActRII chains that immobilize activin in a type I binding-competent orientation">type I</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/8049070" title="isoforms IIB2 and IIB4 were the major mRNA species expressed in both female and male gonads and extragonal reproductive tissues">IB</a> the major mRNA species found during <a href="http://www.ncbi.nlm.nih.gov/pubmed/7916681" title="isolated ActRIIB cDNA clones revealed that ActRIIB2 was the major isoform found in rat testis">reproductive</a> development, <a href="http://www.ncbi.nlm.nih.gov/pubmed/15123686" title="mutants able to bind ActRII but unable to bind ALK4 and which would be, therefore, candidate type II activin receptor antagonists">type II</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/21353874" title="Actvin and myostatin bind to activin type II receptors (ActRIIA and ActRIIB) http://www.ncbi.nlm.nih.gov/sites/homologene/863">IIA</a> structurally <a href="http://www.ncbi.nlm.nih.gov/pubmed/16135664" title="expression (P&lt;0.05) of ActRIIA and betaglycan mRNA were found in the hen pituitary gland">related</a> activin receptors Locus:
<a href="http://www.ncbi.nlm.nih.gov/pubmed/9621519" title="a 1.2-Mb fragment of human genomic DNA on 3p22-p21.3, we found the gene encoding activin receptor type IIB">3p22.2</a> : [<a href="http://www.ncbi.nlm.nih.gov/gene/93">§§</a>; <a href="http://www.ihop-net.org/UniPub/iHOP/gs/86233.html?ID=95565">†</a>] and activates its <a href="http://www.ncbi.nlm.nih.gov/pubmed/19699739" title="cloned and characterized from grass carp sequence identity (80-96%) to its counterparts in human">serine/threonine</a> kinase type-2 receptor
then phosphorylates and activates (required for <a href="http://www.ncbi.nlm.nih.gov/pubmed/12660162" title="The crystal structure of the complex is consistent with recruitment of two type I receptors into a close packed arrangement at the cell surface">extracellular</a> ligand binding the <a href="http://www.ncbi.nlm.nih.gov/pubmed/16330774" title="a soluble form of the activin type IIB receptor (ACVR2B), which can cause dramatic increases in muscle mass">myostatin</a>* signaling pathway), 'the<a href="http://www.ncbi.nlm.nih.gov/pubmed/16039645" title="in the dorsal neural tube (In the developing vertebrate) interact with the Activin receptors, which signal via a different set of SMAD proteins than BMPs"> type</a>-1' (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21503889" title="BMP-1 has been characterized previously, the role of type II BMP receptors in osteoblasts is to be well clarified">BMPs</a>)&nbsp; via a different set of <a href="http://www.ncbi.nlm.nih.gov/pubmed/12414726" title="signal in patterning the axial vertebrae, and that Gdf11 binds to both ActRIIA and ActRIIB, and induces phosphorylation of Smad2">SMAD</a> proteins. '<a href="http://www.ncbi.nlm.nih.gov/pubmed/21538804" title="BMP signaling is dependent upon activation of Type I BMP receptor">BMPR-II</a>' may be compensated by BMP utilization of Acvr2a and Acvr2b including (<a href="http://www.ncbi.nlm.nih.gov/pubmed/10772805" title="(BMPR-II) is a type II serine/threonine kinase receptor">ALK</a>) activin receptor-like kinase. <a href="http://www.ncbi.nlm.nih.gov/pubmed/15629804" title="BMP-signaling system, consisting of BMP2, BMP4, type II and I receptors, is present in bovine antral follicles">BMP</a>-activated <a href="http://www.ncbi.nlm.nih.gov/pubmed/15542835" title="the activities of its interacting proteins">Smads</a>, a <a href="http://www.uniprot.org/uniprot/Q13705" title="Function:... on serine residues of the C-terminal tail">SMAD</a> proteins
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17849440" title="A more severe phenotype was also found in ActRIIB+/- Smad2+/- mice"> receptor</a>, in the <a href="http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=2h64" title="Exchange of only one or two residues results in BMP-2 variants">embryonic</a>
development (Müllerian ducts (<a href="http://www.ncbi.nlm.nih.gov/sites/homologene/863" title="H.sapiens">Left-right</a> axis <a href="http://www.uniprot.org/uniprot/Q13705" title="(ACVR1, ACVR1B or ACVR1c) Defects in ACVR2B are the cause of visceral heterotaxy">malformations</a>)) and <a href="http://www.ncbi.nlm.nih.gov/pubmed/12770730" title="the ovary contains type I and II receptors and Smads">developmental</a> condition
(<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10424026.html?nr=10&amp;pmid=15096953" title="Genes currently implicated in human heterotaxy include ZIC3, LEFTYA, CRYPTIC, and ACVR2B. Roles for NKX2.5">heterotaxy</a>) by heterozygous <a href="http://www.ncbi.nlm.nih.gov/pubmed/9916847" title="ACVR2B mutations are present only rarely among human LR axis malformation cases">mutation</a> in the ACVR2B gene's conserved
<a href="http://www.ebi.ac.uk/citexplore/citationDetails.do?dataSource=MED&amp;externalId=17893364" title="human ActRIIB kinase domain in complex with adenine establishes the conserved bilobal architecture consistent with all other catalytic kinase domains">bilobal</a>
architecture <a href="http://www.ncbi.nlm.nih.gov/pubmed/12112458" title="nodal signals through the activin type II receptors to specify the left-sidedness by means of a threshold mechanism">moiety</a> (which is orally active in two <a href="https://picasaweb.google.com/100787464692550241934/ACVR2B#5777371230893962530" title="(ActR-IB activation can be mimicked by T206D mutation of Thr-206 to aspartic acid))">in-vivo models</a>) due to an interaction by adenine in the fully
active form of (<a href="http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=2QLU" title="ABSTRACT Crystal structure of activin receptor type IIB kinase domain">ActRIIB</a>)&nbsp; critical for proper <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12191236.html?nr=6&amp;pmid=16930017" title="EGF-CFC, ACVR2B, and LEFTYA are all members of a transforming growth factor-beta signal transduction pathway">left-right</a> development at later <a href="http://www.ncbi.nlm.nih.gov/pubmed/14738881" title="proliferation in the human ovary during the crucial period of development leading up to primordial follicle formation">gestations</a> well into adulthood. TGF-beta type II receptor <a href="http://www.ihop-net.org/UniPub/iHOP/pm/654800.html?nr=7&amp;pmid=8702914" title="the binding was most efficient to BMPR-IB compared with the other type I receptors">GDF-5</a> [Growth/differentiation factor-5] bound to different sets distinct from the effects of <a href="http://www.ncbi.nlm.nih.gov/pubmed/20466801" title="(ACE-031) increases muscle mass independent of fiber-type expression">ACE-031</a>* (a soluble form of activin type IIB receptor (ActR-IB activation can be mimicked by <a href="http://www.ncbi.nlm.nih.gov/pubmed/8622651" title="mutation of Thr-206 to aspartic acid">T206D</a> mutation of Thr-206 to '<a href="http://lnwme.blogspot.com/search?q=aspartic" title="Showing posts sorted by relevance for query aspartic">aspartic</a> acid')), either activin receptor-like kinase 4 (<a href="http://www.ncbi.nlm.nih.gov/pubmed/9748228" title="activin bound exclusively to ALK4 (ActRIB)">ALK4</a>), and interacts with a&nbsp; relationship between <a href="http://www.ncbi.nlm.nih.gov/pubmed/12385827" title="he effect of betaglycan and InhBP/p120 on both inhibin A and inhibin B binding to the activin receptors ActRIIA and ActRIIB2">inhibin</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/11266516" title="inhibin-binding protein, InhBP (p120), associates strongly with the type IB activin receptor (Alk4) in a ligand-responsive manner">activin</a> which is essential modulator for the 'modifiers' interaction. Activin-A and a <a href="http://www.ncbi.nlm.nih.gov/pubmed/19903896" title="ALK1 is a member of the transforming growth factor-beta type I family of receptors">ALK1</a> pathway increases apoptosis in lymphatic vessels, myostatin [<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10041322.html?nr=8&amp;pmid=14517293" title="BMP7-induced heteromeric receptor complex formation is blocked by competition for the common type II receptor, ActRIIB">MSTN</a>] , also referred as growth and differentiation<a href="http://www.ncbi.nlm.nih.gov/pubmed/10391213" title="myostatin (encoded by the gene Mstn, formerly Gdf8) has an important role in establishing this skeletal pattern. During early mouse embryogenesis"> factor 8</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21353874" title="identifiable in part by common features of Thr265 as a gatekeeper residue and back pocket supported by Phe247">GDF-8</a>)&nbsp; like that of its <a href="http://www.ncbi.nlm.nih.gov/pubmed/15342483" title="Gdf11 and Bmp4 are essential for outgrowth and positioning of the ureteric bud, the inducer of metanephric mesenchyme">homolog</a>&nbsp;(<a href="http://www.ncbi.nlm.nih.gov/pubmed/12546816" title="suggesting that similar strategies">GDF11</a>) inhibited Osteogenic <a href="http://www.ncbi.nlm.nih.gov/pubmed/10504300" title="binding of BMP-6 to type I and type II receptors was similar to that of OP-1/BMP-7">protein-1</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/7790373?dopt=Abstract" title="binding of OP-1 to the complex of ActR-I and ActR-II">OP-1</a>) also known as <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12935386.html?nr=5&amp;pmid=18436533" title="Type II receptor utilization differed significantly between BMP-2/4 and BMP-6/7">BMP</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/18436533" title="ACVR2A was more critical to signaling by BMP-6/7 than BMP-2/4">6</a>/<a href="http://www.ncbi.nlm.nih.gov/pubmed/18621057" title="BMP-7 is secreted as a stable complex">7</a> via&nbsp; ActR <a href="http://www.ncbi.nlm.nih.gov/pubmed/9872992?dopt=Abstract" title="regardless of which type I receptor partner is coexpressed">type II</a> receptors.</div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2012/08/crystal-structure-of-activin-receptor.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgoksqAmXpkvx8dCfYWm4Cd49gjRqoGTFQ-DTIFp459h7i-ibKiOtCjXN768M2Y7Bvd471O8ISm_AmcsuM0meh2GueofmGOQ1JHowoEbWNmnPuMPRS1SHYa6eatmRsAXgTx4BOoRQ/s72-c/2QLU-organic2.png" height="72" width="72"/><thr:total>1</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-2306835499854908790</guid><pubDate>Sun, 15 Jul 2012 22:40:00 +0000</pubDate><atom:updated>2012-07-15T12:40:56.322-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">BMP</category><category domain="http://www.blogger.com/atom/ns#">phosphatidylinositol</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>FLRG (follistatin-related gene; 3)</title><description><div style="text-align: justify;">
<a href="https://picasaweb.google.com/100787464692550241934/FSTL3#5765525103308409634"><img align="right" alt="figure 1 Follistatin/Osteonectin-like EGF domain" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjDmOAzmcwEgEXdRsNLVLmel2aJ8AOlR2O1L20w7Ty-FY_NXDNV8i6bTQkT-UUBtxs-pJGgdYmZTYZ0MfEyAzSt35Iqlh9LdAJ39BaqtwScc2fSOCEHLAz_idCA1LoeNwA29Oy7oA/s800/3b4v-2kcx-surface-1.png.png" style="border: 0px solid; border: 0px solid; height: 121px; width: 200px;" title="figure 1 Follistatin/Osteonectin-like EGF domain" /></a>Follistatin/<a href="http://pfam.sanger.ac.uk/family/PF09289" title="From pusedogene: Follistatin/Osteonectin-like EGF domain">Osteonectin</a>-like <a href="http://www.uniprot.org/citations/15574124" title="These proteins are involved in the regulation of various biological effects mediated by their binding to TGF-beta (transforming growth factor-beta) superfamily members, activin A and bone morphogenetic proteins">EGF</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/12618130" title="A soluble protein containing the follistatin and the EGF domains">domain</a>, the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10545653.html?nr=4&amp;pmid=14739256" title="FSTL3 is most highly expressed in the placenta and testis, whereas FST is highest in the ovary and kidney,">FSTL3</a> gene chromosome 19p13: [<a href="http://www.ncbi.nlm.nih.gov/gene/10272">§§</a>; <a href="http://www.ihop-net.org/UniPub/iHOP/gs/95393.html?ID=95565">†</a>, <a href="http://www.uniprot.org/uniprot/O95633">␠</a>]. FLRG (follistatin-related gene; <a href="http://www.ncbi.nlm.nih.gov/pubmed/12039070" title="the FLRG () gene is missing one exon that codes a third FS domain found in FS">3</a>) found to be stored in <a href="http://www.ncbi.nlm.nih.gov/pubmed/14692692" title="FLRG () protein possesses dualproperties in secretory pathways">secretory granules</a> of the cells, encodes contains 2 <a href="http://www.uniprot.org/citations/17878677" title="(FLRG) encodes a secretory glycoprotein that has characteristic cysteine-rich follistatin domains">cysteine</a>-rich secretory proteins functioning as a secreted glycoprotein once <a href="http://www.ncbi.nlm.nih.gov/pubmed/12697670" title="the ability of FS288 and FSTL-3 to bind and neutralize activin B relative to activin A">bound</a> to 2 <a href="http://www.ncbi.nlm.nih.gov/pubmed/22052913/" title="he N-terminal domain (ND) of Fstl3 interacts uniquely with myostatin as compared with activin A">potential</a> N-glycosylation sites an <a href="http://www.uniprot.org/citations/11459787" title="highly homologous in both primary sequence and exon/intron domain structure to the activin-binding protein, follistatin">exon/intron</a> domain structure both the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9203494.html?nr=5&amp;pmid=11948405" title="these two proteins participate in a negative feedback loop which regulates the activin function">activin</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/15451561" title="ActRIIs. ARIP2 interacts with both ActRIIs and RalBP1 (Ral binding protein 1) through different domains">domain</a> its <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9173089.html?nr=9&amp;pmid=12194980" title="circulating myostatin is bound to at least two major proteins">propeptide</a> (<a href="http://lnwme.blogspot.com/2012/05/myostatin-as-part-of-latent-complex-in.html" title="large extracellular multidomain proteins a 12.5-kD propeptide">WFIKKN2</a>) of the C terminus and FSTL3 <a href="http://www.uniprot.org/citations/12531697" title="Follistatin and FLRG proteins downmodulate the effects of activin A and BMP2 on erythroid maturation">inhibited</a> <a href="http://www.uniprot.org/citations/16627583" title="myostatin was more potent than bone morphogenetic proteins (BMPs) 6 and 7, and BMPs 2 and 4 were inactive in binding to FST isoforms">BMP2</a>, it is related to the <a href="http://lnwme.blogspot.com/2012/06/follistatin-natural-antagonist-of.html" title="angiogenin is endocytosed and translocated to the nucleus and forms a tight 1:1* complex free inhibitor (follistatin) to bound inhibitor is approximately '3:1 with RNH1 (ribonuclease/angiogenin inhibitor 1)">class 1-1</a> complex free inhibitor follistatin modules functioning as a <a href="http://www.ncbi.nlm.nih.gov/pubmed/16737827" title="Apparent sizes of the protein were 14 and 28 kDa">27 kD</a> secreted glycoprotein involved in the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12556736.html?nr=1&amp;pmid=17868029" title="FLRG is involved in the regulation of various biological processes through its binding to members of the TGFbeta (transforming growth factor beta) superfamily">TGFbeta</a>-inducible <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13184121.html?nr=4&amp;pmid=17395406" title="FLRG is involved in the regulation of various biological effects through its binding to members of the transforming growth factor beta (TGFbeta) superfamily such as activin A and myostatin">expression</a> of the FLRG <a href="http://www.ncbi.nlm.nih.gov/pubmed/17924133" title="controlling nutrition intake is important when studying gene expression responses">gene</a>, or by transfection with <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8855885.html?nr=9&amp;pmid=11571638" title="specific interaction of Smad3 and Smad4 proteins with the Smad-binding element consensus motif">Smad</a> protein effects on <a href="http://www.uniprot.org/citations/16336961" title="these results highlight a new mechanism by which FLRG and follistatin regulate human hematopoiesis">hematopoiesis</a> during <a href="http://www.uniprot.org/citations/15451575" title="the process by which red blood cells (erythrocytes) are produced sometimes also haematopoiesis or hemopoiesis) is the formation of blood cellular components">erythropoiesis</a>, promoting the primary <a href="http://www.ncbi.nlm.nih.gov/pubmed/18664625" title="to induce megakaryopoiesis, whereas the inverse is not occurring">mechanism</a> of action to <a href="http://www.ncbi.nlm.nih.gov/pubmed/15471966" title="The FS homolog, FSTL3 (), also binds activin (), but lacks any HBS and cannot associate with cell surfaces">bioneutralize</a>º <a href="http://www.ncbi.nlm.nih.gov/pubmed/21160961" title="Activins are secreted proteins belonging to the TGF-β family of signaling molecules">activin</a> for both follistatin (FS) and FS-<a href="http://www.uniprot.org/citations/16338475" title="Follistatin-like 3 are known critical regulators of fetal growth and differentiation">like 3</a> (FSTL-3) <a href="http://www.ncbi.nlm.nih.gov/pubmed/11948405" title="Follistatin binds to activin A with high affinity, and prevents activin binding to its own receptors">modulation</a> of <a href="http://www.uniprot.org/citations/18768470" title="biochemical evidence support a significant interaction of the N-terminal domain of FSTL3 with activin A">activin</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11451568" title="activin receptor ()-interacting proteins (ARIPs) ssociates not only with ActRIIs but also with Smads, and controls activin">ActRIIs</a>),&nbsp; <a href="http://www.uniprot.org/citations/22052913" title="he structure reveals that the N-terminal domain (ND) of Fstl3 interacts uniquely with myostatin as compared with activin A, because it utilizes different surfaces on the ligand">myostatin</a>, and other TGF beta superfamily signaling and uniquely with <a href="http://www.ncbi.nlm.nih.gov/pubmed/19074574" title="Several mRNAs altered by spaceflight were associated with muscle growth, including the phosphatidylinositol 3-kinase">phosphatidylinositol 3</a>-kinase a <a href="http://lnwme.blogspot.com/search?q=phosphatidylinositol">hypothetical complex</a> activity in <a href="http://pseudofam.pseudogene.org/pages/psfam/showFams.jsf?genome=0&amp;format=family&amp;id=PF09289" title="This protein family, FOLN, has 1 out of 16 genes found to have a total of 1 pseudogenes">pseudogene</a>º secretory function composed of a protein family of<a href="http://omim.org/entry/605343" title="a module protein family, which is composed of extracellular matrix-associated glycoproteins"> extracellular matrix</a>-associated glycoproteins functioning as a secreted glycoprotein.</div><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2012/07/flrg-follistatin-related-gene-3.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjDmOAzmcwEgEXdRsNLVLmel2aJ8AOlR2O1L20w7Ty-FY_NXDNV8i6bTQkT-UUBtxs-pJGgdYmZTYZ0MfEyAzSt35Iqlh9LdAJ39BaqtwScc2fSOCEHLAz_idCA1LoeNwA29Oy7oA/s72-c/3b4v-2kcx-surface-1.png.png" height="72" width="72"/><thr:total>3</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-3246641453587329712</guid><pubDate>Sun, 24 Jun 2012 23:13:00 +0000</pubDate><atom:updated>2012-06-24T13:13:26.987-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">BMP</category><title>Follistatin a natural antagonist of myostatin.</title><description><div style="text-align: justify;">
<a href="https://picasaweb.google.com/100787464692550241934/Follistatin#5757712218425905282"><img align="right" alt="Follistatin PDB: 2p6a and Model_1.PDB" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgofL7mWGmNh5Hk9jImWFYyBNna2LT4ebEZORO5ALSUo4irnfI7yquDqxAq7cSq7EVtTr5CK0CIc3aHOqnfI3_acILgYK2ZctBRW8If9mj0vh_S38A5jpV7W4B0r3m5sNPktuyX5Q/s640/ala.png" style="border: 0px solid; height: 142px; width: 200px;" title="Follistatin PDB: 2p6a and Model_1.PDB" /></a>Follistatin <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9235033.html?nr=3&amp;pmid=12039070" target="_blank" title="Follistatin (FS) is well characterized as an activin-binding protein">Activin</a>-binding protein (FS)-gene <a href="http://www.uniprot.org/citations/12651901" target="_blank" title="follistatin, ACTRIA, ACTRIB, ACTRIIA, ACTRIIB">ACTRIIA</a>-B* locus: 5q11.2: [<a href="http://www.ncbi.nlm.nih.gov/gene/10468" target="_blank">§§</a>; <a href="http://www.ihop-net.org/UniPub/iHOP/gs/95565.html?ID=88591" target="_blank">^</a>]. Follistatin regulates its own <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13665122.html?nr=1&amp;pmid=19106105" target="_blank" title=", activin induces follistatin transcription primarily through the action of Smad3 at an intronic Smad-binding element (SBE1)">bioavailability</a>, in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14364117.html?nr=1&amp;pmid=18184649" target="_blank" title="FST by binding and bio-neutralizing activin and several other transforming growth factor-beta ligands">intron 1</a>, compromises <a href="http://www.ncbi.nlm.nih.gov/pubmed/11580864?dopt=Abstract" target="_blank" title="BMP is preceded by an increase in phosphorylation of the Smad-1 significantly inhibited by the BMP antagonists noggin and follistatin">Smad</a>-binding element (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19106105" target="_blank" title="activin induces follistatin transcription primarily through the action of Smad3 at an intronic Smad-binding element (SBE1)">SBE1</a>‡)-mediated transcription <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12872326.html?nr=3&amp;pmid=18601690" target="_blank" title="Folliculo-stellate cells (FS-cells) are star-shaped and follicle-forming cells in the anterior pituitary gland">follicular</a>º development. Once bound, angiogenin is <a href="http://www.uniprot.org/citations/16627583" target="_blank" title="FST isoforms were administered endogenously or exogenously, correlated closely with surface binding activity">endocytosed </a>and translocated to the nucleus and forms a tight <a href="http://lnwme.blogspot.com/2012/03/ctnnb1-catenin-cadherin-associated.html" target="_blank" title="(proliferation versus differentiation, (1:1º) or cardiac left-right (LRº)ª asymmetry) at TBE1 site (TCF7L2)">1:1</a>* <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10634850.html?nr=5&amp;pmid=15369773" target="_blank" title="anterior-posterior axis and mesoderm formation in mouse embryos LEFTYA, (left-right determination factor) an antagonist, as is FST, an inhibitor of mesoderm induction">complex</a> free inhibitor to <a href="http://www.ncbi.nlm.nih.gov/pubmed/12697670?dopt=Abstract" target="_blank" title="the relative activity of each activin in tissues where both are produced, such as in the ovary, could be quite different">bound inhibitor</a> is approximately '<a href="http://www.ncbi.nlm.nih.gov/pubmed/3949066" target="_blank" title="implications of these results on the proposed role of the inhibitor/ribonuclease system">3:1</a> with <a href="http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=1z7x" target="_blank" title="This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells">RNH1</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/8077341" target="_blank" title="the inhibin-activin-follistatin system in the corpus luteum appears to function in an autocrine fashion">ribonuclease</a>/<a href="http://www.uniprot.org/citations/18245525" target="_blank" title="FST plays a critical role in the production of multiple-organ metastasis, predominantly by inhibiting the angiogenesis">angiogenin</a> inhibitor 1) in women with polycystic ovary syndrome (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/487405.html?nr=9&amp;pmid=8567852" target="_blank" title="what the concentrations of FS are in follicles of women with polycystic ovary syndrome (PCOS)">PCOS</a>), showed that FST bound angiogenin (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12612391.html?nr=4&amp;pmid=17991437" target="_blank" title="induced angiogenesis and cancer cell proliferation; domains 2 and 3 of follistatin were the minimal structure requirement for angiogenin binding">ANG</a>) in two mutations domains <a href="http://www.uniprot.org/uniprot/P19883#P19883-2" target="_blank" title="318-344: Missing Isoform 2 -3 Also known as: FS315; Isoform 1">2 and 3</a> of FST retain <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10860270.html?nr=11&amp;pmid=15492265" target="_blank" title="he EGF-like module of the SPARC FS domain is angiosuppressive, and its structural conformation is critical for antiangiogenic activity">angiosuppressive</a> wild-type ribonucleolytic' activity in-vivo required for <a href="http://www.ncbi.nlm.nih.gov/pubmed/17991437" target="_blank" title="domains 2 and 3 of follistatin were the minimal structure requirement for angiogenin binding">ANG</a> binding. <a href="http://www.uniprot.org/citations/14563935" target="_blank" title="The 288-residue FS molecule has a distinctive structure comprised principally of three 10-cysteine FS domains">Three</a> FST isoforms have been described, <a href="http://www.ncbi.nlm.nih.gov/pubmed/17893249" target="_blank" title="activin A (Act A), and follistatin (FS) compose an organotrophic system; interestingly it is modified by heparin">heparin</a> binding (FS domain 1) <a href="http://www.uniprot.org/citations/14563935" title="epitopes for heparin binding (FS domain 1) or antibody recognition (FS domain 2)">or
antibody recognition</a> (FS domain 2) and the Follistatin Activin-binding protein molecule <a href="http://www.wikigenes.org/e/ref/e/14563935.html" target="_blank" title="activin binding and biological activity in both 1 &amp; 2 require bioactivity, deletion of N-terminal domain 3 was tolerated">as a whole</a>. A <a href="http://www.wikigenes.org/e/ref/e/14563935.html" target="_blank" title="the overall order of the domains in FS function, continuous sequence comprising">continuous</a> sequence composed of a single <a href="http://www.ncbi.nlm.nih.gov/pubmed/3120188" target="_blank" title="suggest that this compound be called follistatin to signify its structural difference from inhibin">polypeptide</a> chain comprising the N-terminal and FS <a href="http://www.uniprot.org/citations/14563935" title="FS domains 1 and 2 fulfills the minimum structural requirement for activin binding and FS bioactivity">domain 1-2</a>, for activin secreted <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10752175.html?nr=2&amp;pmid=15574124" target="_blank" title="FLRG (follistatin-related gene) is a secreted glycoprotein that is highly homologous with follistatin">glycoprotein</a> homologous, follistatin related protein (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11451569?dopt=Abstract" target="_blank" title="the follistatin (FS) gene family may actually contain two sub-families">FSRP</a>) fulfills the minimum structural requirement. The<a href="http://www.ihop-net.org/UniPub/iHOP/pm/886035.html?nr=4&amp;pmid=9034160" target="_blank" title="in plants, flavonol ST (FST) families, members the formation of bioactivated metabolites five known human cytosolic ST enzymes: an EST, an HSST, and three PSTs"> single FST</a> gene can be similar <a href="https://picasaweb.google.com/100787464692550241934/Follistatin#5757734862478759042"><img align="right" alt="PDB:2BOU can result in tumour development" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg-Csdryu7sj71yN7brDd3j-jHmb7Jxawlw6UP4AkOOB51IZ6Ef0b-P2mnPXmVWB1bv5DYPmJazP5G4TCSnIeu4XVjrHmBBV43yq4v8o7wleaCUEnvoto8e1f3QL-cN-eYIgHzicw/s640/2bou.png" style="border: 0px solid; height: 152px; width: 200px;" title="PDB:2BOU can result in tumour development" /></a>to <a href="http://en.wikipedia.org/wiki/PACAP" target="_blank" title="PACAP is similar to vasoactive intestinal peptide">vasoactive intestinal peptide</a>, as an indicator of bioactivated metabolites produced in the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15822649.html?nr=8&amp;pmid=21191111" target="_blank" title="stimulates the transcription of follistatin (Fst) that, in turn, restrains activin signaling">pituitary</a>º, FS may <a href="http://www.ncbi.nlm.nih.gov/pubmed/18184649" target="_blank" title="Autocrine signalling is a form of signalling in which a cell secretes a hormone or chemical messenge Paracrine signaling is a form of cell signaling in which the target cell is near the signal-releasing cell">therefore be</a> paracrine or autocrine <a href="http://www.ihop-net.org/UniPub/iHOP/pm/7702418.html?nr=10&amp;pmid=8515053" target="_blank" title="follistatin (FS) mRNA in gonadotropes [predominantly in cells with luteinizing hormone (LH) antigens] and folliculostellate cells (with S100 antigens)">regulators</a>, it encodes <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9383554.html?nr=5&amp;pmid=11856418" target="_blank" title="there is no clear consensus over the estimation of population structuring itself, with particular emphasis on the effects of high mutation rates and mutation patterns">three</a> FST <a href="http://www.ncbi.nlm.nih.gov/pubmed/16627583?dopt=Abstract" target="_blank" title="biological actions among the FST isoforms and FSTL3">isoforms</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/16150905?dopt=Abstract" target="_blank" title="FST288 and FSTL3 may have distinct intracellular roles">FST288</a>, <a href="http://www.uniprot.org/citations/17409095" target="_blank" title="Follistatin is expressed as two splice variants (FS288 and FS315)">FST303</a>, and <a href="http://www.ncbi.nlm.nih.gov/pubmed/16627583" target="_blank" title="FST315 enhanced, activin-dependent TT cell proliferation">FST315</a>), <a href="http://www.ncbi.nlm.nih.gov/pubmed/15472207" target="_blank" title="the soluble, circulating FST isoform is likely to be FS315">FST</a>ª and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14337341.html?nr=7&amp;pmid=18768470" target="_blank" title=". Follistatin-type antagonists, which include splice variants of follistatin (FS288 and FS315) and follistatin-like 3 (FSTL3)">FSTL3</a> follistatin messenger mRNA secreted proteins a gene product, N-terminal domain interacts with follistatin and activin A (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13276445.html?nr=3&amp;pmid=17347381" target="_blank" title="Activin-type II receptor B (ACVR2B) and follistatin haplotype associations with muscle mass and strength in humans">ACVR2B</a>) on DNA precursors synthesis (Cellular Component) <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13741779.html?nr=9&amp;pmid=19241394" target="_blank" title="extracellular factors that affect ligand stability, mobility, and receptor interaction">extracellular</a> region, human osteoblastic cell lines secreted glycoprotein <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8365212.html?nr=2&amp;pmid=10859029" target="_blank" title="mac25 is a follistatin (FS)-like protein that may be a secreted tumor-suppressor that binds activin A">homologous</a> with <a href="http://www.ncbi.nlm.nih.gov/pubmed/14563935" target="_blank" title="Several hydrophobic residues clustered within the C-terminal region of FS domains 1 and 2 are highly conserved among all FS domains">FLRG</a> Follistatin-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8542218.html?nr=13&amp;pmid=11236858" target="_blank" title="the expected incidence of marriage between people of the same surname (isonymy) In the United States, the populations studied have been of predominantly British origin.">Related</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8982863.html?nr=5&amp;pmid=11390138" target="_blank" title="In many indigenous minority populations there is a strong tradition of endogamy and a preference for consanguineous unions">Gene</a> correlated with <a href="http://www.ncbi.nlm.nih.gov/pubmed/17053951" target="_blank" title="inhibin-activin betaA- and betaB-subunits, follistatin, and Smads 2, 3 and 4">Smads</a> (of <a href="http://www.uniprot.org/citations/18184649" target="_blank" title="the critical role of intron 1 of the follistatin gene in mediating Smad-dependent effects of activin">intron 1</a>‡) and <a href="http://www.ncbi.nlm.nih.gov/pubmed/21829661/" target="_blank" title="enhancing effects of GDF9 in activin A-induced inhibin ²(B)-subunit mRNA">GDF9</a> to varied degrees but <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10173320.html?nr=6&amp;pmid=14641240" target="_blank" title="estimates of disease gene frequencies can be inaccurate unless they are made jointly with estimates of population substructure and consanguinity">activin</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21222045" target="_blank" title="INHBA (p = 0.021) increased lifespan comes at the cost of reduced fertility">inhibinβA</a> [<a href="http://www.ncbi.nlm.nih.gov/pubmed/20926007" target="_blank" title=", the gene encoding activin A (inhibin ²A [INHBA])">INHBA</a>]) <a href="http://www.ncbi.nlm.nih.gov/pubmed/2036994" target="_blank" title="follistatin binds to both activin and inhibin through the common beta-subunit">binding</a> was <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12544503.html?nr=7&amp;pmid=18001154" target="_blank" title="follistatin, and activin receptor proteins and mRNAs are present in the human fetal palate">abolished</a> a basic<a href="http://www.ncbi.nlm.nih.gov/pubmed/7887917" target="_blank" title="the heparin binding site of follistatin also contributes to its binding for activin"> heparin</a>-binding sequence (HBS; <a href="http://www.ncbi.nlm.nih.gov/pubmed/15471966" target="_blank" title="The FS homolog, FSTL3 (FLRG), also binds activin, but lacks any HBS and cannot associate with cell surfaces">residues 75-86</a>) in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/16198295" target="_blank" title="Two follistatin molecules encircle activin, neutralizing the ligand by burying one-third of its residues and its receptor binding sites">first of the three</a>ª (FS) follistatin, bind and <a href="http://www.ncbi.nlm.nih.gov/gene?db=gene&amp;report=generif&amp;term=10468#" target="_blank" title="GDF9 decreases basal and activin A-induced FST and FSTL3 expression">inhibit</a> after growth differentiation factor 9 (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21829661" target="_blank" title="(GDF9) enhances activin A-induced inhibin ²(B)-subunit mRNA levels">GDF9</a>) <a href="http://www.ihop-net.org/UniPub/iHOP/pm/16142435.html?nr=10&amp;pmid=21829661" target="_blank" title="basal and activin A-induced FST and FSTL3 mRNA and protein levels increased, but changes were reversed by adding GDF9">siRNA</a> suppresses <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10837224.html?nr=1&amp;pmid=16336961" target="_blank" title="their binding to activin and BMP, both members of the TGFbeta family">activin</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/485844.html?nr=11&amp;pmid=8562709" target="_blank" title="TGF beta 1, and activin A do not affect basal FS mRNA levels in human cultured granulosa-luteal (GL) cells">A</a> induced <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9203494.html?nr=5&amp;pmid=11948405" target="_blank" title="activin A increases FLRG and follistatin at both the mRNA and protein levels">binding</a> basal from a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8244559.html?nr=6&amp;pmid=7521084" target="_blank" title="follistatin and hedgehog-related genes in neural induction and patterning">region</a> of the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8473221.html?nr=7&amp;pmid=11044400" target="_blank" title=", follistatin but not noggin produces a dorsal-to-ventral switch in progenitor cell identity and neuronal fate">ectoderm</a> of the three <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10471500.html?nr=9&amp;pmid=15272372" target="_blank" title="factors secreted by the dorsal mesoderm (Noggin, Chordin, Follistatin, ...) which act by blocking BMP signaling">germ layers</a>, FST and FLRG,&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/12531697?dopt=Abstract" target="_blank" title="activin A with BMP molecules suggests that BMP2 and BMP4 differently affect activin A induction of erythropoiesis">downmodulate</a> on activin signaling the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15954699.html?nr=10&amp;pmid=21627449" target="_blank" title="Bone morphogenetic protein (Bmp) signaling plays a pivotal role in dorsal-ventral (DV) patterning in vertebrate embryos">effects</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8571638.html?nr=12&amp;pmid=11023800" target="_blank" title="appearance signal the opening of the receptive phase of the endometrium the inner membrane of the mammalian uterus">attenuated</a> by <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10624360.html?nr=11&amp;pmid=15451575" target="_blank" title="compared the role of Activin A, BMP2 and BMP4">BMPs</a> (R1A-R2B) bone morphogenetic protein have an Activin receptor. Follistatin is a natural antagonist of <a href="http://lnwme.blogspot.com/2012/05/myostatin-as-part-of-latent-complex-in.html" target="_blank" title="Myostatin as part of a latent complex in the vicinity of the (D) polymorphism MSTN">myostatin</a>.</div><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2012/06/follistatin-natural-antagonist-of.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgofL7mWGmNh5Hk9jImWFYyBNna2LT4ebEZORO5ALSUo4irnfI7yquDqxAq7cSq7EVtTr5CK0CIc3aHOqnfI3_acILgYK2ZctBRW8If9mj0vh_S38A5jpV7W4B0r3m5sNPktuyX5Q/s72-c/ala.png" height="72" width="72"/><thr:total>2</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-4801902292734947120</guid><pubDate>Tue, 29 May 2012 00:31:00 +0000</pubDate><atom:updated>2012-05-29T11:33:53.410-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">Kunitz-type genes</category><category domain="http://www.blogger.com/atom/ns#">TCF</category><category domain="http://www.blogger.com/atom/ns#">TGF-beta</category><title>Myostatin as part of a latent complex in the vicinity of the (D) polymorphism MSTN</title><description><div style="text-align: justify;">
<div class="separator" style="clear: both; text-align: center;">
</div>
<a href="https://picasaweb.google.com/100787464692550241934/MyostatinMay282012?authkey=Gv1sRgCM-T5fK99eiPsQE#5747735307185662850"><img align="right" alt="3hh2-(Myostatin) of known structure IPR008197 Whey_acidic_protein" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgufAxMhFQAgqD9dHOWoQdqwQK2rs7b9uihyfdny4csMP9KeWCNp5JH2plgIwHWt1FC0eu0OD4IX29lgQLfF-Dwk2AXvn8xqnaCKoY8ZmTaa54lyU0zdiflyqSDfYeIdNxRzKPC7g/s720/allpre1.png" style="border: 0px solid; border: 0px solid; height: 127px; width: 200px;" title="3hh2-(Myostatin) of known structure IPR008197 Whey_acidic_protein" /></a>Myostatin , also known as growth and <a href="http://www.ncbi.nlm.nih.gov/pubmed/12595574" title="growth and differentiation factor-associated serum protein-1 (GASP-1), contains multiple domains associated with protease-inhibitory proteins, including a whey acidic protein domain">differentiation</a> factor 8 (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9173089.html?nr=9&amp;pmid=12194980" title="the transforming growth factor beta superfamily that negatively regulates skeletal muscle mass">GDF8</a>)
a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12917200.html?nr=2&amp;pmid=18535106" title="Follistatin binds and neutralizes members of the TGFbeta superfamily including activin, myostatin, and growth and differentiation factor 11 (GDF11)">TGF-beta</a>
family member is (an inhibitor of <a href="http://www.ncbi.nlm.nih.gov/pubmed/16110474" title="myostatin auto-regulates its gene expression through a Smad7 dependent mechanism in myogenic cells">myogenesis</a>) secreted into the plasma expressed in human
skeletal <a href="http://www.ncbi.nlm.nih.gov/pubmed/18600566?dopt=Abstract" title="therapeutic strategies for intractable genetic muscular disorders including muscular dystrophy">muscle</a>
(expressed in many different <a href="http://www.ihop-net.org/UniPub/iHOP/pm/991903.html?nr=3&amp;pmid=9139826" title="(GDF-8), is expressed specifically in developing and adult skeletal muscle">muscles</a>
throughout the body) as a 12.5-kD <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12917295.html?nr=3&amp;pmid=18596030" title="WFIKKN2 are large extracellular multidomain proteins consisting of a WAP, a follistatin, an immunoglobulin, two Kunitz-type protease inhibitor domains, and an NTR domain">propeptide</a>
and a 26-kD glycoprotein (myostatin-immunoreactive protein) a <a href="https://picasaweb.google.com/100787464692550241934/MyostatinMay282012?authkey=Gv1sRgCM-T5fK99eiPsQE#5747735284592507730" title="Dimerization of two such complexes may occur">dimer</a>
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/15083369" title="MSTN AluI A55T (exon 1), BanII K153R, TaqI E164 K and BstNI P198A (all in exon 2) markers and the ACE insertion (I)/deletion (D) polymorphism">three</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/10610713" title="Two of these, A55T in exon 1 and K153R in exon 2, are polymorphic in the general population">exons</a> and <a href="http://www.ncbi.nlm.nih.gov/pubmed/15083369?dopt=Abstract" title="an association of the D or I allele with baseline strength, isometric and concentric torque or arm muscle cross-sectional area">two</a>
introns) locus: <a href="http://www.ncbi.nlm.nih.gov/pubmed/9843994" title="The myostatin gene comprises three exons and two introns, maps to chromosomal region 2q33.2">2q32.2</a> [<a href="http://www.ncbi.nlm.nih.gov/gene/2660">§§</a>; <a href="http://www.ihop-net.org/UniPub/iHOP/gs/88591.html?ID=92582">^</a>] and WFIKKN2 protein (WAP, follistatin/<a href="http://www.ncbi.nlm.nih.gov/pubmed/12595574" title="(GASP-1), contains multiple domains associated with protease-inhibitory proteins, including a whey acidic protein domain, a Kazal domain, two Kunitz domains">kazal, kunitz</a>, immunoglobulin, and netrin domain (WFIKKN2) containing 2) binds
mature <a href="http://www.ncbi.nlm.nih.gov/pubmed/18596030" title="WFIKKN1/WFIKKN2 and GDF8/GDF11 in early vertebrates">GDF8/myostatin</a> and myostatin propeptide WFIKKN1 the paralogue
(functional overlap) of these proteins. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12655088.html?nr=8&amp;pmid=17924133" title="these responses are further modified by whey protein intake. Conversely, myostatin-binding protein FLRG and cell-cycle kinase cdk2 mRNA increased only in the protein group">Myostatin</a>
» <a href="http://www.ncbi.nlm.nih.gov/pubmed/16464946" title="is primarily known for its ability to inhibit muscle growth. It also has actions on glucose metabolism">decreases</a> muscle mass*, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12562348.html?nr=13&amp;pmid=17641910" title="Repeated-bouts of EE (eccentric exercise) induced a large down-regulation of myostatin mRNA">Myostatin</a>-binding
protein <a href="http://www.ncbi.nlm.nih.gov/pubmed/19346981" title="myostatin (MSTN) 2379 A &gt; G and 163 G &gt; A and follistatin (FST) -5003 A &gt; T and -833 G &gt; T single nucleotide polymorphisms (SNP)">FLRG</a> Protein, <a href="https://picasaweb.google.com/100787464692550241934/MyostatinMay282012?authkey=Gv1sRgCM-T5fK99eiPsQE#5747735284592507730"><img align="right" alt="2p6a with the two neighboring molecules 2p6A 3hh2 and 3hh2a in the vicinity of the (D) polymorphism MSTN of the consensus motif" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhvNzChgpae2Mu8ca5a_39NZkk2CBVPhZQXYbWVg3D49dHmoaTER8UcE-D4rfs5VO52UmbUGUfLhbYvLXsV5k9IM92dKvPSi0dBkh6Hify6m6benVCYD_721IoOJNybh_6_2ic92A/s800/selene2.png" style="border: 0px solid; height: 121px; width: 200px;" title="2p6a with the two neighboring molecules 2p6A 3hh2 and 3hh2a in the vicinity of the (D) polymorphism MSTN of the consensus motif" /></a><a href="http://www.ncbi.nlm.nih.gov/pubmed/22052913" title="Myostatin is tightly controlled by Fst-like 3 follistatin (Fst)-type proteins, which is the only Fst-type molecule that has been identified in the serum bound to myostatin.">follistatin</a>-related
gene « (15 g <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13752576.html?nr=1&amp;pmid=19299575" title="whey protein ingestion on acute and long-term signaling responses of resistance exercise">whey</a>) via signals originating from the <a href="http://www.ncbi.nlm.nih.gov/pubmed/18309369" title="Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone.">gut</a> (e.g., <a href="http://www.blogger.com/post-edit.g?blogID=14256471&amp;postID=4801902292734947120" title="GLP-1R and the GIP receptor (GIP-R) he N terminus (NTD) this region of interaction is mediated by the nGLP1R (receptor variants) released from the gut">GIP</a>),
increased <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14584576.html?nr=7&amp;pmid=19828686" title="erum response factor mRNA (miRNA) and genes associated with muscle growth are expressed differently following EAA (Essential amino acids) ingestion">mRNA</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9533722.html?nr=6&amp;pmid=12175483" title="muscle concentrations of mRNAs encoding two growth factors">muscle</a>
cell&nbsp; (<a href="http://www.ncbi.nlm.nih.gov/pubmed/18835929" title="Myostatin is a potent antianabolic regulator of muscle mass that may also play a role in energy metabolism">anabolic</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/18535106" title="Follistatin binds and neutralizes members of the TGFbeta superfamily including activin, myostatin, and growth and differentiation factor 11 (GDF11)">stimulus</a>*) proliferation and differentiation, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14301432.html?nr=1&amp;pmid=18203713" title="Adipogenesis is the process of cell differentiation by which preadipocytes become adipocytes Adipocytes, also known as lipocytes and fat cells">adipogenesis</a>
is <a href="http://www.ncbi.nlm.nih.gov/pubmed/15181048" title="depression of adipogenesis">blocked</a> by <a href="http://www.ncbi.nlm.nih.gov/pubmed/18203713" title="The inhibitory effects of myostatin on adipogenesis were blocked by RNAi silencing of beta-catenin and diminished by overexpression of dominant-negative TCF4">RNAi</a> silencing of signal to Wnt/beta-catenin/TCF4 <a href="http://lnwme.blogspot.com/2012/04/tcl7l2-traits-and-activity-that-affect.html" title="the Wnt signal, TCFs function as transcriptional repressors on the effects of myostatin (GDF8 the MSTN gene) on (TCF7L2) proliferation">pathway</a> muscle and <a href="http://www.ncbi.nlm.nih.gov/pubmed/11855847" title="muscle development in Myostatin knockout mice is associated with reduced adipogenesis">adipose</a> tissue develop from the same mesenchymal stem cells.
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10782933.html?nr=5&amp;pmid=15988002" title="are synthesized as precursors with prodomain sequences that are proteolytically removed">Synthesized</a>
(removed by <a href="http://en.wikipedia.org/wiki/Proprotein_convertase_2" title="Subtilisins are secreted in large amounts from many Bacillus species there are 9 different subtilisin-like genes">subtilisin-like</a>
proprotein convertases (<a href="https://twitter.com/#%21/VackvSuG/status/203617363826970624" title="Bacillus Amyloliquefaciens Strain D747; Exemption From the Requirement of a Tolerance">SPCs</a>))
is the biologically active portion of the protein that <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10041351.html?nr=1&amp;pmid=14623262" title="hSGT may play a role in the regulation of myostatin secretion and activation">hSGT</a>
(human small glutamine-rich tetratricopeptide repeat-containing
protein) may play a role in regulation, and complexes with
amyloid-beta like signal sequence. Myostatin circulates as part of a
latent complex containing <a href="http://www.ncbi.nlm.nih.gov/pubmed/11459935" title="follistatin, or other molecules that block signaling through this pathway may be useful agents for enhancing muscle growth for both human therapeutic and agricultural applications">follistatin</a>-related gene <a href="http://www.ncbi.nlm.nih.gov/pubmed/12595574?dopt=Abstract" title="a protein that binds and inhibits activin">FLRG</a>. Activin type II receptors (<a href="http://www.ncbi.nlm.nih.gov/pubmed/15451561" title="FLRG () protein binds activin and myostatin () with a high affinity">ActRIIs</a>) transmit the <a href="http://www.ncbi.nlm.nih.gov/pubmed/11459935" title="the propeptide (GDF8), follistatin, or other molecules that block signaling through this pathway may be useful agents">activin</a>-binding protein (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9173089.html?nr=9&amp;pmid=12194980" title="myostatin propeptide and FLRG are major negative regulators of myostatin">FLRG</a>)
a protein that binds and inhibits <a href="http://www.ncbi.nlm.nih.gov/pubmed/18535106" title="Follistatin binds and neutralizes members of the TGFbeta superfamily including activin">activin</a>*, the polymorphisms, <a href="http://www.ncbi.nlm.nih.gov/pubmed/21931616" title="[LV and right ventricle (LV, RV,)] with biopsy">showed</a>
their relation to - left » ventricular mass (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/14103111.html?nr=10&amp;pmid=19136503" title="MSTN on the variant degree of physiological hypertrophy (increase in the volume of an organ) of male athletes">LVM</a>)
- of endurance, <a href="http://www.ncbi.nlm.nih.gov/pubmed/15451561" title="the primary receptors that transmit the activin signal to intracellular signaling pathways">acitvin</a> receptor type « <a href="http://www.wikigenes.org/e/gene/e/93.html#Biological_context_of_ACVR2B" title="/pubmed/16930017 ACVR2B, and LEFTYA are all members of a pathway that is critical for proper left-right development">ACVR</a>-
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17878677?dopt=Abstract" title="FLRG protein binds to and neutralizes several transforming growth factor-beta (TGF-beta) superfamily members, including myostatin">IIB</a> and the myostatin propeptide is known to bind and <a href="http://www.ncbi.nlm.nih.gov/pubmed/10362012?dopt=Abstract" title="myostatin could play an important role in cardiac development and physiology">inhibit</a>
myostatin in vitro.</div><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2012/05/myostatin-as-part-of-latent-complex-in.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgufAxMhFQAgqD9dHOWoQdqwQK2rs7b9uihyfdny4csMP9KeWCNp5JH2plgIwHWt1FC0eu0OD4IX29lgQLfF-Dwk2AXvn8xqnaCKoY8ZmTaa54lyU0zdiflyqSDfYeIdNxRzKPC7g/s72-c/allpre1.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-2651945850625601989</guid><pubDate>Wed, 16 May 2012 07:36:00 +0000</pubDate><atom:updated>2012-05-15T22:12:16.855-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">GPCR</category><title>DOMAIN OF AREA COMPLEXED GLP-1_GLP1R_GCG_EXENDIN-4 REGION IF INTERACTION RECEPTOR VARIANTS</title><description><div style="text-align: justify;">
<a href="https://picasaweb.google.com/100787464692550241934/GLP1ReceptorGLP1R#5742925027019970194"><img align="right" alt="Figure:1_Crystal Structure Of Glucagon-Like Peptide-1 In Complex With The Extracellular Domain Of The Glucagon-Like Peptide-1 Receptor_Figure:3 &amp; 4" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhKW30_2M5-0ZC2wYSAAepZGl-3hPQtmqKm6vcBk9iAD6iK5Fn_OnNsbIxHk0w7fztRCGcNUNh9b3clMAFR7QNRMhB0hvqmj_MBVZwAown86DV4vAT1CCDQmgauHhogvaWZuOYgmw/s720/helixloopc.png" style="border: 0px solid; border: 0px solid; height: 178px; width: 262px;" title="Figure:1_Crystal Structure Of Glucagon-Like Peptide-1 In Complex With The Extracellular Domain Of The Glucagon-Like Peptide-1 Receptor_Figure:3 &amp; 4" /></a>GLP1 receptor (GLP1R) a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12767038.html?nr=3&amp;pmid=18287102" title="GLP-1 is involved in glucose homeostasis, and activation of GLP-1R in the plasma membrane of pancreatic beta-cells potentiates glucose-dependent insulin secretion">seven-transmembrane</a>
family <a href="http://www.ncbi.nlm.nih.gov/pubmed/11035202?dopt=Abstract" title="pancreatic B">B</a>
G protein-coupled receptor (<a href="http://www.ncbi.nlm.nih.gov/pubmed/22147710" title="human glucagon-like peptide-1 receptor (GLP-1R) has a critical role in GLP-1 peptide">GPCR</a>) locus <span class="cytogenetic-location text-font">: <a href="http://omim.org/geneMap/6/361?start=-3&amp;limit=10&amp;highlight=361">6p21.2</a></span> [<a href="http://www.ncbi.nlm.nih.gov/gene/2740" target="_blank">§§</a>; <a href="http://www.ihop-net.org/UniPub/iHOP/gs/88666.html?ID=92582" target="_blank">^</a>],
with a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13227343.html?nr=1&amp;pmid=17444618" title="is a ligand binding domain with differential affinity for Ex4 and GLP-1:">N-terminal</a>
extracellular <a href="http://www.ncbi.nlm.nih.gov/pubmed/19861722" title="The structure PDB 3I0L shows that important hydrophobic ligand-receptor interactions are conserved in agonist-and antagonist-bound forms of the extracellular domain">domain</a> is a
potent <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8564786.html?nr=4&amp;pmid=11116211" title="purified N-terminal fragment (hereafter referred to as NT) &amp; wild-type (WT) GLP-1R indicate that the NT domain of the GLP-1R is able to bind GLP-1">insulinotropic</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/15853665.html?nr=4&amp;pmid=21540554" title="incretin glucose-dependent insulinotropic polypeptide (GIP)">incretin</a>
hormone important in maintaining <a href="http://www.ihop-net.org/UniPub/iHOP/pm/11103197.html?nr=6&amp;pmid=15975668" title="(GLP-1R) polymorphism in which threonine 149 is substituted with a methionine residue">blood</a>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/21046358?dopt=Abstract" title="Prolonged exposure to elevated glucose (also termed glucotoxicity) disturbs calcium homeostasis">glucose</a>
homeostasis, through their receptors, GLP1R and glucose-dependent
insulinotropic polypeptide <a href="http://www.ncbi.nlm.nih.gov/pubmed/22105074" title="core domain of their receptors. These core domains are important not only for specific ligand binding but also for ligand-induced receptor activation">GIPR</a>. The
glucagon-like peptide-1 (GLP-1) <a href="http://www.ncbi.nlm.nih.gov/pubmed/21868452" title="(e.g. exendin 9-39) may interact solely with the receptor N terminus">C-terminal</a>
regions <a href="http://www.ncbi.nlm.nih.gov/pubmed/21616920" title="full-length (1-37) and truncated (7-37) forms of GLP-1">bind</a>
to the N terminus (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20649595" title="The membrane-tethered NTD of hGLP-1R displayed similar affinity for GLP-1 and Ex4">NTD</a>) this <a href="http://www.ncbi.nlm.nih.gov/pubmed/20529866" title="molecular approximations the first extracellular loop and the the juxtamembrane region">region</a> of <a href="http://www.ncbi.nlm.nih.gov/pubmed/19815559" title="Ex4 NMR structure (PDB code: 1JRJ) with the antagonist Ex4-(9–39)-bound GLP1 receptor amino-terminal domain crystal structure (PDB code: 3C59) that followed by replacing with the agonist GLP1 NMR structure (PDB code: 1D0R)">interaction</a>
is&nbsp; <a href="http://www.ncbi.nlm.nih.gov/pubmed/11035202?dopt=Abstract" title="incretin hormone glucagon-like peptide 1(7-36)amide (GLP-1) are mediated by the GLP-1 receptor (GLP-1R)">mediated
by</a> the <a href="http://www.ncbi.nlm.nih.gov/pubmed/20690636" title="the nGLP-1R compared to the full-length GLP-1R">nGLP1R</a>
(receptor variants) released from the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10554120.html?nr=7&amp;pmid=15034199" title="(GLP-1) is the most insulinogenic of the glucagon-like peptides secreted mainly by L cells in the small and large intestine in response to the ingestion of nutrients">gut</a>
as an <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9676433.html?nr=10&amp;pmid=12684481" title="The area postrema AP a circumventricular organ is a key site for peripheral GLP-1 to activate central autonomic regulatory sites">incretin</a>&nbsp;
and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15371411.html?nr=3&amp;pmid=20547734" title="GLP-1 receptor, including full-length (1-37) and truncated (7-37) forms of GLP-1 that can each exist in an amidated form and the related peptide oxyntomodulin">oxyntomodulin</a>
(<a href="http://www.ihop-net.org/UniPub/iHOP/pm/14677036.html?nr=8&amp;pmid=20147608" title="There was a high degree of cosensitivity to GLP-1 and OXM, and the effects of both hormones were blocked by the GLP-1R antagonist exendin(9-39)">OXM</a>)
and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10006197.html?nr=8&amp;pmid=14514604" title=": GLP-1R agonists and DPP-IV inhibitors have shown promising results in clinical trials">DPP-IV</a>
inhibitors are structurally related gastrointestinal hormone
secreted from <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14316919.html?nr=3&amp;pmid=18445652" title="enteroendocrine L cells and potentiates glucose-dependent insulin secretion in pancreatic beta cells However, beta-arrestin-1 knockdown did not affect GLP-1 R surface expression">enteroendocrine</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/14220871.html?nr=7&amp;pmid=20026306" title="Glucagon-like peptide-1 (GLP-1) is one of the incretins">L
cell</a>s into the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13144302.html?nr=7&amp;pmid=17306374" title="enhancing glucose-induced insulin secretion, continuous GLP-1R activation also increases insulin synthesis, beta cell proliferation">blood</a>
stream governed by the tethered <a href="http://www.ncbi.nlm.nih.gov/pubmed/15528268" title="(beta)arr2 interaction locks the receptor in a high-affinity conformation, which can be explored by some, but not all, ligands">(beta)arr2</a>.
GLP-1R and the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14190817.html?nr=4&amp;pmid=19841474" title="(GIP) are gut-derived incretin hormones that regulate blood glucose levels">GIP</a>
receptor (<a href="http://lnwme.blogspot.com/search?q=gip" title="GCG glucagon ╬, : [§§; ^]. tree /88573.html?ID=88574">GIP-R</a>) <a href="http://www.ncbi.nlm.nih.gov/pubmed/17505054" title="These results suggest that the GIP-R is ubiquitated, resulting in downregulation of the actions of GIP">affect</a> the
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/22147710" title="mutation of several residues displayed distinct pathway responses with respect to wild type receptor">ligand</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12767038.html?nr=3&amp;pmid=18287102" title="in the N terminus of nGLP-1R and a loop between two antiparallel beta-strands">dependent</a>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/22147709" title="extracellular loop ECL">signal</a> bias
of extracellular loop-ECL2 mutations) pharmacological
properties&nbsp; (<a href="http://en.wikipedia.org/wiki/Liraglutide#Pharmacokinetics" title="Liraglutide is a once-daily GLP-1 derivative the currently approved Byetta form of exenatide, which is twice daily, but considerably more frequent than the once weekly Bydureon form of exenatide">exendin-4</a>&nbsp;
(from the venom of the lizard <a href="http://www.ncbi.nlm.nih.gov/pubmed/8405712" title="exendin-4 and exendin-(9-39)">Heloderma</a>
<a href="http://en.wikipedia.org/wiki/Gila_monster#Drug_research" title="a synthetic version of a protein, exendin-4, derived from the Gila monster's saliva">suspectum</a>)
is used in humans, as a <a href="http://www.ncbi.nlm.nih.gov/pubmed/18287102" title="Exendin-4 has a C-terminal extension of nine amino acid residues known as the Trp cage, which is absent in GLP-1">therapeutic</a>
tool: <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15876137.html?nr=6&amp;pmid=21562063" title="The glucagon like peptide-1 receptor (GLP-1R) agonist liraglutide">liraglutide</a>)
of these proteins, is <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15200525.html?nr=9&amp;pmid=20374430" title="GLP-1R mediated neurotrophic and anti-apoptotic actions co-contribute to the neuroprotective property of GLP-1">neuroprotective</a>.
GLP1 and GLP1R are expressed in the <a href="http://www.ncbi.nlm.nih.gov/pubmed/19077438" title="Nuclei in the hypothalamus include the arcuate nucleus (ARC), ventral medial nucleus (VMN), dormal medial nucleus (DMN), paraventricular nucleus (PVN) and lateral hypothalamic area (LHA). Brainstem regions shown include the dorsal raphe nucleus (DRN) and nucleus tractus solitarius (NTS). BBB = blood brain barrier">brain</a> and
associated <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8986619.html?nr=9&amp;pmid=11262390" title="multiple extrahypothalamic regions of the mouse and rat CNS, including cell groups in the cerebellum, medulla, amygdala,hippocampus, dentate gyrus, pons, cerebral cortex, and pituitary">mechanisms</a>
in the central nervous <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1752213.html?nr=8&amp;pmid=9886047" title="GLP-1 ot only functions as a satiety factor but also acts as a neurotransmitter or neuromodulator in anatomically and functionally distinct areas of the central nervous system">system</a>,
regulation of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15065564.html?nr=10&amp;pmid=20413910" title="determined whether and how neonatal GLP-1 overexpression may modify hippocampal GR [glucocorticoid receptor] expression and thus programme adolescent behaviour in rats">neuroendocrine</a>
and behavioural responses in certain <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10476586.html?nr=7&amp;pmid=15279492" title="Gender-related differences were found in the hindbrain and medial hypothalamus for GLUT-2 and in the lateral hypothalamus for GLP-1R">cells</a>
in the brain. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13832375.html?nr=8&amp;pmid=19386626" title="(GIP-R) was decreased in islets from humans with T2DM as well as in isolated human islets treated with siRNA to TCF7L2">TCF7L2</a>
and GLP1R/GIPR expression effects on <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12334849.html?nr=1&amp;pmid=16931572" title="T2DM were correlated with pancreatic beta cell function">beta-cell</a>
function was decreased in human T2DM <a href="http://www.ncbi.nlm.nih.gov/pubmed/21094904?dopt=Abstract" title="glucose metabolism-dependent secretion of insulin from pancreatic β cells located within the islets of Langerhans">islets</a>
is a characteristic feature of NIDDM. GLP-1 stimulate secretion of
pituitary hormones. <a href="http://string-db.org/newstring_cgi/show_network_section.pl?identifier=P0C6A0" title="(By similarity)">GLP1</a> is a hormone derived from the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1752213.html?nr=2&amp;pmid=9886047" title="Glucagon-like peptide-1 (GLP-1) is derived from the peptide precursor pre-pro-glucagon (PPG)">preproglucagon</a>
molecule (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/15853665.html?nr=4&amp;pmid=21540554" title="glucagon receptor (Gcgr) results in increased levels of the insulinotropic hormone glucagon-like peptide 1 (GLP-1)">GCG</a>).
GLP1 a Glucagon Receptor Antagonist dose not bind peptides of
related structure glucagon, (GCG) does not modify (Unrelated,
non-diabetic <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1815097.html?nr=2&amp;pmid=10078851" title="implies that structural variants of these genes do not contribute to variation">Pima</a>
Indians) the growth or apoptosis of a seven transmembrane (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11116211" title="charged residues concentrated at the distal TM2/extracellular loop-1 (EC1) interface">TM</a>) domain
protein (GLP1) in normal human <a href="http://www.ihop-net.org/UniPub/iHOP/pm/101035.html?nr=9&amp;pmid=8404634" title="the most potent endogenous stimuli of insulin secretion and have powerful antidiabetogenic effects">pancreas</a>
ectopic expression of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/8770921?dopt=Abstract" title="the observed extrapancreatic actions of GLP-1">pancreatic</a>
master regulator <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14153967.html?nr=6&amp;pmid=19755420" title="at two distinct steps; it increases the proliferation of liver cells predisposed to transdifferentiated in response to PDX-1 and promotes the maturation of transdifferentiated cells along the pancreatic lineage">PDX-1</a>*
(pancreatic and duodenal homeobox gene 1) neuroendocrine <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13321816.html?nr=9&amp;pmid=17631146" title="Cholangiocytes are the epithelial cells of the bile duct cholangiocytes undergo a neuroendocrine transdifferentiation and their biology is regulated by neuroendocrine hormones">transdifferentiation</a>*
of pancreatic ductal cells within the <a href="http://en.wikipedia.org/wiki/Endocrine_system" title="system of glands each of which secretes a type of hormone directly into the bloodstream to regulate the body">endocrine</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/14301268.html?nr=12&amp;pmid=18162507" title="human pancreatic islets and the underlying signaling pathways">pancreas</a>. The activity of this receptor is mediated by G proteins which activate <a href="http://string-db.org/version_9_0/newstring_cgi/show_network_section.pl?identifier=9606.ENSP00000362353&amp;all_channels_on=1&amp;interactive=no&amp;network_flavor=evidence&amp;targetmode=proteins">adenylyl cyclase</a>,&nbsp; <a href="http://www.ncbi.nlm.nih.gov/gene/114#bibliography" title="GeneRIFs: Gene References Into Functions">ADCY8</a>&nbsp; (brain) plays a central role including signalling via the GLP1R.</div><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2012/05/domain-of-area-complexed-glp.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhKW30_2M5-0ZC2wYSAAepZGl-3hPQtmqKm6vcBk9iAD6iK5Fn_OnNsbIxHk0w7fztRCGcNUNh9b3clMAFR7QNRMhB0hvqmj_MBVZwAown86DV4vAT1CCDQmgauHhogvaWZuOYgmw/s72-c/helixloopc.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-1258797235906046559</guid><pubDate>Thu, 26 Apr 2012 04:35:00 +0000</pubDate><atom:updated>2012-04-30T23:10:23.575-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">LEF1</category><category domain="http://www.blogger.com/atom/ns#">Pima</category><title>TCF7L2 traits and activity that affect its expression</title><description><div style="text-align: justify;">
<a href="https://picasaweb.google.com/100787464692550241934/April252012#5735544706289890898"><img align="right" alt="TCL7L2 transcription factor 7-like 2 (T-cell specific, HMG-box) Ribbon diagram showing the overlay (CTNNB1 NCBI.pdb" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhpz7PBPHNknmAcNsMKqqh6qkNnOLJWq3LUqvSuWh1Wc51D8BDaJxdj1W9C7-z9QSUOTL7Bvw1WmVGhs0WyuaClzOhPgSKWVjtivejSJw2JRZoTGarEPwzSemxQXv4Acz2LBPFLJA/s640/ncbi-lys-1jdh2.png" style="border: 0px solid; height: 123px; width: 326px;" title="TCL7L2 transcription factor 7-like 2 (T-cell specific, HMG-box) Ribbon diagram showing the overlay (CTNNB1 NCBI.pdb" /></a>TCF7L2 Transcription factor 7-like 2 acts through regulation of pro<a href="http://www.ihop-net.org/UniPub/iHOP/pm/15513765.html?nr=10&amp;pmid=20648057" title="glucagon-like peptide-1 (GLP-1) signalling chain. 167 patients underwent an oral glucose tolerance test">glucagon</a> (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13832375.html?nr=11&amp;pmid=19386626" title="interplay between TCF7L2 and GLP-1R/GIP-R expression">GLP-1R</a>) in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12594978.html?nr=12&amp;pmid=17661009" title="glucagon-like peptide-1 (GLP-1) secretion from intestinal L cells">enteroendocrine</a>
cells implicated in blood <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15391563.html?nr=5&amp;pmid=20682688" title="Common genetic variants in GCK and TCF7L2 are associated with higher fasting glucose and type 2 diabetes">glucose</a> homeostasis also called TCF4 of the four members of the downstream effector of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13231973.html?nr=9&amp;pmid=17392368" title="f human immunodeficiency virus (HIV)-associated dementia (HAD) progression in the cerebral spinal fluid of HAD patients">Wnt</a> signaling <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9801016.html?nr=10&amp;pmid=12446687" title="family of DNA-binding proteins">T-cell factor</a> (TCF ) to
human chromosome band 10q25.2, <a href="http://www.ncbi.nlm.nih.gov/pubmed/17683561" title="TCF7-like HMG box-containing transcription factors, and maps to human chromosome 10q25.3">25.3</a> : [<a href="http://www.ncbi.nlm.nih.gov/gene/6934">§§</a>; <a href="http://www.ihop-net.org/UniPub/iHOP/gs/92582.html?ID=87523">^</a>].&nbsp; Noninsulin-dependent,
susceptibality to TCF7L2, IVS3, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14221187.html?nr=13&amp;pmid=19934000" title="isk-conferring TCF7L2 genotypes (TT or TC at rs7903146) with wild-type genotype (CC)">C</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12336600.html?nr=6&amp;pmid=17020404" title="the T allele at rs7903146 of TCF7L2">T</a>&nbsp; <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13591123.html?nr=7&amp;pmid=19033397" title="The TCF7L2 rs12255372 polymorphism showed the highest odds ratio (OR) for type 2 diabetes">polymorphisms</a>* (and high-risk rs<a href="http://www.ncbi.nlm.nih.gov/pubmed/21707949" title="(SNP) of TCF7L2 (rs7903146) was genotyped and associations with gastric emptying (GE) of solids and liquids, gastric volume (GV), and satiation (maximum tolerated volume and symptoms after nutrient drink test)">7903146</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15722842.html?nr=9&amp;pmid=20540670" title="polymorphism of TCF7L2 (rs7903146 C/T) gene Additionally, CT and TT genotypes">TT</a> genotype and <a href="http://www.ncbi.nlm.nih.gov/pubmed/19473183?dopt=Abstract" title="insulin secretion was higher in the CT/TT group than in the CC group">low</a>-risk <a href="http://www.ncbi.nlm.nih.gov/pubmed/20957343?dopt=Abstract" title="Middle-aged normoglycaemic individuals carrying the rs7903146 TCF7L2 risk TT genotype show early signs of dysregulated glucose metabolism">CC</a> genotype) to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/17206141" title="HapB(T2D), to the ancestral T allele of a SNP, rs7903146">ancestral</a> T allele,
excess <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12566001.html?nr=4&amp;pmid=17805508" title="there were no relationships between the TCF7L2 single nucleotide polymorphism rs7903146 and androgen levels in Polycystic ovary syndrome (PCOS) a genetic disease">androgen</a> DNA binding domain (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9946296.html?nr=10&amp;pmid=12799378" title="AR and Tcf4 can interact directly and that this interaction may occur on the promoters or enhancers of particular genes">DBD</a>),&nbsp; PCOS-specific <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14254311.html?nr=5&amp;pmid=20092643" title="polycystic ovary syndrome (PCOS) BMI in patients with PCOS to unselected females of the same age range we genotyped 1,971 females">traits</a> and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14176139.html?nr=2&amp;pmid=20041287" title="There was no association of either of the two variants, rs7903146 of TCF7L2 and rs1111875 of HHEX, with the occurrence of PCOS in the Chinese population">activity</a> (The <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14241762.html?nr=8&amp;pmid=20142250" title="a known inverse association between type 2 diabetes (T2D) and prostate cancer">TCF7L2</a> allele <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14185391.html?nr=4&amp;pmid=20043145" title="did not find evidence of association between type 2 diabetes susceptibility variants through glucose homeostasis response to exercise">rs</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/18706099?dopt=Abstract" title="Tropical calcific pancreatitis (TCP) unique to developing countries in tropical regions invariable progression to diabetes polymorphism rs7903146">7903146</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/19258437?dopt=Abstract" title="rs7903146 (TCF7L2) polymorphisms were genotyped in 772 participants of the Dutch Famine Birth Cohort Study">º</a> ' <a href="http://www.ncbi.nlm.nih.gov/pubmed/18264689?dopt=Abstract" title="1,065 German participants for single nucleotide polymorphisms rs7903146 in TCF7L2">ª</a> ' <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15195949.html?nr=1&amp;pmid=20424228" title="f well-established common variants with type 2 diabetes in Indians">␠</a> associated with impaired <a href="http://www.ncbi.nlm.nih.gov/pubmed/20802253?dopt=Abstract" title="increase in insulin secretion upon improvement of glycemia by lifestyle intervention only in carriers of the risk alleles">incretin</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/19934000" title="TCF7L2 variant rs7903146 appears to affect risk of type 2 diabetes, at least in part, by modifying the effect of incretins on insulin secretion">signaling</a> is modified by use of <a href="http://www.ncbi.nlm.nih.gov/pubmed/18398040" title="TCF7L2 polymorphism and recent use of aspirin/nonsteroidal anti-inflammatory drugs">aspirin / NSAIDs</a>; <a href="http://www.ncbi.nlm.nih.gov/pubmed/19509102" title="significantly associated with type 2 diabetes (T2D) in Taiwanese subjects">rs</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14250927.html?nr=1&amp;pmid=20054294" title="TCF7L2 rs290487(C/T) are associated with a heightened risk of developing type 2 diabetes mellitus (T2DM)">290487</a> risk <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13691025.html?nr=5&amp;pmid=18972257" title="TCF7L2 gene (rs12255372 and rs7903146) were strongly associated with type 2 diabetes">allele</a> rs<a href="http://www.ncbi.nlm.nih.gov/pubmed/19002430?dopt=Abstract" title="rs7903146 and rs12255372 in TCF7L2; examine the association between these diabetogenic variants and gestational diabetes mellitus (GDM)">12255372</a>* ' <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15171169.html?nr=4&amp;pmid=20215779" title="gene-dietary fat interactions may influence glucose homeostasis-related phenotypes and play an important role in determining the increased risk of diabetes">º</a> ' <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14316867.html?nr=9&amp;pmid=18461161" title="Genes expressed in the pancreas interact together and their combined effect dramatically increases the risk for T2D">ª</a>&nbsp; (associated with <a href="http://www.ncbi.nlm.nih.gov/pubmed/17909099" title="TCF7L2 is not a major susceptibility gene for type 2 diabetes in Pima Indians">Pima</a> Indians) and rs <a href="http://www.ncbi.nlm.nih.gov/pubmed/18598350?dopt=Abstract" title="TCF7L2 (rs 10885409) was associated with increased LDL-cholesterol (p = 0.010) in NGT and total and LDL-cholesterol levels in combined cohort">10885409</a>)&nbsp; in <a href="http://www.ncbi.nlm.nih.gov/pubmed/19602480" title="(SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene TCf7L2">intron 3</a>, <a href="http://www.ncbi.nlm.nih.gov/pubmed/18166673" title="Short nucleotide repetitions (STRs) are commonly used as genetic markers">STR</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/18072015" title="DG10S478 allele X and its association with diabetic complications,">DG10S478</a> is located in <a href="http://www.ncbi.nlm.nih.gov/pubmed/21357677" title="By analyzing human isolated islets, we provide three explanations for this opposite regulation and the mechanisms of TCF7L2 on β-cell function and survival">islet</a>-selective open
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20696899" title="cis-regulatory regions bound by the intestine-restricted transcription factor CDX2 in colonic cells uncovered highly significant overrepresentation of sequences that bind TCF4">chromatin</a> within a 92-kb <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12486090.html?nr=8&amp;pmid=17601994" title="TCF7L2 intron 4 SNPs rs7895340, rs11196205, and rs12255372">intron 4 block</a> of <a href="https://picasaweb.google.com/100787464692550241934/April252012#5735544733168564466"><img align="right" alt="Figure (2.) TCF4 with 2LEF DNA oriefted to figure (1.) Crystal Structure Of A Human Tcf-4 BETA-Catenin Complex" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjH-13D-jMymidT47XgkMOsJWsaF-uMmeViLPHkui924LZITZ4Vcp64Qjj0UCeRMkU2Ve8pUIl4sFjRr4atqbiF32a9Hiw09_Is8TZgPpUIhyphenhyphen_MmTjvTPICaGAeZ8AgUlT1QKo6hg/s640/lef1-1g3j-1jdh-lys2.png" style="border: 0px solid; height: 136px; width: 227px;" title="Figure (2.) TCF4 with 2LEF DNA oriefted to figure (1.) Crystal Structure Of A Human Tcf-4 BETA-Catenin Complex" /></a>linkage
disequilibrium population-attributable risk of <a href="http://www.ncbi.nlm.nih.gov/pubmed/19636253" title="The actual prevalence of type 2 diabetes in the study population was 20%">21%</a> respectively for regulatory defects, of
the TCF7L2 gene, comprises <a href="http://www.ncbi.nlm.nih.gov/pubmed/20878273" title="TCF7L2 plays an important role for several vital functions in the pancreatic islet">17 exons</a>, an intron can influence <a href="http://www.ncbi.nlm.nih.gov/pubmed/19247628" title="TCF7L2 with forms containing exon 4 and 15 being most abundant in islets">islet</a> function,&nbsp; on exons 1 and 2 <a href="http://www.ncbi.nlm.nih.gov/pubmed/15853773" title="the functional relevance of two cis-acting binding elements D-glucuronic acid into L-iduronic acid of HS, endows the nascent polysaccharide chain with the ability to bind to growth factors and cytokines.">cis-acting</a>† binding
extracellular ectodomain elements through the beta-catenin / <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9422416.html?nr=1&amp;pmid=11931652" title="have identified the T-cell factor-4 (Tcf-4) motif and the activator protein-1 site as the major regulatory elements of the MMP-26 promoter">E(epithelial)</a>-cadherin pathway (GLCE† glucuronic acid epimerase: intestinal <a href="http://www.ncbi.nlm.nih.gov/pubmed/19141695?dopt=Abstract" title="after a high-fat meal were assessed. All subjects were genotyped for transcription factor 7-like 2 (TCF7L2) polymorphism">postprandial</a> in both differentiation,
undifferentiated <a href="http://www.ncbi.nlm.nih.gov/pubmed/17875931" title="These findings indicate that Sox proteins can act as both antagonists and agonists of beta-catenin/TCF activity">states</a>) lacking (CTBP-C-terminal* binding site) the essential function of the <a href="http://www.ncbi.nlm.nih.gov/pubmed/19816403?dopt=Abstract" title="germinal centre kinase family as a Tcf4 interactor in the proliferative crypts of mouse small intestine">kinase</a> activity in Wnt-TCF /
<a href="http://www.ncbi.nlm.nih.gov/pubmed/16564030?dopt=Abstract" title="beta-catenin might be a major factor regulating the import of Tcf4 from the cytoplasm into the nucleus">beta-catenin</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10606455.html?nr=7&amp;pmid=15525529" title="t CtBP lowers the availability of free nuclear beta-catenin for binding to TCF by sequestering APC">binding</a> domain. That hypoxia inducible factor-1alpha
(HIF-1a ) TCF1, and LEF1 contain a virtually identical N-<a href="http://www.ncbi.nlm.nih.gov/pubmed/20654575" title="N- and C-termini allows variability in TCF7L2 functions and regulations">terminal</a>
HMG box, numerous alternative splicings at its <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12155445.html?nr=4&amp;pmid=16547505" title="among which some contain binding domains for CtBP C-terminal binding protein">3' end</a>* affect its expression. TCF1-alpha mediated gene transcription (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9946296.html?nr=4&amp;pmid=12799378" title="there is a direct interaction between the AR DNA binding domain (DBD) and Tcf4">beta-catenin</a>)
CTNNB1-N-terminal binding domain competes with TCF-4 for direct
binding to beta-catenin DNA topoisomerase IIalpha (Topo IIalpha) inhibitors, merbarone and <a href="http://www.ncbi.nlm.nih.gov/pubmed/17983804" title="causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. It is used as a form of chemotherapy">etoposide</a> are component's. Followed by in the absence of Wnt ligands a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13800199.html?nr=6&amp;pmid=19304756" title="in the absence of Wnt ligands they bind TLE/Groucho proteins to act as transcriptional repressors">Groucho</a> (TLE1)-interacting
domain, the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9801016.html?nr=10&amp;pmid=12446687" title="This domain influences the DNA binding properties of TCF4">TCF4E</a> harbors a C terminus, binding site. <a href="http://www.ncbi.nlm.nih.gov/pubmed/12048202" title="beta-catenin-mediated induction was inhibited by dominant-negative TCF and by deletion of the TBE1 sequence">PKD1</a>-polycystin transactivating factors
include 4 TCF-binding elements (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9742577.html?nr=6&amp;pmid=12566320" title="promoter reporter construct containing the, TBE but not with mutant TBE. Mutant beta-catenin expression up-regulated the COX-2 promoter activity and the endogenous COX-2 mRNA">TBE</a>s) due to the activation of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10800007.html?nr=7&amp;pmid=15514942" title=", a putative TCF4-binding element (TBE) was identified in PTTG [pituitary tumor transforming gene] promoter region">beta-catenin/WNT</a> signaling. A Tcf-4-binding element (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9742577.html?nr=8&amp;pmid=12566320" title="implicate the Wnt signal transduction pathway in colon and liver carcinogenesis">TBE</a>) in the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8980043.html?nr=8&amp;pmid=11396184" title="An identified putative Tcf-4 binding element in the COX-2 promoter">COX-2</a> [cyclooxygenase-2] promoter may partly explain in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12020561.html?nr=4&amp;pmid=16569639" title="physiological function of Daxx, via interaction with Tcf4, to regulate proliferation and differentiation of colon cells">colon</a> and liver, carcinogenesis. In the absence of the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9663616.html?nr=4&amp;pmid=12711682" title="the Tcf/Lef family of the HMG box transcription factors are nuclear effectors of Wnt">Wnt signal</a>, TCFs function as transcriptional repressors on the effects of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14301432.html?nr=9&amp;pmid=18203713" title="substances such as follistatin that block the binding of myostatin to its receptor have significantly larger muscles">myostatin</a> (GDF8 the MSTN gene) on (TCF7L2) proliferation versus differentiation at <a href="http://www.ncbi.nlm.nih.gov/pubmed/12048202" title="beta-catenin-mediated induction was inhibited by dominant-negative TCF and by deletion of the TBE1 sequence">TBE</a> site 1.</div><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2012/04/tcl7l2-traits-and-activity-that-affect.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhpz7PBPHNknmAcNsMKqqh6qkNnOLJWq3LUqvSuWh1Wc51D8BDaJxdj1W9C7-z9QSUOTL7Bvw1WmVGhs0WyuaClzOhPgSKWVjtivejSJw2JRZoTGarEPwzSemxQXv4Acz2LBPFLJA/s72-c/ncbi-lys-1jdh2.png" height="72" width="72"/><thr:total>0</thr:total><georss:featurename>15-167 Puni Lani Loop N, Pāhoa, HI 96778, USA</georss:featurename><georss:point>19.556838076132298 -154.89044666290283</georss:point><georss:box>19.5530975761323 -154.89538216290282 19.560578576132297 -154.88551116290284</georss:box></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-6893434024090467562</guid><pubDate>Sun, 25 Mar 2012 22:34:00 +0000</pubDate><atom:updated>2012-04-04T12:35:23.990-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">APC</category><category domain="http://www.blogger.com/atom/ns#">Axin</category><category domain="http://www.blogger.com/atom/ns#">CDH1</category><category domain="http://www.blogger.com/atom/ns#">GLI3/ssh</category><category domain="http://www.blogger.com/atom/ns#">TCF</category><title>CTNNB1 catenin (cadherin-associated protein), beta 1 and formation of branching point structures beta-catenin / LEF demonstrating nucleation at TBE1 site (TCF7L2)</title><description><div style="text-align: justify;">
<a href="https://picasaweb.google.com/lh/photo/vP2Ghn34_dx-vAJAsXUlRNMTjNZETYmyPJy0liipFm0?feat=directlink" target="=&quot;_blank&quot;"><img align="right" alt="Catenin Beta 1, CTNNB PDB:3FQR and the closely related T-cell factor 1 (TCF-1) Lymphoid enhancer-binding factor (PDB; 2LEF[-1]) as the technical DNA coil," src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjGwoplVN_TwoO5zPWrJ87vjcgoL2wnyB7RKDHZv4_wHbzX94BP92L9gkH3yMXseMgJODjjYMaiPjQ3YZkVpgquA2zB8Noe0ElpUykNkF822QcW9aF8DiGT3krtFxOfyUYij-VWZw/s720/3fqr.png" style="border: 0px solid; height: 171px; width: 267px;" title="Catenin Beta 1, CTNNB PDB:3FQR and the closely related T-cell factor 1 (TCF-1) Lymphoid enhancer-binding factor (PDB; 2LEF[-1]) as the technical DNA coil," /></a>Catenin Beta 1, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13396772.html?nr=13&amp;pmid=17710160" title="i.e., beta-catenin">CTNNB</a>
are cell adhesion molecules called&nbsp;(<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9843038.html?nr=1&amp;pmid=12640114" title="catenin (cadherin-associated protein), delta 1">p120</a>*<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9223001.html?nr=6&amp;pmid=12370829" title="The interaction with p120(ctn) is likely to be direct, as the interaction occurs in K562 cells lacking functional adherens junctions and E-cadherin expression">␠</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10136084.html?nr=4&amp;pmid=14625392" title="heterotypic (mixed) complexes] are associated with alpha-and beta-catenin, plakoglobin (proportions variable among species), p120ctn of lens structure and functions, notably clear and sharp vision">catenin</a>)
cadherins (the (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13600674.html?nr=13&amp;pmid=19038973" title="recruiting beta-CATENIN into plasma membranes and promoting the formation of adherens junctions involving CDH1">CDH1</a>)
E-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12543392.html?nr=1&amp;pmid=18006853" title="The disruption of E-cadherin/beta-catenin complex formation promotes EMT, thereby stimulating tumor progression">cadherin</a>/catenin
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8767420.html?nr=3&amp;pmid=11254878" title="the level of co-localised peripheral staining and increased the level of cytoplasmic staining">complex</a>)
include the&nbsp; beta-catenins a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9842506.html?nr=9&amp;pmid=12588987" title="an inhibitor of T-cell factor 4 (TCF-4), and E-cadherin binding to beta-catenin">multifunctional</a>
molecule Locus: 3p22.1 [<a href="http://www.ncbi.nlm.nih.gov/gene/1499">§§</a>; <a href="http://www.ihop-net.org/UniPub/iHOP/gs/87523.html?ID=91509">^</a>].
Neurons also exhibited a higher CTNNB/TCF pathway association
(concentration versus accumulation) with cadherins; <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9485090.html?nr=6&amp;pmid=12061792" title="CAS with E-cadherin enhances the formation of E-cadherin/beta-catenin cell-cell adhesive complex">CAS</a>-chromosome
segregation 1-like (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9472850.html?nr=1&amp;pmid=12037680" title="conjugating enzyme UBC3/CDC34. UBC3B complements the yeast cdc34-2 cell cycle arrest mutant in S.cerevisiae">yeast</a>)
binds with E-cadherin but <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13496939.html?nr=12&amp;pmid=19003969" title="a yeast two-hybrid screen, betaTrCP, a negative regulator of beta-catenin was identified">not
with</a> beta-catenin. Which interacts with (Tcf-T-cell factor
where a functional <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12447507.html?nr=6&amp;pmid=17220880" title="the expansion of tumours and the inadequacy of their local vasculature results in areas of hypoxia where cell growth is typically constrained">hypoxia</a>
switch is <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15106247.html?nr=7&amp;pmid=20460486" title="and its role in hypoxia-induced aggressiveness. The clinical significance of beta-catenin and/or hypoxia-induced factor-1alpha (HIF-1alpha)">instigated</a>,
also <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9166502.html?nr=7&amp;pmid=11983685" title="beta-catenin and CARM1 can also act synergistically with LEF-1/TCF-4">coactivators</a>,
known as lymphocyte enhancer-binding factor, <a href="http://lnwme.blogspot.com/search?q=LEF" title="LEF1/TCF regions, expression of Beta-catenin/TCF complexes plakoglobin (gamma-catenin) aspects, induction of LEF1">Lef</a>) <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9748155.html?nr=2&amp;pmid=12830000" title="functions as a transcriptional activator in the nucleus">transcription
factor</a>s "<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12009889.html?nr=6&amp;pmid=16568448" title="A 17,700 compounds subset of the Pharmacia corporate collection was docked to this hot spot">hot
spots</a>," including <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12270201.html?nr=5&amp;pmid=17052462" title=". We have determined the crystal structure of a beta-catenin/BCL9/Tcf-4 triple complex at 2.6 A resolution">4
TCF</a>-triple complex binding elements, (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10740920.html?nr=6&amp;pmid=15888491" title="identification of nine putative Tcf/Lef-binding elements (TBEs) upstream to the ATG initiation site of the AKT1 gene">TBEs</a>)
express <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10298060.html?nr=14&amp;pmid=15077166" title="T-cell factor (TCF4 [?]), the specific inhibitor of the beta-catenin/TCF4 complex">TCF4</a>
(TCF7L2) <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13018351.html?nr=6&amp;pmid=18632682" title="Polycystin-1 (PC1), the product of the PKD1 gene mutated">polycystin</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/14407698.html?nr=8&amp;pmid=17979146" title="(PKD1) interacts with E-cadherin and is associated with altered cell aggregation and motility in prostate cancer (PC">PKD1</a>
gene (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/14198329.html?nr=5&amp;pmid=20028853" title="(PI3K)/Akt signaling pathways sustain medulloblastoma pathophysiology. phosphoinositide-dependent protein kinase 1 (PDK1), Akt, and [corrected] immunohistochemistry in all primary medulloblastomas">pathophysiology</a>∵)
a target of the beta-catenin/<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12030394.html?nr=8&amp;pmid=16724116" title="both proteins are prevented from association with the TCF-binding elements">TCF</a>
adhesion disruption pathway (proliferation <a href="http://www.ihop-net.org/UniPub/iHOP/pm/11508467.html?nr=1&amp;pmid=15853773" title="the functional relevance of two cis-acting binding elements for the beta-catenin-TCF4 complex">versus</a>
differentiation, (1:1º) or <a href="http://www.ncbi.nlm.nih.gov/pubmed/21757651" title="the development of second heart field-derived structures of the heart">cardiac</a> left-right (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13553920.html?nr=7&amp;pmid=19103803" title="Wnt/beta-catenin signaling and regulates the competence of the heart field to express left-sided genes">LR</a>º)ª
asymmetry) at TBE1 site (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9796392.html?nr=5&amp;pmid=12861022" title="This protein contains the N-terminal interaction domain for beta-catenin [?] but lacks the DNA binding domain">TCF7L2</a>). A minor nuclear-enriched monomeric form (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20419129" title="beta-catenin hypophosphorylated at T41/S45 can be spatially separated &amp; S45 serves a distinct nuclear function">ABC</a>), or an alternative (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/11381529.html?nr=4&amp;pmid=16442529" title="via Bcr: Tcf1 [HNF1homeobox A] in complex with beta-catenin">Tcf1</a>)
isoform of « TCF-4,&nbsp; <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10779184.html?nr=1&amp;pmid=15806138" title="The TCF4 promoter contains a single consensus TCF-binding site that is critical for activation by beta-catenin">outside</a>
of the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12917294.html?nr=1&amp;pmid=18593713" title="an essential mediator of the canonical Wnt signaling pathway. Wnts stabilize beta-catenin">canonical</a>
Wnt-regulated pathway from, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8431636.html?nr=7&amp;pmid=10966653" title="LEF-1/TCF, APC and conductin/axin are essential for wnt-controlled stabilization of beta-catenin">conductin</a>
/<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9224999.html?nr=4&amp;pmid=12000790" title="Normally, cytoplasmic beta-catenin associates with APC and axin">Axin</a>
or functional <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9163973.html?nr=7&amp;pmid=11940574" title="Axin1 or its homolog Axin2/Axil /conductin promotes beta-catenin phosphorylation">differences</a>
acts as a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1506301.html?nr=8&amp;pmid=9601641" title="upon which APC [?], beta-catenin and GSK3 beta [?] assemble to coordinate the regulation of beta-catenin signaling">scaffold</a>
upon <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9555355.html?nr=6&amp;pmid=12297048" title="Alzheimer's disease-linked gene presenilin 1 functions as a scaffold that rapidly couples beta-catenin phosphorylation">part</a>
of a complex including (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/1906439.html?nr=7&amp;pmid=10330403" title="APC [?] and GSK3beta is critical for the ability of Axin to regulate signaling via beta-catenin">APC</a>)
adenomatous polyposis coli enhancing <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10277263.html?nr=5&amp;pmid=15064706" title="a protective mechanism against the development of cancer.">beta-catenin</a>
turnover as part of a protective mechanism. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10206284.html?nr=5&amp;pmid=14993280" title="alpha-catenin and alpha-catulin have distinct activities that downregulate, respectively, beta-catenin and Ras signals">Alpha-catulin</a>
may associate with a beta-catenin fraction. In the absence of a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10531569.html?nr=7&amp;pmid=15327768" title="APC and axin bind to the same surface of, and compete directly for, beta-catenin">Wnt
signal</a>, APC <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13478040.html?nr=6&amp;pmid=19061640" title="A mutation in APC that deprives this protective function exposes the N-terminal phosphorylated serine/threonine residues of beta-catenin to (protein phosphatase 2A)PP2A">normally</a>
associates beta-catenin, the TCF7L2-PKD1∵ gene association is at the
expense of sensory <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14045111.html?nr=1&amp;pmid=19703993" title="rachnoidal cells associated with brain meninges, are usually benign resulted in increased expression of beta-catenin">neuronal</a>
fate, this <a href="http://www.ncbi.nlm.nih.gov/pubmed/19633924" title="Down regulation of axin expression and up regulation of beta-catenin were detected , Wnt signaling play a role in neuroepithelial brain tumors">transcript</a> does not include <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1321107.html?nr=12&amp;pmid=9467945" title="conventional APC, at least one of the four (Bloom Syndrome) BS-APC protein isoforms also interacts with beta-catenin">exon
1</a>.&nbsp; Virtually (in-vivo) all other (Wnt/beta-catenin)
neural crest derivatives stabilizes beta-catenin / LEF and then
upregulates downstream genes, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1866660.html?nr=6&amp;pmid=10318916" title="beta-Catenin plays a dual role in the cell">cell-cell</a>
adhesion and <a href="https://picasaweb.google.com/lh/photo/7OSuR8NaJvxmhyzOVIa_L9MTjNZETYmyPJy0liipFm0?feat=directlink"><img align="right" alt="Structure Of A
Beta-Trcp1-Skp1-Beta-Catenin Complex: Destruction Motif" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgjX4IWJfpaQ9c-akfEKdwTs6ePgaFFCKneoIAEIhScSeFIhz6xWzN5oIhQkV36_PAMIwhyMP3qGNXhHw2wxZ5tnmlabdh-LTx5JL1U3TG8pOrhur6vZsPLAxeGOl0FYVaOFlWXlA/s524/tyr-lef05.png" style="border: 0px solid; border: 0px solid; height: 152px; width: 187px;" title="Structure Of A Beta-Trcp1-Skp1-Beta-Catenin Complex:
Destruction Motif" /></a><a href="http://www.ihop-net.org/UniPub/iHOP/pm/12271691.html?nr=2&amp;pmid=17020613" title="in many types of human cancer. beta-catenin is stabilized by these mutations">Wnt</a>-stimulated
(transcriptional <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14097827.html?nr=8&amp;pmid=19816403" title="Wnt signalling maintains the undifferentiated state of intestinal crypt/progenitor cells">programme</a>ª
and { tumors arising from the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13383691.html?nr=5&amp;pmid=17691963" title="Wnt/beta-catenin signaling linked to WT1 (Wilms Tumor 1) loss-of-function mutations">urogenital</a>
tract} tumourigenesis. <a href="http://www.ncbi.nlm.nih.gov/pubmed/21781302" title="through the inhibition of Wnt/β-catenin signaling">Phellinus linteus</a> (PL) mushroom are (<a href="http://www.ncbi.nlm.nih.gov/pubmed/19703516" title="Herba Epimedii (HEF) plausibly functions via the BMP and Wnt/beta-catenin signaling pathways">Herba Epimedii</a> / <a href="http://en.wikipedia.org/wiki/Kanggu_Zengsheng_Wan" title="Chinese classic herbal formula Kanggu Zengsheng Wan">淫羊藿</a>), known to possess anti-tumor effects through the inhibition of <a href="http://www.ncbi.nlm.nih.gov/pubmed/21577209" title="in colon and liver cancer canonical Wnt signalling produces increased cytoplasmic and nuclear localised beta-catenin">Wnt/β-catenin</a> signaling <a href="http://www.ncbi.nlm.nih.gov/pubmed/21949247" title="efforts to treat human colorectal cancer by pharmacological inhibition of the Wnt/β-catenin pathway">for instance</a>, the binding of b-cat to Tcf-4 was also disrupted by <a href="http://www.ncbi.nlm.nih.gov/pubmed/15670774" title="n early events in colorectal carcinogenesis. We examined the effect of quercetin">quercetin</a>.) by mutations in the APC and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13801132.html?nr=6&amp;pmid=19389926" title="examples of the epithelial-mesenchymal transition">beta-catenin</a>
genes transcriptional activation, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9724731.html?nr=9&amp;pmid=12556497" title="(LEF-1/TCF) to form a transcription complex that activates Wnt target genes">TCF</a>-/<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10821872.html?nr=2&amp;pmid=16510874" title="(beta-cat), a transcriptional coactivator of LEF-1/TCF HMG proteins in the Wnt/Wg signaling pathway">LEF</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12878081.html?nr=2&amp;pmid=18612673" title="stabilizing cadherin [?] mediated cell-cell contact and by regulating TCF-/LEF">mediated</a>
gene transcription (epithelial-mesenchymal transition (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12254360.html?nr=8&amp;pmid=17018282" title="nuclear translocation by blocking phosphorylation of beta-catenin by GSK-3beta and displacing Axin from beta-catenin">EMT</a>)ª
processes, in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14268174.html?nr=6&amp;pmid=20123964" title="considered hallmarks of angiogenesis [1:1]">EC
migration</a>º « (angiogenesis : <a href="http://www.ncbi.nlm.nih.gov/pubmed/19780202" title="mechanical loading on beta-catenin in mineralizing human differentiating osteoblasts">anabolic</a>º effects), cell-cell adhesion, and formation of
<a href="http://www.ncbi.nlm.nih.gov/pubmed/20123964" title="beta-catenin/LEF-1 signaling in formation of branching point structures.">branching point</a> structures), in adherens junctions. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9843038.html?nr=1&amp;pmid=12640114" title="p120 catenin but only upon activation, and stimulates -Fer and Fyn-tyrosine kinases">AJs</a>
(<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10381788.html?nr=6&amp;pmid=14595118" title="t beta-catenin might be one of the proteins that targets and/or retains shrew-1 [AJAP1, AJ protein] in the adherens junctions">AJAP1</a>
might be one (TBE)) mediate adhesion between (beta-catenin has no <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12830964.html?nr=7&amp;pmid=18439914" title="the mechanisms by which beta-catenin is imported into the nucleus and forms a complex with the TCF-4">nuclear
localization</a> signal) communicate a signal disruption and
reestablishment to these cell to cell junctions (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13709364.html?nr=8&amp;pmid=19355941" title="TA cell proliferation by releasing beta-catenin from the nucleus, and delivering it to cytoplasmic APCaxinGSK-3beta complexes for ultimate proteasomal destruction.">transit-amplifying</a>
(TA) preventing CTNNB1 from returning to the nucleus) to stop
dividing and anchor the actin cytoskeleton serving the maintenance
of epithelial layers in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14406850.html?nr=1&amp;pmid=18391483" title="beta-catenin /T cell factor (TCF) transcriptional activity that is functionally important on aberrant crypt foci (ACF) formation">colonic</a>
epithelium layers (the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13555795.html?nr=4&amp;pmid=19031475" title="activation of embryonic processes such as epithelial-mesenchymal transition (EMT), lead to tumour invasion and metastasis">intestinal</a>ª
stem cell nicheº), such as organ lining <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10742713.html?nr=8&amp;pmid=16007074" title="TCF4 regulates intestinal tumorigenesis by integrating JNK and APC/beta-catenin">surfaces</a>ª
transactivates transcription with CTNNB giving heparan sulfate (HS)
the ability to bind growth factors and cytokines. Junction <a href="http://www.ihop-net.org/UniPub/iHOP/pm/180141.html?nr=2&amp;pmid=7890674" title="Plakoglobin, also known as gamma-catenin, directly binds to both APC and alpha-catenin and also to the APC-beta-catenin complex, but not directly to beta-catenin.">plakoglobin</a>
(gamma-catenin) is among the three known <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9158111.html?nr=9&amp;pmid=11790773" title="Plakophilins are a subfamily of p120-related arm-repeat proteins">plakophilin</a>s␠
a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9535185.html?nr=5&amp;pmid=12183361" title="beta-catenin and plakoglobin (gamma-catenin)">homologous</a>&nbsp;
molecule&nbsp; known as gamma-catenin or JUP found in a role in
nucleating <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8401208.html?nr=13&amp;pmid=10769211" title="Desmosomes contain two types of cadherin: desmocollin (Dsc) and desmoglein (Dsg">desmosomes</a>
of all epithelia, delta-catenin also demonstrated <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9159963.html?nr=8&amp;pmid=11821434" title="three p120-related catenins: delta-catenin, ARVCF [armidillo], and p0071(plakophilin 4">specific</a>*
high affinity binding. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/11528358.html?nr=1&amp;pmid=15987741" title="N-cadherin and beta-catenin colocalized in the contact regions between melanoma cells and endothelial cells">N-cadherin</a>
was associated with <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1274379.html?nr=12&amp;pmid=9405455" title="vinculin plays a role in the establishment or regulation of the cadherin-based cell adhesion complex by direct interaction with beta-catenin.">vinculin</a>
which<b> </b>serves a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9740814.html?nr=8&amp;pmid=12657639" title="these three proteins could form a ternary complex. lp-dlg/KIAA0583 as a novel binding partner for vinexin by using yeast two-hybrid screening">similar</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8363820.html?nr=7&amp;pmid=10873669" title="KIAA0313 associates with beta-catenin through KIAA0705 in vivo at sites of cell-cell contact in the yeast two-hybrid system">†</a>
function as <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1102138.html?nr=6&amp;pmid=9233779" title="the role in preventing alpha-catenin once dissociated from reassociating with E-cadherin until cells reach confluence">Alpha-catenin</a>
forms a 1:1º heterodimer with beta-catenin components of (AJ)
adherens junctions that occur at <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8821789.html?nr=9&amp;pmid=11277264" title="f N-cadherin-mediated cell-cell adhesion">cell–cell</a> junctions. </div><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2012/03/ctnnb1-catenin-cadherin-associated.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjGwoplVN_TwoO5zPWrJ87vjcgoL2wnyB7RKDHZv4_wHbzX94BP92L9gkH3yMXseMgJODjjYMaiPjQ3YZkVpgquA2zB8Noe0ElpUykNkF822QcW9aF8DiGT3krtFxOfyUYij-VWZw/s72-c/3fqr.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-6483433734210165498</guid><pubDate>Tue, 14 Feb 2012 18:38:00 +0000</pubDate><atom:updated>2012-02-17T14:07:10.109-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">laminin</category><category domain="http://www.blogger.com/atom/ns#">TRIO</category><title>LAR, Leukocyte common antigen related, Receptor-type tyrosine-protein phosphatase F (PTPRF)</title><description><div style="text-align: justify;">
<a href="https://picasaweb.google.com/100787464692550241934/February142012#5709049195332743922"><img align="right" alt="PDB-1LAR Associated subunits RPTPs (receptor protein tyr. phos.) that acts as a protein-tyrosine phosphatase Domain 1" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjIwmG_THnm31HP4h2OUS_zSl0ip0vWEEmWcEquYBvXoPFaKiXtEpJQ-vkBm8t6iBnhr3yA-n223IePgDGuYMDPtny8rUa015TsS3v4QZZesRo-tx0dCkOcfHxJpQQqwQnoBKDeJA/s128/2e.png" style="border: 0px solid; height: 128px; width: 122px;" title="PDB-1LAR Associated subunits RPTPs (receptor protein tyr. phos.) that acts as a protein-tyrosine phosphatase Domain 1" /></a>The human LAR (PTPRF) gene has 2 tandemly repeated PTPase associated
tandem subunit domains, locus: 1p34.2 [<a href="http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&amp;cmd=Link&amp;LinkName=protein_gene&amp;from_uid=109633041">§§</a>;<a href="http://www.ihop-net.org/UniPub/iHOP/gs/91509.html?ID=91488">^</a>] and represents a receptor-type <a href="http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&amp;cmd=Link&amp;LinkName=protein_gene&amp;from_uid=109633041#summary" title="Summary">PTP</a> (EC <a href="http://enzyme.expasy.org/EC/3.1.3.48" title="receptor protein-tyrosine kinases having a transmembrane domain and those not having a transmembrane domain">3.1.3.48</a>), through <a href="http://www.ncbi.nlm.nih.gov/pubmed/12095414" title="LAR may play a role in regulating E-cadherin-dependent cell-cell communication and contact inhibition">cell-cell</a> or <a href="http://www.ncbi.nlm.nih.gov/pubmed/8643598" title="propose that LAR and the Trio GEF/PSK may orchestrate cell-matrix and cytoskeletal rearrangements necessary for cell migration">cell</a>-<a href="http://www.ncbi.nlm.nih.gov/pubmed/9245795" title="(PTPases) display a high degree of homology with cell adhesion molecules in their extracellular (ECM) domains">matrix</a> interactions <a href="http://www.ncbi.nlm.nih.gov/pubmed/7796809" title="t LAR and LIP.1 may regulate the disassembly of focal adhesions and thus help orchestrate cell-matrix interactions">processed</a> into 2 noncovalently
associated subunits <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9292907.html?nr=5&amp;pmid=12376545" title="two protein-tyrosine phosphatase (PTP) domains (RPTP-D2s) bind and are proposed to regulate the membrane-proximal PTP domains (RPTP-D1s)">RPTP</a>s that acts as a protein-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8735029.html?nr=8&amp;pmid=11121408" title="Protein-tyrosine-phosphatases (PTPs), in conjunction with protein-tyrosine kinases">tyrosine</a> phosphatase associate with Trk protein tyrosine kinase (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12285794.html?nr=9&amp;pmid=17013927" title="TrkB and regulates neurotrophic signaling in embryo in the mammalian nervous system stands for tropomyosin-receptor-kinase (and not tyrosine kinaseonic hippocampal neurons">PTK</a>) receptors in
the cytoplasmic segment for dephosphorylation of
tyrosine-phosphorylated insulin receptor phosphorylated by <a href="http://www.ihop-net.org/UniPub/iHOP/pm/64626.html?nr=1&amp;pmid=1321126" title="insulin receptors were activated by insulin and receptor dephosphorylation, and kinase">insulin</a>
stimulation. LAR is a member of the PPFIA1 (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9812346.html?nr=2&amp;pmid=12629171" title="interacts with the LAR family of receptor protein tyrosine phosphatases">liprin</a>) family shown to interact with <a href="http://en.wikipedia.org/wiki/Liprin-alpha-1" title="a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family.">PTPRF</a>.&nbsp; PTP-<a href="http://www.ncbi.nlm.nih.gov/pubmed/11158333" title="PTPase activity is associated with only the first of the two domains, PTPase domain 1, and the membrane-distal PTPase domain 2, which has no catalytic activity">LAR</a> functional cell <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12459889.html?nr=10&amp;pmid=17259169" title="LAR localizes to cadherin-beta-catenin-based cellular junctions. They play important roles in cell adhesion, ensuring that cells within tissues are bound together.">adhesion</a> molecule (<a href="http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&amp;cmd=Link&amp;LinkName=protein_gene&amp;from_uid=109633041#general-gene-info" title="Cell adhesion molecules (CAMs)">CAMs</a>) <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14060.html?nr=1&amp;pmid=1695146" title="The second PTPase like domains do not have detectable catalytic activity">domain 1</a>
(cadherin and the <a href="http://www.ncbi.nlm.nih.gov/pubmed/17259169" title="LAR-beta-catenin interaction">cytoplasmic</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1812282.html?nr=8&amp;pmid=10187801" title="LAR (leukocyte common antigen related) colocalizes with the cadherin-catenin complex in epithelial cells and associates with beta-catenin and plakoglobin">catenin</a>s) negatively regulates <a href="http://www.ncbi.nlm.nih.gov/pubmed/11309481" title="overexpression of LAR in muscle causes whole-body insulin resistance, most likely due to dephosphorylation">dephosphorylation</a> in part of a complex (a region of the receptor-linked PTPases, absolutely required for <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14060.html?nr=1&amp;pmid=1695146" title="one cysteine residue in the first domain of both LCA and LAR is absolutely required for activity">LCA and LAR</a>) of proteins (Trio/<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13424779.html?nr=1&amp;pmid=17803936" title="Death-associated protein kinase (DAPK) is a calmodulin-regulated serine [?]/threonine kinase">DAPK</a>)<a href="https://picasaweb.google.com/100787464692550241934/February142012#5709049196746867426"><img align="right" alt="placement of tyrosine phosphorylated 1LAR that is other wise in the center between the two domains D1 and D2 here on the D1 ribbon" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj8-_XTvOqBdY3_swD1bneRZR7wrO03wWuIToGCu09_k-sQlkb24Be-T2-VezcElGvV4ifc_aO7yK0T143eEDP8sqq-MyhnGt_EfhiPYy6496Z-KV_5q6LtaSr_omdGa6NEnpG0ow/s128/2d.png" style="border: 0px solid; height: 114px; width: 128px;" title="placement of tyrosine phosphorylated 1LAR that is other wise in the center between the two domains D1 and D2 here on the D1 ribbon" /></a> that constitute <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12459889.html?nr=10&amp;pmid=17259169" title="LAR localizes to cadherin-beta-catenin-based cellular junctions">adherens junctions</a> (AJs), the <a href="http://www.ncbi.nlm.nih.gov/pubmed/12376545" title="membrane-distal PTP domains (RPTP-D2s) bind and are proposed to regulate the membrane-proximal PTP domains (RPTP-D1s)">generally inactive</a> (D2) <a href="http://www.ncbi.nlm.nih.gov/pubmed/8995282" title="endosomes with neutralizing LAR antibodies">extracellular</a>
cytoplasmic <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1113432.html?nr=10&amp;pmid=9245795" title="the related PTPase LAR was expressed on the cell surface as a two-subunit complex">domain</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/275329.html?nr=1&amp;pmid=7796809" title="LAR-interacting protein 1 (LIP.1), which binds to the LAR membrane-distal D2 protein tyrosine [?] phosphatase domain and appears to localize LAR to focal adhesions">two</a>&nbsp; only decreases insulin receptor mediated
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/2207808.html?nr=6&amp;pmid=10822386" title="autophosphorylation of growth factor receptors was not affected by induction of LAR">autophosphorylation</a>, a process called <a href="http://en.wikipedia.org/wiki/Endosome#Pathways" title="transcytosis allows some materials to enter one side of a cell and exit from the opposite side">transcytosis</a>.
The <a href="http://www.ncbi.nlm.nih.gov/pubmed/12496362" title="development of thymocytes in CD45 knockout mice">PTPRF</a> and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9292907.html?nr=5&amp;pmid=12376545" title="two protein-tyrosine phosphatase (PTP) domains (RPTP-D2s) bind and are proposed to regulate the membrane-proximal PTP domains (RPTP-D1s)">CD45</a> molecule have both domains in the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8697800.html?nr=10&amp;pmid=11158333" title="Most PTPases have two tandemly repeated PTPase domains in the cytoplasmic segments PTPase domain 1 or domain 2">cytoplasmic</a>
segment. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/558245.html?nr=1&amp;pmid=8643598" title="The C-terminal most similar to calcium/calmodulin-dependent kinases. it forms a complex with LAR. As the LAR PTPase localizes to the ends of focal adhesions">Trio</a> (triple functional domain (PTPRF <a href="http://www.ncbi.nlm.nih.gov/pubmed/7929208" title="the two conserved tyrosine phosphatase domains and the entire 3'-untranslated region. Exon 1, which presumably encodes the 5'-untranslated sequence, has not been identified">interacting</a>))
contains three enzyme domains: 2 that forms a complex with the
<a href="http://www.ncbi.nlm.nih.gov/pubmed/12176037" title="PTPs (PTP1B, PTP1C, SHPTP2, PTEN, and LAR) are actually localized in caveolin-enriched membrane fractions. his protein (LAR) has both a cytoplasmic C-terminus and a cytoplasmic N-terminus">cytoplasmic</a> segments of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/439099.html?nr=9&amp;pmid=8524829" title="PTPases each contain two intracellular PTPase domains and an extracellular region consisting of Ig-like and fibronectin type III-like domains">LAR protein</a> and a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1469310.html?nr=3&amp;pmid=9624153" title="liprins are subdivided into alpha-type and beta-type liprins The C-terminal, non-coiled coil regions of alpha-liprins bind to LAR">cell adhesion</a>-like
ectodomain. <a href="http://www.ncbi.nlm.nih.gov/pubmed/18925540/" title="associated with insulin resistance that can be reduced by regulation of PTPases">LAR</a> (PTPRF) is widely expressed in receptor-type
protein-tyrosine-phosphatases as a regulator of <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=10692429" title="LAR and PTP-alpha may act upon cell surface insulin receptors">insulin</a> receptor (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/11017556.html?nr=2&amp;pmid=15896785" title="LAR as a crucial regulator of the sensitivity of two key insulin signalling pathways to insulin">IR</a>). <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=11836260" title="Liprin may regulate LAR protein properties via interaction with another member of the family">Liprin</a> localize <a href="http://www.ncbi.nlm.nih.gov/pubmed/11931740" title="the liprin-alpha/SYD2 family of proteins that interact with LAR receptor">LAR</a> to cell focal
adhesions-like ectodomain, the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15067023.html?nr=4&amp;pmid=20139422" title="the molecular details of the NGL-3-LAR Structurally, netrin NGL resembles the extracellular matrix protein laminin">laminin</a>-<a href="http://en.wikipedia.org/wiki/Nidogen" title="Structurally it (along with perlecan) connects the networks formed by collagens and laminins to each other">nidogen</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/9647658" title="The laminin-nidogen complex">complex</a> is
a ligand for a coiled-coil LAR-interacting protein where PPFIA1 co-localizes.
LAR is important for <a href="http://en.wikipedia.org/wiki/Dendrite" title="dendrites are the branched projections of a neuron that act to conduct the electrochemical stimulation received from other neural cells">dendrite</a>
development.</div><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2012/02/lar-leukocyte-common-antigen-related.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjIwmG_THnm31HP4h2OUS_zSl0ip0vWEEmWcEquYBvXoPFaKiXtEpJQ-vkBm8t6iBnhr3yA-n223IePgDGuYMDPtny8rUa015TsS3v4QZZesRo-tx0dCkOcfHxJpQQqwQnoBKDeJA/s72-c/2e.png" height="72" width="72"/><thr:total>1</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-8037484287766081965</guid><pubDate>Sat, 28 Jan 2012 20:00:00 +0000</pubDate><atom:updated>2012-01-30T11:31:41.314-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">Janus</category><category domain="http://www.blogger.com/atom/ns#">Pima</category><category domain="http://www.blogger.com/atom/ns#">pka</category><category domain="http://www.blogger.com/atom/ns#">tyrosine hydroxylase</category><title>Protein-tyrosine phosphatase 1B</title><description><div style="text-align: justify;">
<a href="https://picasaweb.google.com/100787464692550241934/January262012#5702763509144747410"><img align="right" alt="2CMC oriented towards pocket containing cysteine molecule" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhS1JevI6B7hmcD-rye8vhlVmDMSbY1FvMwgOvPc0YsPPrv5La3Kez6YWBsnT7Pq_AyZlIpilrqUlID06yaJbAeCkgRE2yC9wqnFzFkT4HIoQnExPzCAgrb-iiHI2BhJHpp-5QIGQ/s128/folder5.png" style="border: 0px solid; height: 112px; width: 128px;" title="2CMC oriented towards pocket containing cysteine molecule" /></a>PTPN1 <a href="http://www.ncbi.nlm.nih.gov/pubmed/18846048" title="which suppresses the signaling pathway of leptin">nonreceptor</a>
type1 gene, which encodes <a href="http://www.blogger.com/post-edit.g?blogID=14256471&amp;postID=8037484287766081965" title="is a major risk contributor to type 2 diabetes mellitus (T2DM)">PTP1B</a>
the <a href="http://www.ncbi.nlm.nih.gov/pubmed/20937240" title="available with respect to the modulation of this phosphatase in non-Epo depending cells">prototypic</a>
member of the PTP family is responsible for <a href="http://www.ncbi.nlm.nih.gov/pubmed/14596593" title="biochemical studies provide strong evidence that PTP1B negatively regulates insulin signaling">negatively</a>
regulating insulin by dephosphorylating the <a href="http://www.ncbi.nlm.nih.gov/pubmed/21123182" title="the sequence context flanking the target phosphotyrosines specifically modulated by PTP1B">phosphotyrosine</a>
(ptyr) <a href="http://www.ncbi.nlm.nih.gov/pubmed/16582879" title="the three tyrosines of the kinase loop">residues</a>*
of the insulin receptor (INSR) kinase activation segment <a href="http://www.rcsb.org/pdb/explore.do?structureId=2B4S" title="The crystallographic asymmetric unit contains two PTP1B-IRK complexes PubMed: 16271887">IRK</a> (<span class="se_abstract"><a href="http://www.blogger.com/post-edit.g?blogID=14256471&amp;postID=8037484287766081965">kinase</a> <a href="http://www.blogger.com/post-edit.g?blogID=14256471&amp;postID=8037484287766081965">domain</a> of the <a href="http://www.blogger.com/post-edit.g?blogID=14256471&amp;postID=8037484287766081965">insulin</a> <a href="http://www.blogger.com/post-edit.g?blogID=14256471&amp;postID=8037484287766081965">receptor</a></span>) mainly
by its association with <a href="http://www.ncbi.nlm.nih.gov/pubmed/21305007" title="IRS1 is a substrate for PTP1B in brown adipocytes insulin-induced IR and IRS1 phosphorylation">IR</a>
localized to the <a href="http://www.ncbi.nlm.nih.gov/pubmed/14722096" title="the IR is localized to the plasma membrane and PTP-1B to the endoplasmic reticulum">plasma membrane</a>
in a <a href="http://www.ncbi.nlm.nih.gov/pubmed/12388170" title="The activity of PTP1B is determined mainly by its association with IR and Grb2">Grb2</a>
fashion, or by inhibiting insulin signaling locus: <a href="http://www.ncbi.nlm.nih.gov/pubmed/17403124" title="Type 2 diabetes (T2DM) with polymorphisms in PTPN1 located on chromosome 20q">20q</a>13.1-q13.2
(<a href="http://www.ncbi.nlm.nih.gov/pubmed/15504984" title="PTPN1 is located in 20q13">EC</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/10350489" title="constitutes an efficient regulatory mechanism">3.1.3.48</a>),
[<a href="http://www.ncbi.nlm.nih.gov/gene/5770#bibliography">§§</a>]
<a href="http://www.ihop-net.org/UniPub/iHOP/gs/91488.html" target="_blank">^</a> as well as <a href="http://www.ncbi.nlm.nih.gov/gene/5770#summary" title="a negative regulator of insulin signaling by dephosphorylating the phosphotryosine residues of insulin receptor kinase">JAK2
and TYK2</a> kinases. <a href="http://www.ncbi.nlm.nih.gov/pubmed/19008309" title="human PTP-1B in SH-SY5Y cells completely abolished leptin- and insulin-dependent janus kinase-2,STAT-3, and ERK 1/2 phosphorylations">Leptin</a> as
well as <a class="the hormones insulin and leptin are hallmarks of both type 2 diabetes and obesity" href="http://www.ncbi.nlm.nih.gov/pubmed/12209150">insulin</a><span class="the hormones insulin and leptin are hallmarks of both type
2 diabetes and obesity">,</span> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9440539.html?nr=5&amp;pmid=11970899" title="leptin receptor, is(not) a substrate of PTP1B">induced</a>
the expression of <a href="http://www.ncbi.nlm.nih.gov/pubmed/12354677" title="whether PTP1B affects leptin receptor(lepR) signaling directly">PTP1B</a> and T
cell protein tyrosine phosphatase (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13831372.html?nr=6&amp;pmid=19474293" title="The control of tyrosine phosphorylation depends on the fine balance between kinase and phosphatase activities">TC-PTP</a>)
a closely related phosphatase. <a href="http://lnwme.blogspot.com/2011/12/non-receptor-tyrosine-protein-kinase.html" title="Non-receptor tyrosine-protein kinase TYK2">TYK2</a>
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/11694501" title="A substrate-trapping mutant of PTP1B formed a stable interaction with JAK2 and TYK2 in response to interferon stimulation">JAK2</a>
are substrates, PTP1B expression augments <a href="http://www.ncbi.nlm.nih.gov/pubmed/20504764" title="Signal transducing adapter molecule 2 an endosomal protein involved in sorting activated RTKs for lysosomal degradation">STAM2</a> an <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9742225.html?nr=8&amp;pmid=12424235" title="cofactors, PTPs may help to regulate the EGFR">RTK</a>,
phosphorylation downstream of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9718155.html?nr=10&amp;pmid=12748279" title="JAK2 phosphorylation and suggest that PTP-1B is essential for limiting the action of GH">JAK</a>
kinases. PTP-1B encoded by the PTPN1 gene and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9163422.html?nr=8&amp;pmid=11907034" title="residues 130-132, the DDQ loop, from one moleculethe high degree of functional and structural similarity between TC-PTP and PTP1B">T-cell</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13831372.html?nr=10&amp;pmid=19474293" title="(tcptp(+/-)ptp1b(+/-)) exhibited normal development">PTP</a> localizes to the
endoplasmic <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14183892.html?nr=6&amp;pmid=20118922" title="the protein tyrosine phosphatase PTP1B (ref. 1), localizes to the cytoplasmic face of the endoplasmic reticulum(ER)">reticulum</a>␠
oriented towards the cytoplasm (located on the <a href="http://www.ncbi.nlm.nih.gov/pubmed/21487008" title="J. Biol.Chem. (2011) alanine is known to convert PTP1B into a substrate-trapping protein that binds to but cannot dephosphorylate its substrates">cytosolic</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/15733745" title="PTP1B mainly occurred in the endoplasmic reticulum">side</a> of the
endoplasmic reticulum post-translational <a href="http://www.ncbi.nlm.nih.gov/pubmed/11836311" title="frequencies ofthe C allele and the T allele">C-terminal</a>
(The <a href="http://www.ncbi.nlm.nih.gov/pubmed/17634210" title="One common (-1023C-A) and 6 rare (-51delA,-451A-G, -467T-C, -1045G-A, -1286-3bp-del, and-1291-9bp-del) variants were identified in the PTPN1 promoter">1023(C)</a>-common
allele) <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14034902.html?nr=7&amp;pmid=19605464" style="font-style: italic;" title="through activation of protein phosphatase 2A (PP2A). PTP1B [?] is anchored to the endoplasmic reticulum membrane via its C-terminal tail">attachment</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/17643420" title="the C-terminal membrane anchor of PTP1B is formed by a combination of a single stretch transmembrane domain (TMD) followed by a tail">membrane anchor</a>
») associated with microsomal membranes or an « <a href="http://www.ncbi.nlm.nih.gov/pubmed/18332219" title="invadopodia are protrusions in the cell membrane of some cells taht extend into the ECM">interconnected</a>
network <a href="http://www.ncbi.nlm.nih.gov/pubmed/20118922" title="Endocytosis of EGFR is required for interaction with the protein tyrosine phosphatase PTP1B (endosomal sorting complex required for transport) sorting within MVBs, and PTP1B">not ordinarily</a>
present in living cells with induction of the ER (endoplasmic
reticulum)-stress response pharmacologically induced&nbsp; (<a href="http://www.ncbi.nlm.nih.gov/pubmed/21605081" title="experimental tools in biology. ER-stress response and L-PTP1B expression are interlinked in obesity- and pharmacologically induced ER stress">tunicamycin</a>
and thapsigargin) « <a href="http://www.blogger.com/post-edit.g?blogID=14256471&amp;postID=8037484287766081965" title="Overexpression of PTP1B induced a marked downregulation of mRNA the upregulation of PTP1B via an effect a a serine/threonine-specific protein kinase PKG">in
vitro</a> » and <a href="http://www.ncbi.nlm.nih.gov/pubmed/21406170" title="pharmacological inhibition of PTP1B would improve liver regeneration in patients with acute or chronic liver injury">in vivo</a>,
showing that suramin and <a href="http://www.ncbi.nlm.nih.gov/pubmed/20542335" title="Vanadyl compounds mimic the effects of insulin, although humans seem to have no dietary requirement for vanadium">vanadyl </a>complexes
a <a href="http://www.ncbi.nlm.nih.gov/pubmed/20236928" title="crystal structures for the transition state analogs for both steps">two</a>-step
<a href="http://www.ncbi.nlm.nih.gov/pubmed?Db=structure&amp;DbFrom=pubmed&amp;Cmd=Link&amp;LinkName=pubmed_structure&amp;LinkReadableName=Structure&amp;IdsFromResult=20236928" title="First abd second Catalytic Step[Hydrolase, EC: 3.1.3.48]">mechanism</a>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/15039022" style="font-style: italic;" title="PTP undergoes oxidative inactivation that can be further differentiated into reversible and irreversible components">reversibly</a>
mediated by the activation of <a href="http://www.ncbi.nlm.nih.gov/pubmed/21311858" title="the beneficial effect that absence of the phosphatase PTPs confers against an insulin-resistant condition">PKA</a>, that <a href="http://www.ncbi.nlm.nih.gov/pubmed/20601126" title="Ang II modulates both anti-mitogenic and mitogenic pathways of insulin via the activation of PTP-1B">Ang II</a>
(Angiotensin) modulates, a group of blood-pressure-<a href="http://www.ncbi.nlm.nih.gov/pubmed/21188419" title="is appropriate for the study of false discoveries">related</a>
phenotypes examine<span class="se_abstract"> the catalytic domain</span><a href="http://www.ihop-net.org/UniPub/iHOP/pm/9718117.html?nr=4&amp;pmid=12745253" title="values for the catalytic domains of (T cell protein
tyrosine phosphatase) TCPTP and PTP-1B were structurally related
they share a 72% amino acid sequence identity within their
catalytic domains"></a><span class="se_abstract"> of the </span><a href="http://www.rcsb.org/pdb/explore.do?structureId=1PA1" title="this mutant may be used for screening fermentation broth and other natural products to identify inhibitors of PTP-1B PubMed: 12748196">apoenzyme</a><span class="se_abstract"><a href="http://www.blogger.com/post-edit.g?blogID=14256471&amp;postID=8037484287766081965"> </a></span>and the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14154065.html?nr=9&amp;pmid=19755521" style="color: #274e13;" title="Apocynin first isolated from the root of Canadian hemp (Apocynum cannabinum)facilitating EGFR transactivation in rat cardiomyocytes">effects</a>
<span style="color: #006600; font-weight: bold;">‡</span> of
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/11232859.html?nr=2&amp;pmid=15715932" style="color: #006600;" title="one of the 50 fundamental herbs used in traditional Chinese medicine">Astragalus
membranaceus</a><span style="color: #006600;"> </span>(黄芪)
roots <span style="color: #006600; font-weight: bold;">‡</span>
polysaccharide (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13839304.html?nr=5&amp;pmid=19524131" title="increased the insulin sensitivity through decreasing the overexpression of PTP1B">APS</a>). And competitive inhibitor of PTP1B and
Yersinia PTP (<a href="http://www.ncbi.nlm.nih.gov/pubmed?term=14734566" title="YopH, the phosphatase that is an essential virulence factor for bubonic plague">YopH</a>) contains all of the invariant residues present
in human <a href="http://www.ncbi.nlm.nih.gov/pubmed/15998263" title="activity depends on a catalytic thiolate group on an acidic cysteine residue that is sensitive to reactive oxygen species">PTP1B</a>
including <a href="http://www.ncbi.nlm.nih.gov/pubmed/7540771" style="font-style: italic;" title="was accompanied by a conformational change of a surface loop that created a phosphotyrosine recognition pocket and induced a catalytically competent form of the enzyme">cysteine</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/12573287" title="inhibition of PTP1B through a mechanism that was greatly enhanced by addition of cysteine">addition</a>
<a href="https://picasaweb.google.com/100787464692550241934/January262012#5702763380285189922"><img align="right" alt="" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjsr07sNuUZJ6RrVQe4d4YvJB3EIZR0PozQmvQdX9XdVurBuGagCn4z6Z8KFWflNcNeHXvX8HFc5OO0CWfNaemijYLTJ4uuSbkFFBJoP6-g-f9gFChR9yuCWoKzcTHzcFuzthVyBA/s128/folder4.png" style="border: 0px solid; height: 128px; width: 105px;" title="PDB 2CMC double mutant" /></a>through a mechanism of inhibition (the <a href="http://www.ncbi.nlm.nih.gov/pubmed/15258570" title="a novel site located approximately 20 A from the catalytic site">catalytic loop</a>)
that CLK1 and <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=10480872" title="CLK1 and CLK2 phosphorylate and activate the S. cerevisiae PTP-1B family member, YPTP1">CLK2</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/20682768" title="regulated assembly of the PP2A phosphatase holoenzyme complex">CDC-like</a> kinase) phosphorylate and activate
enzymes in a perinuclear <a href="http://www.ncbi.nlm.nih.gov/pubmed/17159996" title="(SUMO) E3 ligase, associates with PTP1B, sumoylation, which has been implicated primarily in processes in the nucleus and nuclear pore">endosome</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/14722096" title="PTP-1B appears not only to interact with and dephosphorylate the insulin-stimulated IR in a perinuclear endosome compartment">compartment</a>,
and activate the S. cerevisiae <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13096168.html?nr=4&amp;pmid=17159996" title="Using a yeast two-hybrid assay, a protein inhibitor of activated STAT1 (PIAS1-protein inhibitor of activated STAT, 1) was isolated">PTP-1B</a>
family member <a href="http://www.ihop-net.org/UniPub/iHOP/pm/2006506.html?nr=11&amp;pmid=10480872" title="PTP-1B and its yeast analog, YPTP, are phosphorylated and activated by members of the CLK family">YPTP1</a>
Ran-gtpase activating protein, rangap1 in a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/694959.html?nr=1&amp;pmid=8826975" title="dephosphorylation by PTP1B may play a significant role in insulin receptor signal transduction">dephosphorylated</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9332315.html?nr=6&amp;pmid=12237455" title="PTP-1B also recognized IR-like motifs in Trk autophosphorylation domains dephosphorylation efficiency is strongly modulated by the introduction of phospho-serine or phospho-threonine in their cognate phospho-tyrosine substrates">state</a>
(the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8906861.html?nr=4&amp;pmid=11506178" title="PTP1B the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state">inactive
</a>form) by PTP1B. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8700028.html?nr=8&amp;pmid=11106648" title="PTP1B interacts directly with the cytoplasmic domain of N-cadherin">N-cadherin</a>
binds PTP1B to&nbsp; <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=17204654" target="_blank">cell-to-cell</a> variability, overexpression of h<a href="http://www.ncbi.nlm.nih.gov/pubmed?term=12414790" title="PTP1B activity contributes to the anti-migratory, but not anti-mitogenic, actions of hSPRY2 all share a cysteine-rich region substrate proteins">SPRY2</a>
increases PTP1B without an increase in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1222424.html?nr=1&amp;pmid=9355745" title="The sequence for the Src homology 2 (SH2) domains of the adapter protein Grb2 is correlated with a 3-fold increase in PTP catalytic activity both in vitro and in cells">total</a>*
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/800510.html?nr=4&amp;pmid=8940134" title="canonical class II Src homology 3 domain e establish that PTP1B interacts with Crk, Grb2">amount</a>
of cellular PTP1B to mediate cellular environment associated with <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12570496.html?nr=6&amp;pmid=17897622" title="protein phosphatase 2A overexpression of wild-type PTP1B associated with PP2A">PP2A</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10162902.html?nr=1&amp;pmid=12941932" title="PTP1B may regulate gene expression of SREBP-1 via enhancement of PP2A activity">activity</a>,
its eventual termination <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12570496.html?nr=5&amp;pmid=17897622" title="via protein phosphatase 2A(PP2A) activation Enzymes called kinases (phosphorylation) and phosphatases (dephosphorylation) are involved in this process">dephosphorylation</a>
and deactivation of insulin <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15671768.html?nr=10&amp;pmid=21305007" title="IRS1 is a substrate for PTP1B in brown adipocytes">receptor</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13385251.html?nr=3&amp;pmid=17545163" title="insulin receptor (IR) and IR substrate (IRS)-1 deficiency provide a model of polygenic type 2 diabetes">substrate-1</a>
the PTP1B-IRK interaction are unique to susceptibility. Secretion of
insulin activates phosphoprotein phosphatase leading to
dephosphorylation and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13385251.html?nr=9&amp;pmid=17545163" title="phosphoenolpyruvate carboxykinase provide an alternate path to effectively reverse">enzymes</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/1469275.html?nr=1&amp;pmid=9624118" style="font-style: italic;" title="Iodoacetate is an irreversible inhibitor of all cysteine peptidases">reversibly</a> mediated active at the same time, a biochemical pathway
in which the liver generates <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8387148.html?nr=2&amp;pmid=10751417" title="3) overexpression of PTP1B alone in adipocytes does not impair glucose transport.">glucose</a>,
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/15267613.html?nr=6&amp;pmid=20515652" style="color: #006600;" title="Berberine As a traditional medicine or dietary supplement is usually found in the roots, rhizomes, stems, and bark">Berberine</a><span style="color: #006600;"> </span>(BBR)<span style="color: #006600;"> <span style="font-weight: bold;">‡</span></span>
has recently been shown to improve insulin resistance. The <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10416717.html?nr=9&amp;pmid=15097232" title="one PTP1B variant (1484insG) neither variants (the R65L or A142V variants) were associated with HT">1484insG</a>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/17560463" title="no significant difference in anthropometric and biochemical parameters was seen between the wild-type and heterozygous 1484insG">allele</a> (<a href="http://www.ncbi.nlm.nih.gov/pubmed/11833006" title="human embryo kidney 293 cells transfected with 1484insG PTP1B">mRNA</a>)
causes PTP1B overexpression at defined phosphotyrosine and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15301795.html?nr=6&amp;pmid=20504764" title="PTP1B can affect receptor tyrosine kinases (RTK) signaling in a previously unrecognized manner">RTK</a>
(receptor tyrosine kinase) <a href="http://www.ncbi.nlm.nih.gov/pubmed/20864346" title="endocytic down-regulation of RTKs could be directly controlled by PTP1B">sites</a>, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10191790.html?nr=6&amp;pmid=12907755" title="Protein tyrosine phosphatases (PTPs) play key roles in switching off tyrosine phosphorylation cascades,">PTP</a>ases
(<a href="http://www.ihop-net.org/UniPub/iHOP/pm/15772534.html?nr=8&amp;pmid=21216966" title="PTP1B and TCPTP play nonredundant roles in modulating ER (endoplasmic reticulum) stress">TCPTP</a>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18819921" title="PTP1B and TCPTP play distinct and non-redundant roles in the regulation of the Met receptor-tyrosine kinase">␠</a>, PTP-<a href="http://www.ncbi.nlm.nih.gov/pubmed/18925540" title="(PTP1B) and leukocyte antigen-related PTPase (LAR) are the PTPases implicated most frequently in insulin resistance and diabetes mellitus">LAR</a>, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10837002.html?nr=10&amp;pmid=16363874" title="Calcineurin (CN) is a protein phosphatase also known as protein phosphatase 3, and calcium-dependent serine-threonine phosphatase. It activates the T cells of the immune system">Calcineurin</a>)
were cloned for <a href="http://www.rcsb.org/pdb/explore.do?structureId=1G7G" title="cholecystokinin(is a peptide hormone of the gastrointestinal system) (CCK-8) were found to be surprisingly potent inhibitors of PTP1B, and a common N-terminal tripeptide PubMed: 11341829">N-terminal</a> cDNA and included replacement of the <a href="http://www.rcsb.org/pdb/explore.do?structureId=1JF7" title="inhibitory activity can be maintained in the absence of an N-terminal PubMed: 11806712">C-terminal</a>, the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9718117.html?nr=4&amp;pmid=12745253" title="values for the catalytic domains of (T cell protein tyrosine phosphatase) TCPTP and PTP-1B were structurally related they share a 72% amino acid sequence identity within their catalytic domains">catalytic</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/15328074.html?nr=2&amp;pmid=20627780" title="Protein tyrosine phosphatase interacting protein 51 (PTPIP51) was identified as an in vitro interacting partner of PTP1B and TCPTP">domains</a>
were identical to 40 <a href="http://www.ncbi.nlm.nih.gov/pubmed/12547827" title="PTP1B inhibitory agents can be acquired by targeting the area defined by residues Lys-41, Arg-47, and Asp-48">PTPases</a>
receptor forms ("<a href="http://www.ncbi.nlm.nih.gov/pubmed/18716132" title="PTP1B knockdown or deficiency">substrate-trapping</a>"
<a href="http://www.ncbi.nlm.nih.gov/pubmed/18387954" title="(PTP1B) as a potential drug target cortactin and provides a potential mechanism to explain the effects of PTP1B">mutants</a>)
and <a href="http://www.ncbi.nlm.nih.gov/pubmed/17509747" title="Hepatic The liver, D-glucose dose-dependently enhanced the PTP1B promoter activity">hepatic</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/18840608" title="Cysteine S-nitrosylation Humans, some other primates, and guinea pigs are not able to make ceratian oxidases">enzyme</a> <a href="http://www.ncbi.nlm.nih.gov/pubmed/17339316" title="PTP1B governs differential recruitment of signaling pathways involved in EGFR regulation">cofactors</a>
(genotyped in <a href="http://www.ncbi.nlm.nih.gov/pubmed/17333110" title="insulin sensitivity and fasting glucose levels">Pima</a>
Indians) in regulating <a href="http://www.ihop-net.org/UniPub/iHOP/pm/11147821.html?nr=8&amp;pmid=15699041" title="the liver is a major site of the peripheral action of PTP1B">glucose</a>
in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9739351.html?nr=5&amp;pmid=12502489" title="reduction of PTP1B is sufficient to increase insulin-dependent metabolic signaling in a diabetic animal model">liver</a>,
similar to the common leukocyte antigen <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9169392.html?nr=7&amp;pmid=12082107" title="tyrosine-specific phosphatases (PTP1B, CD45, and HePTP)">CD45</a>
(to <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14342985.html?nr=6&amp;pmid=18819921" title="Met enables the nuclear-localized isoform of TCPTP, TC45">exit</a>
the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13831372.html?nr=4&amp;pmid=19474293" title="these genes are not interchangeable by interbreeding TC-PTP and PTP-1B parental lines">nucleus</a>)
and to leukocyte <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10284872.html?nr=10&amp;pmid=15031294" title="PTP1B and LAR are increased in muscle of insulin-resistant rodents and humans">common</a>
antigen-<a href="http://www.ncbi.nlm.nih.gov/pubmed/15031294" title="insulin signaling by PTP1B and LAR suggests that these PTPs have overlapping actions">related</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/2128313.html?nr=1&amp;pmid=10660596" title="(LAR), and leukocyte antigen-related phosphatase) (LRP) toward IRS-1 dephosphorylation">LAR</a>
in addition to the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9306078.html?nr=2&amp;pmid=12377785" title="a cell-permeable peptide mimicking the 8 most COOH-terminal amino acids in the PTP1B target domain This domain partially overlaps with the beta-catenin binding domain">peptide</a>
sequence forms.</div><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2012/01/protein-tyrosine-phosphatase-1b.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhS1JevI6B7hmcD-rye8vhlVmDMSbY1FvMwgOvPc0YsPPrv5La3Kez6YWBsnT7Pq_AyZlIpilrqUlID06yaJbAeCkgRE2yC9wqnFzFkT4HIoQnExPzCAgrb-iiHI2BhJHpp-5QIGQ/s72-c/folder5.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-3111930856199860263</guid><pubDate>Mon, 12 Dec 2011 01:19:00 +0000</pubDate><atom:updated>2013-02-12T10:49:54.082-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">gp160</category><category domain="http://www.blogger.com/atom/ns#">Janus</category><category domain="http://www.blogger.com/atom/ns#">SH3</category><title>Non-receptor tyrosine-protein kinase TYK2</title><description><table cellpadding="0" cellspacing="0" class="tr-caption-container" style="float: right; margin-left: 1em; text-align: right;"><tbody>
<tr><td style="text-align: center;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh8u7Fh2Z1CEQB1QUBX-x6ffM7qPtkI6BKp5C-VnptqYFrwvqbaMEjTo24KaLtYN0vsejDUmW2m7i3d9xqn1lBmZMTnFQbH58dEsKJT_sv1yjuz2mGQcjp4G4vBE_EHv6BOBi1TtA/s1600/tyrsurf-png.svg.png" imageanchor="1" style="clear: right; margin-bottom: 1em; margin-left: auto; margin-right: auto;"><img border="0" height="170" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh8u7Fh2Z1CEQB1QUBX-x6ffM7qPtkI6BKp5C-VnptqYFrwvqbaMEjTo24KaLtYN0vsejDUmW2m7i3d9xqn1lBmZMTnFQbH58dEsKJT_sv1yjuz2mGQcjp4G4vBE_EHv6BOBi1TtA/s200/tyrsurf-png.svg.png" width="200" /></a></td></tr>
<tr><td class="tr-caption" style="text-align: center;"><span class="gphoto-photocaption-caption"><a href="https://picasaweb.google.com/lh/photo/9wCOceUzizsLJDkgfroHXtMTjNZETYmyPJy0liipFm0?feat=directlink" target="_blank">Tyk2 forms</a> deleted at the N terminus</span></td></tr>
</tbody></table>
<div style="text-align: justify;">
<div style="text-align: right;">
</div>
<a href="http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&amp;cmd=Retrieve&amp;dopt=Graphics&amp;list_uids=7297" title="Summary This gene">TYK2</a> a&nbsp;<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8343956.html?nr=9&amp;pmid=10542297" title="a Janus kinase, plays both structural and catalytic roles in type I interferon (IFN) signaling">Janus</a>
kinase, contains a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10895961.html?nr=6&amp;pmid=15277531" title="Jamip1 was shown to associate with two Jak family members, Tyk2 and Jak1, in Jurkat T cells via its C-terminal region">C</a>-terminal protein tyrosine kinase <a href="http://www.ihop-net.org/UniPub/iHOP/pm/2010549.html?nr=2&amp;pmid=10449913" title="(JAK1, JAK2, JAK3 and TYK2), plays an essential role in the signal transduction pathway from non-catalytic cytokine receptors to the nucleus">catalytic</a>
domain and has no <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1258693.html?nr=5&amp;pmid=9388212" title="N-terminal domain of Bcr linked to the transmembrane and cytoplasmic domains is capable of interacting with JAK1, JAK2, and TYK2">N</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10895961.html?nr=6&amp;pmid=15277531" title="Jamip1 was shown to associate with two Jak family members, Tyk2 and Jak1, in Jurkat T cells via its C-terminal region it comprises an N-terminal region">terminal</a> signal peptide or transmembrane <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1577839.html?nr=4&amp;pmid=9733772" title="a critical function was previously attributed to the N region (amino acids 1-591) of Tyk2">domain</a>,
of coding regions of exons and the adjacent intronic <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1288647.html?nr=9&amp;pmid=9417082" title="DNA regulatory elements GAS (interferon-gamma activation site) and ISRE (interferon-stimulated response element) and colocalization with Jak1 and Tyk2">DNA</a> sequences,
identical to <a href="http://www.ihop-net.org/UniPub/iHOP/pm/6759550.html?nr=4&amp;pmid=2156206" title="Three new PTK genes and of the mRNA encoded for by these genes">tyk2</a> of mutant <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1225026.html?nr=7&amp;pmid=9342324" title="TYK2 characterized by a large N-terminal region, a kinase-like domain and a tyrosine [?] kinase domain">Tyk2 forms</a> deleted at the N terminus locus:19p13.2 [<a href="http://www.ihop-net.org/UniPub/iHOP/gs/92937.html?ID=92436">§§</a>], a human <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12982578.html?nr=2&amp;pmid=18683816" title="expression of plasminogen activator 2 protein but not mRNA is strongly enhanced in the absence of Tyk2">mRNA</a> (rs2304256) exon¤ encoding a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8891796.html?nr=1&amp;pmid=11694501" title="protein tyrosine phosphatase, non-receptor type 1">non-receptor</a> protein
tyrosine kinase, the Tyk2 <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15945648.html?nr=3&amp;pmid=21622231" title="the crucial role of TYK2 in immunity">deficiency</a> is likely to account for the
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12858914.html?nr=1&amp;pmid=18456658" title="Tyk2 V678F the effect on ligand-induced signaling is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor">phenotype</a> by <a href="http://www.ihop-net.org/UniPub/iHOP/pm/15210941.html?nr=7&amp;pmid=20478313" title="obtaining JAK-isozyme selective inhibitors which bind in the ATP-binding cavities of both JAK isozymes in orientations similar to...">preventing</a>* Tyk2 <a href="http://www.ihop-net.org/UniPub/iHOP/pm/658685.html?nr=8&amp;pmid=8702790" title="Tyk2 forms mutated on Tyr-1054 and Tyr-1055 or on Lys-930 allowed some inducible gene expression">tyrosine</a> phosphorylation for interferon (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/15945648.html?nr=3&amp;pmid=21622231" title="Tyrosine kinase 2 (TYK2) was the first member of the JAK family">IFN</a>) responses and Stat
activation. STAT1 and STAT3 translocated to the nucleus following <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9989217.html?nr=4&amp;pmid=14500680" title="C-terminal region contains important domains for Jak2 activation">PAF</a>
(platelet-activating factor) stimulation in the presence of TYK2 in
controlling responses to multiple cytokines <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12858973.html?nr=4&amp;pmid=18474601" title="the Tyr-based endocytic motif within IFNAR1 identify a member of the Janus kinase (Jak) family, Tyk2, as a component of such a masking complex">IFNAR1</a> (the Tyr-based <a href="http://www.ihop-net.org/UniPub/iHOP/pm/16064393.html?nr=8&amp;pmid=21737619" title="Endogenous and Exogenous exogenous IL-6-induced STAT3 phosphorylation and nuclear translocation ndependently of the phosphorylation of JAK1, JAK2, and TYK2">endo</a>cytic motif within) or <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1754518.html?nr=7&amp;pmid=9974409" title="Tyk2. uPA and ATF [PLAU] induced a time-dependent activation of both kinases">PLAU</a>R (a UPA receptor)
urokinase signaling complex <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8507863.html?nr=11&amp;pmid=10995743" title="Jak1 and Tyk2 play an important role in urokinase-type plasminogen activator (uPA)-dependent signaling">uPA</a> containing TYK2 and phosphatidylinositol
3-kinase <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10021161.html?nr=3&amp;pmid=12719789" title="uPA stimulates migration via the uPA receptor (uPAR) signalling complex containing the Janus kinase Tyk2 and phosphatidylinositol 3-kinase (PI3-K)">PI3K</a> stabilized at the cell surface are downstream<br />
<table cellpadding="0" cellspacing="0" class="tr-caption-container" style="float: left; margin-right: 1em; text-align: left;"><tbody>
<tr><td style="text-align: center;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj8HvKp7Mr9Fltnfq8SB8T8cBkuxvgUX2d6YEjnkcPZtzn-FRKjSr5ilTvAyyh15Ei8oraOJ-n-VxeiwjEc-_WiMTlrpbbtIj8LVhz6CtlaKBYpBthHLnCyQ8i-HSWm6NRQ84GjZw/s1600/lightputty.svg.png" style="clear: right; margin-bottom: 1em; margin-left: auto; margin-right: auto;"><img border="0" height="120" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj8HvKp7Mr9Fltnfq8SB8T8cBkuxvgUX2d6YEjnkcPZtzn-FRKjSr5ilTvAyyh15Ei8oraOJ-n-VxeiwjEc-_WiMTlrpbbtIj8LVhz6CtlaKBYpBthHLnCyQ8i-HSWm6NRQ84GjZw/s200/lightputty.svg.png" width="200" /></a></td></tr>
<tr><td class="tr-caption" style="text-align: center;"><span class="gphoto-photocaption-caption"> <a href="http://www.rcsb.org/pdb/explore/explore.do?pdbId=3NZ0" target="_blank">3NOZ</a> the <a href="https://picasaweb.google.com/lh/photo/KOr7F7cibNQ7eqi3y19d_tMTjNZETYmyPJy0liipFm0?feat=directlink" target="_blank">DNA</a>-bindin<wbr></wbr>g domain</span></td></tr>
</tbody></table>
events
binding to the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1057827.html?nr=11&amp;pmid=9208871" title="the type I (alpha, beta, and omega) and type II (gamma) interferons (IFNs). Tyk2 and Jak1 kinases are recruited to the receptor complex and activated">type I</a> IFN receptor complex a pathway that
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12547777.html?nr=8&amp;pmid=17942530" title="prevents them from inadvertently serving as a reservoir for viral replication and spread to cardiac myocytes">supplements</a> <a href="http://www.wikigenes.org/e/ref/e/9890942.html" title="TYK2 were refractory to induction of beta-R1 by IFN-beta despite robust expression of other ISGs.">ISGF3</a>/interferon-stimulated response element, and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10768844.html?nr=7&amp;pmid=15657875" title="TYK2 binds to the type I IFN receptor complex and IRF5 is a regulator of type I IFN gene expression">IRF5</a> a
regulator. (IFNaR1) domain (dimerized) is required to induce <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1225026.html?nr=7&amp;pmid=9342324" title="basal autophosphorylation activity of Tyk2, but it is required for efficient in vitro IFNAR1 phosphorylation">phosphorylation</a>
of binding <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9822938.html?nr=1&amp;pmid=12554654" title="In the absence of Tyk2, mature IFNAR1 is weakly expressed on the cell surface">helical
bundled</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1577839.html?nr=1&amp;pmid=9733772" title="involves the activation of the Janus kinase(JAK) family of tyrosine kinases">cytokines</a>
and TYK2 <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12858914.html?nr=1&amp;pmid=18456658" title="Tyk2 V678F the effect on ligand-induced signaling is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor">phenotype</a>s <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12858914.html?nr=1&amp;pmid=18456658" title="the Val(678)-to-Phe substitution on Tyk2 functioning is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor">ability</a> at binding and signal transduction to the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/2010549.html?nr=2&amp;pmid=10449913" title="(JAK1, JAK2, JAK3 and TYK2), plays an essential role in the signal transduction pathway from non-catalytic cytokine receptors to the nucleus">nucleus</a> for the acquisition of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/336904.html?nr=4&amp;pmid=7657660" title="Janus PTKs activation of latent signal transducers and activators of transcription (Stats) are common elements in signal transduction">DNA</a> binding activity, and modulates uPAR dependent functional responses in upregulation of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10802694.html?nr=6&amp;pmid=15944400" title="Tyk2 and the transcription factor Stat3 serve as downstream components">C5aR*</a> expression. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14044269.html?nr=4&amp;pmid=19717292" title="associated with viral and mycobacterial infection">Mutation</a>s in TYK2 and STAT3 mostly impair <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12752869.html?nr=9&amp;pmid=18083507" title="conferring a predisposition to staphylococcal disease in particular">IL-6R</a>* responses, and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14148180.html?nr=7&amp;pmid=19653082" title="TYK2 and STAT3 are genetic determinants">polymorphism</a>s¤. <a href="http://www.wikigenes.org/e/ref/e/10652206.html" title="After stimulation with phenylephrine, Jak2 and STAT1 were found to associate with alpha(1B) receptor.">Phenylephrine</a> <a href="http://en.wikipedia.org/wiki/Phenylephrine" title="the most common over-the-counter (OTC) decongestant in the United States">‡</a> induced
tyrosine phosphorylation of Jak2, Tyk2, and STAT1. TYK2, has an SH2
domain that contains a <a href="http://www.wikigenes.org/e/ref/e/11752426.html" title="human TYK2, has an SH2 domain that contains a histidine instead of the conserved arginine at the key phosphotyrosine-binding position, betaB5">histidine</a> instead of arginine (semi- vs essential amino acid) it may have
lost the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12858914.html?nr=1&amp;pmid=18456658" title="the Val(678)-to-Phe substitution on Tyk2 functioning is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor">ability</a> on <a href="http://www.ihop-net.org/UniPub/iHOP/pm/658685.html?nr=8&amp;pmid=8702790" title="the putative activation loop prevented ligand-dependent activation">ligand</a>-induced signaling to bind <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8891796.html?nr=1&amp;pmid=11694501" title="JAK2 and TYK2 are substrates of PTP1B">phosphotyrosine</a> at a neutral pH of 7. Either of the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10148460.html?nr=3&amp;pmid=14617019" title="IFN-alpha may be transduced by two signalling pathways, one regulated by Tyk2 and the other dependent on Stat1">two</a> Src homology 2(<a href="http://www.ihop-net.org/UniPub/iHOP/pm/1661018.html?nr=7&amp;pmid=9794795" title="The tyrosine phosphorylated STAT factors dissociate from the receptor, dimerize and translocate to the nucleus">SH2</a>)<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8507863.html?nr=7&amp;pmid=10995743" title="Tyk2 directly binds to either of the two Src homology 2(SH2)p85 domains in a uPA-dependent fashion.">p85</a> domains binds the
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/658685.html?nr=8&amp;pmid=8702790" title="substitutions in this kinase-negative Tyk2 abolished the induced phosphorylation substitutions in the putative activation loop prevented ligand-dependent activation of Tyk2">pseudokinase</a> domain (a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12858973.html?nr=4&amp;pmid=18474601" title="Tyk2, as a component of such a masking complex">hypothetical</a> masking complex) of TYK2 directly.<br />
<table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody>
<tr><td style="text-align: center;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh96qNQx3TpZflcU6HoLyUT7OkIdAFXhPtF-q4zEzGTGzqEcSoSn19Eqksft9EoajR6jB-Hogc0p357ylWv45NC2y9sdpdsCbAGB15Ja_CE-NtbqQF2502UXQkBijp4bkzpm5yong/s1600/hmm3NOZ2.png" style="margin-left: auto; margin-right: auto;"><img border="0" height="229" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh96qNQx3TpZflcU6HoLyUT7OkIdAFXhPtF-q4zEzGTGzqEcSoSn19Eqksft9EoajR6jB-Hogc0p357ylWv45NC2y9sdpdsCbAGB15Ja_CE-NtbqQF2502UXQkBijp4bkzpm5yong/s320/hmm3NOZ2.png" width="320" /></a></td></tr>
<tr><td class="tr-caption" style="text-align: center;"><span class="gphoto-photocaption-caption">3lnx light Magneta,
<a href="https://picasaweb.google.com/lh/photo/rJHFBj9upivKNGl9xQtzkdMTjNZETYmyPJy0liipFm0?feat=directlink" target="_blank">3nzo by chain colors CHNOS</a>, 1bf5-1ynl cartoon Hidden MM prediction model
all centered on 1bf5 DNA of binding helical bundled cytokines and TYK2
of coding regions of exons and the adjacent intronic DNA sequences by
3nzo unspecifie<wbr></wbr>d 3nxo ligands GBR in foreground<wbr></wbr>.</span></td></tr>
</tbody></table>
<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </div>
<div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2011/12/non-receptor-tyrosine-protein-kinase.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh8u7Fh2Z1CEQB1QUBX-x6ffM7qPtkI6BKp5C-VnptqYFrwvqbaMEjTo24KaLtYN0vsejDUmW2m7i3d9xqn1lBmZMTnFQbH58dEsKJT_sv1yjuz2mGQcjp4G4vBE_EHv6BOBi1TtA/s72-c/tyrsurf-png.svg.png" height="72" width="72"/><thr:total>0</thr:total></item><item><guid isPermaLink="false">tag:blogger.com,1999:blog-14256471.post-3786849528823776740</guid><pubDate>Sun, 27 Nov 2011 03:25:00 +0000</pubDate><atom:updated>2011-11-30T08:14:13.161-10:00</atom:updated><category domain="http://www.blogger.com/atom/ns#">gp160</category><category domain="http://www.blogger.com/atom/ns#">IFNG</category><category domain="http://www.blogger.com/atom/ns#">Janus</category><category domain="http://www.blogger.com/atom/ns#">mRNPs</category><title>STAT1 signal transducer and activator of transcription 1</title><description><table cellpadding="0" cellspacing="0" class="tr-caption-container" style="float: right; margin-left: 1em; text-align: right;"><tbody>
<tr><td style="text-align: center;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg6rZyJxL732BdNhc3Z7bYy-6T20Mm_EWSwKiOKmdsOsAcKKBFWDzrlBXEtrQQPyCp7uvWsHC5UpuIGuMFgxdIIlvASkHloKh53Gc_OzrVfztZ2s8InVHTED5yFdimP8dp7AuEi5Q/s1600/1bf5+aligned+1yvl-svg-png%252Cpng.png" imageanchor="1" style="clear: right; margin-bottom: 1em; margin-left: auto; margin-right: auto;"><img border="0" height="102" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg6rZyJxL732BdNhc3Z7bYy-6T20Mm_EWSwKiOKmdsOsAcKKBFWDzrlBXEtrQQPyCp7uvWsHC5UpuIGuMFgxdIIlvASkHloKh53Gc_OzrVfztZ2s8InVHTED5yFdimP8dp7AuEi5Q/s200/1bf5+aligned+1yvl-svg-png%252Cpng.png" width="200" /></a></td></tr>
<tr><td class="tr-caption" style="text-align: center;">antiparallel and parallel <a href="https://picasaweb.google.com/lh/photo/tK9TZ-3hRqCUrVEgFP1p5dMTjNZETYmyPJy0liipFm0?feat=directlink" target="_blank">1bf5;1yvl</a> aligned </td></tr>
</tbody></table>
<div style="text-align: justify;">
<div style="text-align: left;">
</div>
<div style="text-align: justify;">
The JAK/STAT pathway signal transducer and activator of
transcription <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1558953.html?nr=1&amp;pmid=9724754" title="STAT proteins are latent cytoplasmic transcription factors that become activated by tyrosine phosphorylation in response to cytokine stimulation">STAT1</a>
location: 2q32.2: [<a href="http://www.ihop-net.org/UniPub/iHOP/gs/92436.html?ID=89591">§§</a>], is downstream of cytokine receptor IL2RG consisting
of an <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9659647.html?nr=1&amp;pmid=12403783" title="the N-terminal and C-terminal regions were necessary for the transcriptional synergy">N</a>-terminal
oligomerization domain surrounds a completely conserved <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13636276.html?nr=8&amp;pmid=19136629" title="STAT1 inhibitor PIAS1 (protein inhibitor of activated STAT1). PIAS1 is arginine methylated by PRMT1 in vitro as well as in vivo upon IFN treatment">arginine</a>
residue. And a C-terminal SRC homology-2 (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10795642.html?nr=7&amp;pmid=15780933" title="Two dimer interfaces are seen termed antiparallel or parallel, as determined by SH2 domain orientations">SH2</a>)
domain and receptors which translocates GAF and&nbsp; <a href="http://www.ihop-net.org/UniPub/iHOP/pm/538490.html?nr=10&amp;pmid=8621447" title="STAT1-STAT2 heterodimers were still formed, indicating that they do not contain p48, IFN-stimulated response elements (ISREs) in cells that lack signal transducer and activator of transcription 1 (STAT1), and STAT1 homodimers bind to IR inverted repeat elements">p48</a>
((protein <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13129341.html?nr=6&amp;pmid=17325370" title="rubulaviruses it encodes a V protein (MPRV/V) that inhibits the formation of the transcription factor complex ISGF3">48</a>),
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/794535.html?nr=3&amp;pmid=8864350" title="IFN alpha and IFN gamma, dictated by the DNA-binding protein ISGF3 gamma p48">ISGF3</a>)
to the nucleus and upregulates in signal transduction from both the
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/9909172.html?nr=6&amp;pmid=12856330" title="(IL-1) induces the phosphorylation of Stat1">type
I</a> and type <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10273329.html?nr=5&amp;pmid=14722224" title="Selective viral effects on type I IFN-dependent signaling were confirmed">II</a>
interferons transcription of <a href="http://www.ihop-net.org/UniPub/iHOP/pm/11253135.html?nr=1&amp;pmid=16148108" title="genes that are induced by IFN-gamma via Stat1-independent but Stat3-dependent pathways and have been implicated in inflammatory tissue destruction">IFNG</a>-regulated
genes and protein inhibitor of the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/829780.html?nr=4&amp;pmid=8986769" title="Stat1, which then forms homodimers, translocates to the nucleus and participates in IFN-gamma-induced transcription">latent</a>
cytoplasmic transcription factor activated <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8503391.html?nr=6&amp;pmid=10805787" title="PIAS1 does not interact with Stat1, it serves as a modulatory domain">STAT1</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10164894.html?nr=5&amp;pmid=12855578" title="Members of the PIAS family of proteins were found to strongly stimulate sumoylation of STAT1.">PIAS1</a> (protein inhibitor of activated <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13636276.html?nr=3&amp;pmid=19136629" title="PIAS1 is arginine methylated by PRMT1 in vitro as well as in vivo upon IFN treatment">STAT1</a>)
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/1558953.html?nr=1&amp;pmid=9724754" title="there may exist a specific PIAS inhibitor in every STAT signaling pathway">interaction</a>.
Homeostatic balance <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12475869.html?nr=6&amp;pmid=17227821" title="JAK/STAT mechanisms by which ICs regulate IFN-gamma activation of human monocytes">antigen-driven</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13786537.html?nr=4&amp;pmid=19622834" title="(JAK-STAT) pathway that couples interferon-gamma signaling to the nucleus">proinflammatory</a>
chemokines and cytokine immune <br />
<table cellpadding="0" cellspacing="0" class="tr-caption-container" style="float: right; margin-left: 0px; margin-right: 0px; text-align: left;"><tbody>
<tr><td style="text-align: center;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjEXpULxYB1M-XNUpNrISyQzmbIsPpJCukgdLpWI4TsRAapKwfSHHT2PRnw_6vauyLgpIujoIaUqqRBrfHmnugLh2ZzTUibldcBVdFG20zNsSullIc5MBkxc6bxbEEPizzHkiVsDg/s1600/dnaz1.png" style="clear: right; margin-bottom: 1em; margin-left: auto; margin-right: auto;"><img border="0" height="120" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjEXpULxYB1M-XNUpNrISyQzmbIsPpJCukgdLpWI4TsRAapKwfSHHT2PRnw_6vauyLgpIujoIaUqqRBrfHmnugLh2ZzTUibldcBVdFG20zNsSullIc5MBkxc6bxbEEPizzHkiVsDg/s200/dnaz1.png" width="200" /></a></td></tr>
<tr><td class="tr-caption" style="text-align: center;"><a href="https://picasaweb.google.com/lh/photo/W3Bi5vWpRxfstSFYMXzF-tMTjNZETYmyPJy0liipFm0?feat=directlink" target="_blank">Tyr701</a> transmigration route Via 74.56</td></tr>
</tbody></table>
<div style="text-align: justify;">
responses, are linked to a form of
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10211366.html?nr=7&amp;pmid=14963018" title="MSK1 stimulated phosphorylation of STAT1 (Ser727) indirectly. a member of the RSK (ribosomal S6 kinase) family Rsk-2 is located at Xq28">X</a>-linked susceptibility, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1754756.html?nr=5&amp;pmid=9989503" title="N-Myc (and STAT) interactor Using the coiled-coil region of Stat5b as the bait in a yeast two-hybrid screen">Nmi</a> interacts with all STATs except <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1999448.html?nr=9&amp;pmid=10464260" title="similarity between human and mouse Stat2 may define the critical determinants for function">Stat2</a>, the (Stat) gene family has been highly conserved throughout evolution. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8278288.html?nr=10&amp;pmid=10417824" title="implicated in the transduction of signals for growth, reproduction, viral defense, and immune regulation">Inherited</a> impairment of the STAT1-dependent
response to human <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9568304.html?nr=7&amp;pmid=12388709" title="V protein does not induce STAT degradation but instead inhibits IFN responses">IFN</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12050661.html?nr=5&amp;pmid=16624862" title="unlike IFN-alpha receptors, activated IFN-gamma receptors rapidly become enriched in plasma membrane lipid microdomains">alpha</a>/<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12004957.html?nr=6&amp;pmid=16571725" title="the antiviral and inflammatory effects of IFNalpha/beta">beta</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/15477481.html?nr=11&amp;pmid=20937132" title="resistance to IFN was associated with preservation of wild-type phenotype in the V protein">environment</a>
between STAT1 and the protein <a href="http://www.ihop-net.org/UniPub/iHOP/pm/989268.html?nr=5&amp;pmid=9135145" title="The association is not a kinase-substrate interaction">kinase</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12039823.html?nr=10&amp;pmid=16628196" title="hypothesizedSTAT1-SOCS1/TLR3 pathway regulatesa receptor for virus-associated double-stranded RNA, and triggers antiviral immune responses">double</a>-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8790943.html?nr=5&amp;pmid=11278865" title="Genetic experiments in yeast">stranded</a>
<a href="http://en.wikipedia.org/wiki/Double-stranded_RNA_viruses#The_Yeast_dsRNA_Virus_L-A" title="broad-spectrum anti-virals could be synthesized that take advantage of this vulnerability of double-stranded RNA viruses">RNA</a>, are a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13224526.html?nr=10&amp;pmid=17386941" title="factors which bind DNA following post-translational modification">double point</a> mutation, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/16201204.html?nr=8&amp;pmid=21762537" title="miR-155 suppressed suppressor of cytokine signaling 1 (SOCS1) expression">microRNA</a>s <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14218312.html?nr=1&amp;pmid=20098684" title="tumor-suppressive functions of miRNA PLoS ONE (2010)">suppressed</a> virus-<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12039823.html?nr=11&amp;pmid=16628196" title="Toll-like receptor (TLR)3 is a receptor for virus-associated double-stranded RNA">associated</a> double-stranded RNA.<a href="http://www.ihop-net.org/UniPub/iHOP/pm/13961754.html?nr=9&amp;pmid=19553685" title="Inactivation of mammalian target of rapamycin increases STAT1 interferon-gamma-sensitive genes involved in immunity and apoptosis"> Saccharomyces cerevisiae</a>, control STAT1 <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9977872.html?nr=9&amp;pmid=12807916" title="anti-mTOR small interfering RNA, or rapamycin [?] each inhibited phosphorylation of STAT1">mRNA</a> nuclear content that <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10164894.html?nr=6&amp;pmid=12855578" title="(PIAS, protein inhibitor of activated STAT, 1) regulated through posttranslational modifications and through transacting proteins such as protein inhibitor of activated STAT1 (PIAS1)">PIAS</a> proteins promote, the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1859910.html?nr=3&amp;pmid=9918120" title="the extracellular signal-dependent nuclear import of Stat1 is mediated via complex">nuclear pore</a>-targeting of proteins that translocate into the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8805593.html?nr=1&amp;pmid=11248027" title="Stat1 recruits a group of nuclear proteins, among them MCM5 (minichromosome maintenance) and MCM3, for transcription activation">nucleus</a> and activate transcription in complex with mRNA (<a href="http://www.ihop-net.org/UniPub/iHOP/pm/10481498.html?nr=6&amp;pmid=15279700" title="STAT activation and blocks antiviral IFN signaling. As the V proteins are important factors for host evasion">V</a>:
(−)ssRNA viruses, in a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13961756.html?nr=2&amp;pmid=19561067" title="pharmacological inhibition of protein palmitoylation results in severe defects of IFN receptor endocytosis and signaling which results in a lack of efficient Stat1 activation">form</a> <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9159515.html?nr=8&amp;pmid=11815625" title="the raft-STAT signaling hypothesis">deficient</a> in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8388675.html?nr=4&amp;pmid=10848598" title="STAT1-DNA complexes were not detected in nuclear extracts of FA-C cells from Fanconi anemia (FA) group C (FA-C) patients">DNA</a> binding, enabling <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9202230.html?nr=1&amp;pmid=11932384" title="the N terminus of the missing STAT protein is essential. t V and STAT proteins interact physically in vitro and in vivo">viruses</a>
to <a href="http://www.ihop-net.org/UniPub/iHOP/pm/10206341.html?nr=2&amp;pmid=15113915" title="Further, V protein interactions with cellular STAT1 is a prerequisite for STAT2 binding">target</a>-
a Stat1 heterodimer, which lacks <a href="http://www.ihop-net.org/UniPub/iHOP/pm/1964912.html?nr=7&amp;pmid=10446176" title="(Stat1) signaling in human vascular smooth muscle and endothelial cells uPA activates the Janus kinase/signal transducers and activators">p48</a>
a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9163426.html?nr=9&amp;pmid=11909852" title="bind to IFN regulatory factor-1 (IRF-1), but not to IFN-stimulated gene factor-3 (ISGF-3) binds to IRF-E/GAS/IRF-E(IGI) RNA sequence">repressor</a>
region) to <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9163426.html?nr=9&amp;pmid=11909852" title="cellular resistance to IFNs and mycobacterial infection in humans. Thus, given the relative importance of STAT1">mycobacterial</a>
disease (disseminated <a href="http://omim.org/entry/600555#molecularGenetics" title="bacille Calmette-Guerin">BCG</a> infection or <a href="http://en.wikipedia.org/wiki/BCG_vaccine" title="BCG is a vaccine against tuberculosis. The BCG vaccine was first used in humans in 1921">vaccinated</a>
<a href="http://omim.org/entry/209950#phenotypMap" title="Phenotype Gene Relationships Mycobacterial infection, atypical, familial disseminated">BCG</a> locus: 2q32-37) that results in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12547777.html?nr=7&amp;pmid=17942530" title="greater basal activated nuclear STAT1 and STAT2 and greater basal ISG mRNA(ISRE) expression">TYK2</a>
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/12226752.html?nr=6&amp;pmid=16973548" title="West Nile virus (WNV) was defective in its ability to disrupt IFN-induced JAK-STAT signaling, including the activation of Tyk2">deficiency</a>;
in viral infection or other unidentified <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8719804.html?nr=13&amp;pmid=11280796" title="extremely low ISGF3 level after IFN-alpha treatment may be due to low Tyk2 expression">defects</a>.
<a href="http://www.ihop-net.org/UniPub/iHOP/pm/21907.html?nr=8&amp;pmid=2249773" title="(ISRE), a conserved regulatory element of all ISGs, is the target for transcriptional activation by the positive regulator IFN-stimulated gene factor-3 (ISGF3)">ISGF3</a>
binds to <a href="http://www.ihop-net.org/UniPub/iHOP/pm/14322053.html?nr=9&amp;pmid=18218993" title="hMPV infection prevented IFN-alpha-mediated transactivation of the interferon-stimulated response element (ISRE)">ISRE</a>
(interferon-stimulated response element) where they (STAT proteins)
and their </div>
<table cellpadding="0" cellspacing="0" class="tr-caption-container" style="float: right; margin-left: 0px; margin-right: 0px; text-align: left;"><tbody>
<tr><td style="text-align: center;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEimtZkUVfvlDVtSnF6oJ0HYbd2F-b5GWagY5QbfXaNI4ylZkf2cRze9GuzO17654H_qW4qrRkFOvFnVJitN2Bm4Fa9JCbe4MC0Bz5dCeWCW9bjmc8eOkmz_JaZyvLw33xILzHX2kQ/s1600/144pocket3png.png" style="clear: left; margin-bottom: 1em; margin-left: auto; margin-right: auto;"><img border="0" height="120" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEimtZkUVfvlDVtSnF6oJ0HYbd2F-b5GWagY5QbfXaNI4ylZkf2cRze9GuzO17654H_qW4qrRkFOvFnVJitN2Bm4Fa9JCbe4MC0Bz5dCeWCW9bjmc8eOkmz_JaZyvLw33xILzHX2kQ/s200/144pocket3png.png" width="200" /></a></td></tr>
<tr><td class="tr-caption" style="text-align: center;"><span class="gphoto-photocaption-caption">&nbsp;<a href="https://picasaweb.google.com/lh/photo/FyQIH_FUcXWCsBfUDhuTJdMTjNZETYmyPJy0liipFm0?feat=directlink" target="_blank">Tyr701 note</a> the two orange <span style="background-color: orange;">**</span> tags </span></td></tr>
</tbody></table>
<div style="text-align: justify;">
differences in <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12106183.html?nr=9&amp;pmid=16698995" title="levels of phosphorylated STAT1 and STAT2 and that of the ISGF3 complex">IFN</a>
responsiveness (inducing a <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9492327.html?nr=10&amp;pmid=12077266" title="IRF-1 and IRF-7 may cooperate toward induction of IFN-alpha1/13 if infection persists and these factors are activated">cell-mediated</a>
immunity) either act to or directly bind to <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12472875.html?nr=6&amp;pmid=17351669" title="STAT proteins displaying slightly different intrinsic DNA binding specificities">DNA</a>
via signal transduction and activation of transcription after IFNG
stimulation. <a href="http://www.ihop-net.org/UniPub/iHOP/pm/13477767.html?nr=2&amp;pmid=18620071" title="STAT3 counteracts inflammation and promotes cell survival/proliferation and immune tolerance">STAT3</a>
location: 17q21.2 is not activated by IFN-gamma but component <a href="http://www.ihop-net.org/UniPub/iHOP/pm/99991.html?nr=5&amp;pmid=7690989" title="A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma.">p91</a>
(IFN)-stimulated gene factor-3 known to be activated by JAKs the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/336904.html?nr=7&amp;pmid=7657660" title="Phosphorylation of purified Stat1 was necessary and sufficient for the acquisition of DNA binding activity">Janus</a>
kinases, which couple ligands IGF, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9023867.html?nr=8&amp;pmid=11594781" title="interleukin-6 (IL-6)-induced tyrosine phosphorylation of Stat3">IL6</a>
and LIF dependent on the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/377067.html?nr=3&amp;pmid=7559477" title="gp130 preferentially activated STAT1 and STAT3">gp130</a>-like
leptin receptor <a href="http://lnwme.blogspot.com/2011/11/tyrosine-protein-kinase-jak1.html" title="activator of transcription, signal transducers and activators of transcription (STAT) pathway tyk, of STAT3 upstream kinases.">(Obr)
isoform</a>, Stat3 gene C-terminal loop of the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/8703735.html?nr=3&amp;pmid=11226159" title="STAT1 depends on SH2 and C-terminal domains that regulate Ser727">SH2</a> domain produced
a molecule that dimerized (hetero- or homo<a href="http://www.ihop-net.org/UniPub/iHOP/pm/8278288.html?nr=10&amp;pmid=10417824">dimer</a>ize, and translocate to the nucleus) spontaneously, <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9157428.html?nr=8&amp;pmid=11777927" title="IFN gamma and oncostatin M Both activate DNA binding of STAT1 homodimers">bound</a>
to <a href="http://www.ncbi.nlm.nih.gov/pubmed/10458605" title="substitution of two cysteine residues within the C-terminal loop of the SH2 domain of Stat3 produces a molecule that dimerizes spontaneously, binds to DNA, and activates transcription">DNA</a>.
Both signal transducer and activator of transcription factor 1
(STAT1) and <a href="http://www.ihop-net.org/UniPub/iHOP/pm/9094024.html?nr=2&amp;pmid=11722592" title="STAT1 and 3 formed stable heterodimers only in cell lines with constitutive STAT3 activation">STAT3</a> are activated in the <a href="http://www.ihop-net.org/UniPub/iHOP/pm/12169417.html?nr=8&amp;pmid=16897667" title="liver disease frequently leads to cirrhosis and death">liver</a>. </div>
</div>
<div style="text-align: justify;">
<table cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody>
<tr><td style="text-align: center;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhh3lrL-jkM0w7MH2xEkZ6NxwhcgeIbaeapudDGsmu6ELCgaugfBtWvordIrUSztXV0o-J3TM5fUShpih9rQe6i7tmHxFR_rc-1G1zsW8BG2dxAZaGax_Z2bH2qUG_2Yr0nZkYI4A/s1600/126.42tyr701svg.png" imageanchor="1" style="clear: left; margin-bottom: 1em; margin-left: auto; margin-right: auto;"><img border="0" height="146" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhh3lrL-jkM0w7MH2xEkZ6NxwhcgeIbaeapudDGsmu6ELCgaugfBtWvordIrUSztXV0o-J3TM5fUShpih9rQe6i7tmHxFR_rc-1G1zsW8BG2dxAZaGax_Z2bH2qUG_2Yr0nZkYI4A/s200/126.42tyr701svg.png" width="200" /></a></td></tr>
<tr><td class="tr-caption" style="text-align: center;">antigen-driven&nbsp;<a href="https://picasaweb.google.com/lh/photo/H65r-5m1RGUgDaNZV9qSuNMTjNZETYmyPJy0liipFm0?feat=directlink" target="_blank" title="when things go wrong">proinflammatory</a> immune responses in '<a href="http://lnwme.blogspot.com/2005/12/cult-of-dead-cow-revisited.html" title="Immune Responses Induced in Cattle by Vaccination with a Recombinant Adenovirus Expressing Mycobacterial Antigen 85A and Mycobacterium bovis BCG.">addition</a>' contribute to: <a href="http://lnwme.blogspot.com/2010/09/forms-of-heparin-binding-epidermal.html"><img alt="science has forced me to engineer medical attention 4 &quot;idiotypic vaccines &amp; humanized methods" src="http://scq.ubc.ca/sciencescouts/42medical.jpg" style="border: 0px solid; height: 17px; width: 17px;" title="science has forced me to engineer medical attention 4 &quot;idiotypic vaccines &amp; other humanized methods" /></a><a href="http://lnwme.blogspot.com/2010/09/forms-of-heparin-binding-epidermal.html"></a></td></tr>
</tbody></table>
</div>
</div><div class="blogger-post-footer"><script type="text/javascript"><!--
google_ad_client="pub-9610428118332343";
google_ad_host="";
google_ad_width=200;
google_ad_height=90;
google_ad_format="728x15_0ads_al_s";
google_color_border="EEEECC";
google_color_bg="EEEECC";
google_color_link="445566";
google_color_url="445566";
google_color_text="333333";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script></div></description><link>http://lnwme.blogspot.com/2011/11/stat1-signal-transducer-and-activator.html</link><author>noreply@blogger.com (mark brenneman)</author><media:thumbnail xmlns:media="http://search.yahoo.com/mrss/" url="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg6rZyJxL732BdNhc3Z7bYy-6T20Mm_EWSwKiOKmdsOsAcKKBFWDzrlBXEtrQQPyCp7uvWsHC5UpuIGuMFgxdIIlvASkHloKh53Gc_OzrVfztZ2s8InVHTED5yFdimP8dp7AuEi5Q/s72-c/1bf5+aligned+1yvl-svg-png%252Cpng.png" height="72" width="72"/><thr:total>1</thr:total></item></channel></rss>