Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://www.ncbi.nlm.nih.gov/entrez/eutils/erss.cgi?rss_guid=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc

  1. <?xml version='1.0' encoding='UTF-8'?>
  2. <rss xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:content="http://purl.org/rss/1.0/modules/content/" version="2.0">
  3.  <channel>
  4.    <title>peptidomics</title>
  5.    <link>https://pubmed.ncbi.nlm.nih.gov/rss-feed/?feed_id=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;v=2.18.0.post9+e462414&amp;ff=20240419164318&amp;utm_medium=rss&amp;utm_source=Feedvalidator</link>
  6.    <description>peptidomics: Latest results from PubMed</description>
  7.    <atom:link href="https://pubmed.ncbi.nlm.nih.gov/rss-feed/?feed_id=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;v=2.18.0.post9+e462414&amp;ff=20240419164318&amp;utm_medium=rss&amp;utm_source=Feedvalidator" rel="self"/>
  8.    <docs>http://www.rssboard.org/rss-specification</docs>
  9.    <generator>PubMed RSS feeds (2.18.0.post9+e462414)</generator>
  10.    <language>en</language>
  11.    <lastBuildDate>Fri, 19 Apr 2024 20:43:19 +0000</lastBuildDate>
  12.    <pubDate>Sat, 13 Apr 2024 06:00:00 -0400</pubDate>
  13.    <ttl>120</ttl>
  14.    <item>
  15.      <title>Histone derived antimicrobial peptides identified from Mytilus coruscus serum by peptidomics</title>
  16.      <link>https://pubmed.ncbi.nlm.nih.gov/38614412/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  17.      <description>Histones and their N-terminal or C-terminal derived peptides have been studied in vertebrates and presented as potential antimicrobial agents playing important roles in the innate immune defenses. Although histones and their derived peptides had been reported as components of innate immunity in invertebrates, the knowledge about the histone derived antimicrobial peptides (HDAPs) in invertebrates are still limited. Using a peptidomic technique, a set of peptide fragments derived from the histones...</description>
  18.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Fish Shellfish Immunol. 2024 Apr 15;149:109546. doi: 10.1016/j.fsi.2024.109546. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Histones and their N-terminal or C-terminal derived peptides have been studied in vertebrates and presented as potential antimicrobial agents playing important roles in the innate immune defenses. Although histones and their derived peptides had been reported as components of innate immunity in invertebrates, the knowledge about the histone derived antimicrobial peptides (HDAPs) in invertebrates are still limited. Using a peptidomic technique, a set of peptide fragments derived from the histones was identified in this study from the serum of microbes challenged Mytilus coruscus. Among the 85 identified histone-derived-peptides with high confidence, 5 HDAPs were chemically synthesized and the antimicrobial activities were verified, showing strong growth inhibition against Gram-positive bacteria, Gram-negative bacteria, and fungus. The gene expression level of the precursor histones matched by representative HDAPs were further tested using q-PCR, and the results showed a significant upregulation of the histone gene expression levels in hemocytes, gill, and mantle of the mussel after immune stress. In addition, three identified HDAPs were selected for preparation of specific antibodies, and the corresponding histones and their derived C-terminal fragments were detected by Western blotting in the blood cell and serum of immune challenged mussel, respectively, indicating the existence of HDAPs in M. coruscus. Our findings revealed the immune function of histones in Mytilus, and confirmed the existence of HDAPs in the mussel. The identified Mytilus HDAPs represent a new source of immune effector with antimicrobial function in the innate immune system, and thus provide promising candidates for the treatment of microbial infections in aquaculture and medicine.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38614412/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38614412</a> | DOI:<a href=https://doi.org/10.1016/j.fsi.2024.109546>10.1016/j.fsi.2024.109546</a></p></div>]]></content:encoded>
  19.      <guid isPermaLink="false">pubmed:38614412</guid>
  20.      <pubDate>Sat, 13 Apr 2024 06:00:00 -0400</pubDate>
  21.      <dc:creator>Haodong Wang</dc:creator>
  22.      <dc:creator>Zhi Liao</dc:creator>
  23.      <dc:creator>Zongxin Yang</dc:creator>
  24.      <dc:creator>Wenhui Xiao</dc:creator>
  25.      <dc:creator>Zilin Yang</dc:creator>
  26.      <dc:creator>Jianyu He</dc:creator>
  27.      <dc:creator>Xiaolin Zhang</dc:creator>
  28.      <dc:creator>Xiaojun Yan</dc:creator>
  29.      <dc:creator>Changsheng Tang</dc:creator>
  30.      <dc:date>2024-04-13</dc:date>
  31.      <dc:source>Fish &amp; shellfish immunology</dc:source>
  32.      <dc:title>Histone derived antimicrobial peptides identified from Mytilus coruscus serum by peptidomics</dc:title>
  33.      <dc:identifier>pmid:38614412</dc:identifier>
  34.      <dc:identifier>doi:10.1016/j.fsi.2024.109546</dc:identifier>
  35.    </item>
  36.    <item>
  37.      <title>Peptidomics analysis of in vitro digested wheat breads: Effect of genotype and environment on protein digestibility and release of celiac disease and wheat allergy related epitopes</title>
  38.      <link>https://pubmed.ncbi.nlm.nih.gov/38569409/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  39.      <description>Wheat proteins can trigger immunogenic reactions due to their resistance to digestion and immunostimulatory epitopes. Here, we investigated the peptidomic map of partially digested bread samples and the fingerprint of epitope diversity from 16 wheat genotypes grown in two environmental conditions. Flour protein content and composition were characterized; gastric and jejunal peptides were quantified using LC-MS/MS, and genotypes were classified into high or low bread protein digestibility....</description>
  40.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Chem. 2024 Mar 26;448:139148. doi: 10.1016/j.foodchem.2024.139148. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Wheat proteins can trigger immunogenic reactions due to their resistance to digestion and immunostimulatory epitopes. Here, we investigated the peptidomic map of partially digested bread samples and the fingerprint of epitope diversity from 16 wheat genotypes grown in two environmental conditions. Flour protein content and composition were characterized; gastric and jejunal peptides were quantified using LC-MS/MS, and genotypes were classified into high or low bread protein digestibility. Differences in flour protein content and peptide composition distinguish high from low digestibility genotypes in both growing environments. No common peptide signature was found between high- and low-digestible genotypes; however, the celiac or allergen epitopes were noted not to be higher in low-digestible genotypes. Overall, this study established a peptidomic and epitope diversity map of digested wheat bread and provided new insights and correlations between weather conditions, genotypes, digestibility and wheat sensitivities such as celiac disease and wheat allergy.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38569409/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38569409</a> | DOI:<a href=https://doi.org/10.1016/j.foodchem.2024.139148>10.1016/j.foodchem.2024.139148</a></p></div>]]></content:encoded>
  41.      <guid isPermaLink="false">pubmed:38569409</guid>
  42.      <pubDate>Wed, 03 Apr 2024 06:00:00 -0400</pubDate>
  43.      <dc:creator>Mélanie Lavoignat</dc:creator>
  44.      <dc:creator>Angéla Juhász</dc:creator>
  45.      <dc:creator>Utpal Bose</dc:creator>
  46.      <dc:creator>Thierry Sayd</dc:creator>
  47.      <dc:creator>Christophe Chambon</dc:creator>
  48.      <dc:creator>Miguel Ribeiro</dc:creator>
  49.      <dc:creator>Gilberto Igrejas</dc:creator>
  50.      <dc:creator>Sébastien Déjean</dc:creator>
  51.      <dc:creator>Catherine Ravel</dc:creator>
  52.      <dc:creator>Emmanuelle Bancel</dc:creator>
  53.      <dc:date>2024-04-03</dc:date>
  54.      <dc:source>Food chemistry</dc:source>
  55.      <dc:title>Peptidomics analysis of in vitro digested wheat breads: Effect of genotype and environment on protein digestibility and release of celiac disease and wheat allergy related epitopes</dc:title>
  56.      <dc:identifier>pmid:38569409</dc:identifier>
  57.      <dc:identifier>doi:10.1016/j.foodchem.2024.139148</dc:identifier>
  58.    </item>
  59.    <item>
  60.      <title>Taste Mechanism of Umami Molecules from Fermented Broad Bean Paste Based on In Silico Analysis and Peptidomics</title>
  61.      <link>https://pubmed.ncbi.nlm.nih.gov/38557018/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  62.      <description>In this study, in silico analysis and peptidomics were performed to examine the generation mechanism of the umami taste of fermented broad bean paste (FBBP). Based on the information from peptidomics, a total of 470 free peptides were identified from FBBP, most of which were increased after fermentation. Additionally, the increase of the content of umami peptides, organic acids, and amino acids during fermentation contributed to the perception of umami taste in FBBP. Molecule docking results...</description>
  63.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Agric Food Chem. 2024 Apr 1. doi: 10.1021/acs.jafc.3c09545. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">In this study, <i>in silico</i> analysis and peptidomics were performed to examine the generation mechanism of the umami taste of fermented broad bean paste (FBBP). Based on the information from peptidomics, a total of 470 free peptides were identified from FBBP, most of which were increased after fermentation. Additionally, the increase of the content of umami peptides, organic acids, and amino acids during fermentation contributed to the perception of umami taste in FBBP. Molecule docking results inferred that these umami molecules were easy to connect with Ser, Glu, His, and Gln in the T1R3 subunit through hydrogen bonds and electrostatic interaction force. The binding sites His145, Gln389, and Glu301 particularly contributed to the formation of the ligand-receptor complexes. The aromatic interaction, hydrogen bond, hydrophilicity, and solvent-accessible surface (SAS) played key roles in the receptor-peptide interaction. Sensory evaluation and electronic tongue results showed that EDEDE, DLSESV, SNGDDE, DETL, CDLSD, and TDEE screened from FBBP had umami characteristics and umami-enhancing effects (umami threshold values ranging from 0.131 to 0.394 mmol/L). This work provides new insight into the rapid and efficient screening of novel umami peptides and a deeper understanding of the taste mechanisms of umami molecules from FBBP.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38557018/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38557018</a> | DOI:<a href=https://doi.org/10.1021/acs.jafc.3c09545>10.1021/acs.jafc.3c09545</a></p></div>]]></content:encoded>
  64.      <guid isPermaLink="false">pubmed:38557018</guid>
  65.      <pubDate>Mon, 01 Apr 2024 06:00:00 -0400</pubDate>
  66.      <dc:creator>Jianhua Zhao</dc:creator>
  67.      <dc:creator>Yuqing Xie</dc:creator>
  68.      <dc:creator>Yue Xiang</dc:creator>
  69.      <dc:creator>Chunyan Jiang</dc:creator>
  70.      <dc:creator>Zhirui Tang</dc:creator>
  71.      <dc:creator>Jie Zhao</dc:creator>
  72.      <dc:creator>Min Xu</dc:creator>
  73.      <dc:creator>Ping Liu</dc:creator>
  74.      <dc:creator>Hongbin Lin</dc:creator>
  75.      <dc:creator>Jie Tang</dc:creator>
  76.      <dc:date>2024-04-01</dc:date>
  77.      <dc:source>Journal of agricultural and food chemistry</dc:source>
  78.      <dc:title>Taste Mechanism of Umami Molecules from Fermented Broad Bean Paste Based on In Silico Analysis and Peptidomics</dc:title>
  79.      <dc:identifier>pmid:38557018</dc:identifier>
  80.      <dc:identifier>doi:10.1021/acs.jafc.3c09545</dc:identifier>
  81.    </item>
  82.    <item>
  83.      <title>Current Challenges and Future Directions in Peptidomics</title>
  84.      <link>https://pubmed.ncbi.nlm.nih.gov/38549031/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  85.      <description>The field of peptidomics has been under development since its start more than 20 years ago. In this chapter we provide a personal outlook for future directions in this field. The applications of peptidomics technologies are spreading more and more from classical research of peptide hormones and neuropeptides towards commercial applications in plant and food-science. Many clinical applications have been developed to analyze the complexity of biofluids, which are being addressed with new...</description>
  86.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Methods Mol Biol. 2024;2758:485-498. doi: 10.1007/978-1-0716-3646-6_26.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The field of peptidomics has been under development since its start more than 20 years ago. In this chapter we provide a personal outlook for future directions in this field. The applications of peptidomics technologies are spreading more and more from classical research of peptide hormones and neuropeptides towards commercial applications in plant and food-science. Many clinical applications have been developed to analyze the complexity of biofluids, which are being addressed with new instrumentation, automization, and data processing. Additionally, the newly developed field of immunopeptidomics is showing promise for cancer therapies. In conclusion, peptidomics will continue delivering important information in classical fields like neuropeptides and peptide hormones, benefiting from improvements in state-of-the-art technologies. Moreover, new directions of research such as immunopeptidomics will further complement classical omics technologies and may become routine clinical procedures. Taken together, discoveries of new substances, networks, and applications of peptides can be expected in different disciplines.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38549031/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38549031</a> | DOI:<a href=https://doi.org/10.1007/978-1-0716-3646-6_26>10.1007/978-1-0716-3646-6_26</a></p></div>]]></content:encoded>
  87.      <guid isPermaLink="false">pubmed:38549031</guid>
  88.      <pubDate>Fri, 29 Mar 2024 06:00:00 -0400</pubDate>
  89.      <dc:creator>Michael Schrader</dc:creator>
  90.      <dc:creator>Lloyd D Fricker</dc:creator>
  91.      <dc:date>2024-03-29</dc:date>
  92.      <dc:source>Methods in molecular biology (Clifton, N.J.)</dc:source>
  93.      <dc:title>Current Challenges and Future Directions in Peptidomics</dc:title>
  94.      <dc:identifier>pmid:38549031</dc:identifier>
  95.      <dc:identifier>doi:10.1007/978-1-0716-3646-6_26</dc:identifier>
  96.    </item>
  97.    <item>
  98.      <title>Peptidomics Strategies to Evaluate Cancer Diagnosis, Prognosis, and Treatment</title>
  99.      <link>https://pubmed.ncbi.nlm.nih.gov/38549027/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  100.      <description>Peptides have potential bioactive functions, and the peptidomics landscape has been broadly investigated for various diseases, including cancer. In this chapter, we reviewed the past four years of literature available and selected 16 peer-reviewed publications exploring peptidomics in diagnosis, prognosis, and treatment in cancer research. We highlighted their main aims, mass spectrometry-based peptidomics, multi-omics, data-driven and in silico strategies, functional assays, and clinical...</description>
  101.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Methods Mol Biol. 2024;2758:401-423. doi: 10.1007/978-1-0716-3646-6_22.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Peptides have potential bioactive functions, and the peptidomics landscape has been broadly investigated for various diseases, including cancer. In this chapter, we reviewed the past four years of literature available and selected 16 peer-reviewed publications exploring peptidomics in diagnosis, prognosis, and treatment in cancer research. We highlighted their main aims, mass spectrometry-based peptidomics, multi-omics, data-driven and in silico strategies, functional assays, and clinical applications. Moreover, we underscored several levels of difficulties in translating the peptidomics findings to clinical practice, aiming to learn with the accumulated knowledge and guide upcoming studies. Finally, this review reinforces the peptidomics robustness in discovering potential candidates for monitoring the several stages of cancer disease and therapeutic treatment, leveraging the management of cancer patients in the future.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38549027/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38549027</a> | DOI:<a href=https://doi.org/10.1007/978-1-0716-3646-6_22>10.1007/978-1-0716-3646-6_22</a></p></div>]]></content:encoded>
  102.      <guid isPermaLink="false">pubmed:38549027</guid>
  103.      <pubDate>Fri, 29 Mar 2024 06:00:00 -0400</pubDate>
  104.      <dc:creator>Daniella Figueiredo</dc:creator>
  105.      <dc:creator>Rodrigo G B Cruz</dc:creator>
  106.      <dc:creator>Ana Gabriela Costa Normando</dc:creator>
  107.      <dc:creator>Daniela C Granato</dc:creator>
  108.      <dc:creator>Ariane F Busso-Lopes</dc:creator>
  109.      <dc:creator>Carolina M Carnielli</dc:creator>
  110.      <dc:creator>Tatiane De Rossi</dc:creator>
  111.      <dc:creator>Adriana Franco Paes Leme</dc:creator>
  112.      <dc:date>2024-03-29</dc:date>
  113.      <dc:source>Methods in molecular biology (Clifton, N.J.)</dc:source>
  114.      <dc:title>Peptidomics Strategies to Evaluate Cancer Diagnosis, Prognosis, and Treatment</dc:title>
  115.      <dc:identifier>pmid:38549027</dc:identifier>
  116.      <dc:identifier>doi:10.1007/978-1-0716-3646-6_22</dc:identifier>
  117.    </item>
  118.    <item>
  119.      <title>Peptidomics of Zebrafish Brain in a 6-OHDA-Induced Neurodegeneration Model</title>
  120.      <link>https://pubmed.ncbi.nlm.nih.gov/38549021/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  121.      <description>Bioactive peptides such as neuropeptides and peptide hormones are largely understood in their involvement in a variety of physiologic systems. In addition to the neuropeptides produced and processed by the classic secretory pathway, intracellular peptides (InPeps) have shown biological activity in studies involving different organisms. A model that has become attractive in many research fields is the zebrafish (Danio rerio), which has allowed correlating behavioral responses or physiological...</description>
  122.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Methods Mol Biol. 2024;2758:307-317. doi: 10.1007/978-1-0716-3646-6_16.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Bioactive peptides such as neuropeptides and peptide hormones are largely understood in their involvement in a variety of physiologic systems. In addition to the neuropeptides produced and processed by the classic secretory pathway, intracellular peptides (InPeps) have shown biological activity in studies involving different organisms. A model that has become attractive in many research fields is the zebrafish (Danio rerio), which has allowed correlating behavioral responses or physiological processes with underlying molecular pathways or signaling cascades, improving the understanding of homeostasis mechanisms of the central nervous system, as well as pathological processes such as neurodegenerative diseases. Here, we provide a detailed description of the protocol of treatment with 6-OHDA, which mimics some features of Parkinson's Disease, as well as the validation of the treatment by evaluation of the locomotor activity and the protocol of peptide extraction followed by isotopic labeling to peptide relative quantitation by mass spectrometry.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38549021/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38549021</a> | DOI:<a href=https://doi.org/10.1007/978-1-0716-3646-6_16>10.1007/978-1-0716-3646-6_16</a></p></div>]]></content:encoded>
  123.      <guid isPermaLink="false">pubmed:38549021</guid>
  124.      <pubDate>Fri, 29 Mar 2024 06:00:00 -0400</pubDate>
  125.      <dc:creator>Louise O Fiametti</dc:creator>
  126.      <dc:creator>Felipe Ricardo de Mello</dc:creator>
  127.      <dc:creator>Leandro M de Castro</dc:creator>
  128.      <dc:date>2024-03-29</dc:date>
  129.      <dc:source>Methods in molecular biology (Clifton, N.J.)</dc:source>
  130.      <dc:title>Peptidomics of Zebrafish Brain in a 6-OHDA-Induced Neurodegeneration Model</dc:title>
  131.      <dc:identifier>pmid:38549021</dc:identifier>
  132.      <dc:identifier>doi:10.1007/978-1-0716-3646-6_16</dc:identifier>
  133.    </item>
  134.    <item>
  135.      <title>Albumen and Yolk Plasma Peptidomics for the Identification and Quantitation of Bioactive Molecules and the Quality Control of Hen Egg Products</title>
  136.      <link>https://pubmed.ncbi.nlm.nih.gov/38549018/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  137.      <description>Hen eggs and the corresponding food products are essential components of human diet. In addition to supplying basic nutrients, they contain functional peptides that are released in vivo within the intact raw material following physiological proteolytic events affecting specific proteins or derive from technological processing of albumen and yolk fractions as a result of the dedicated use of proteases from plant and microbial sources. Besides their potential importance for functional...</description>
  138.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Methods Mol Biol. 2024;2758:241-254. doi: 10.1007/978-1-0716-3646-6_13.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Hen eggs and the corresponding food products are essential components of human diet. In addition to supplying basic nutrients, they contain functional peptides that are released in vivo within the intact raw material following physiological proteolytic events affecting specific proteins or derive from technological processing of albumen and yolk fractions as a result of the dedicated use of proteases from plant and microbial sources. Besides their potential importance for functional applications, peptides released under physiological conditions in intact egg can be used as markers of product storage and deterioration. Therefore, characterization and quantitation of peptides in egg and egg-derived products can be used to implement evaluation of potential bioactivities as well as to assess food product qualitative characteristics. Here, we provide dedicated information on extraction, identification, and quantitative analysis of peptides from albumen and yolk plasma; nano-liquid chromatography-mass spectrometry combined with bioinformatic analysis of resulting raw data by different software tools allowed to assign molecules based on database searching and to evaluate their relative quantity in different samples.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38549018/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38549018</a> | DOI:<a href=https://doi.org/10.1007/978-1-0716-3646-6_13>10.1007/978-1-0716-3646-6_13</a></p></div>]]></content:encoded>
  139.      <guid isPermaLink="false">pubmed:38549018</guid>
  140.      <pubDate>Fri, 29 Mar 2024 06:00:00 -0400</pubDate>
  141.      <dc:creator>Simona Arena</dc:creator>
  142.      <dc:creator>Giovanni Renzone</dc:creator>
  143.      <dc:creator>Valentina Ciaravolo</dc:creator>
  144.      <dc:creator>Andrea Scaloni</dc:creator>
  145.      <dc:date>2024-03-29</dc:date>
  146.      <dc:source>Methods in molecular biology (Clifton, N.J.)</dc:source>
  147.      <dc:title>Albumen and Yolk Plasma Peptidomics for the Identification and Quantitation of Bioactive Molecules and the Quality Control of Hen Egg Products</dc:title>
  148.      <dc:identifier>pmid:38549018</dc:identifier>
  149.      <dc:identifier>doi:10.1007/978-1-0716-3646-6_13</dc:identifier>
  150.    </item>
  151.    <item>
  152.      <title>Quantitative Peptidomics Using Reductive Methylation of Amines</title>
  153.      <link>https://pubmed.ncbi.nlm.nih.gov/38549011/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  154.      <description>A number of different approaches have been used for quantitative peptidomics. In this protocol, we describe the method in which peptides are reacted with formaldehyde and sodium cyanoborohydride, which converts primary and secondary amines into tertiary amines. By using different combinations of regular reagents, deuterated reagents (²H), and reagents containing deuterium and ^(13)C, it is possible to produce five isotopically distinct forms of the methylated peptides, which can be quantified by...</description>
  155.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Methods Mol Biol. 2024;2758:109-124. doi: 10.1007/978-1-0716-3646-6_6.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">A number of different approaches have been used for quantitative peptidomics. In this protocol, we describe the method in which peptides are reacted with formaldehyde and sodium cyanoborohydride, which converts primary and secondary amines into tertiary amines. By using different combinations of regular reagents, deuterated reagents (<sup>2</sup>H), and reagents containing deuterium and <sup>13</sup>C, it is possible to produce five isotopically distinct forms of the methylated peptides, which can be quantified by mass spectrometry. Peptides with free N-termini that are primary amines incorporate two methyl groups using this procedure, which differ by 2 Da for each of the five isotopic combinations. Peptides that contain unmodified lysine residues incorporate additional pairs of methyl groups, leading to larger mass differences between isotopic forms. The reagents are commercially available, relatively inexpensive, and chemically stable.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38549011/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38549011</a> | DOI:<a href=https://doi.org/10.1007/978-1-0716-3646-6_6>10.1007/978-1-0716-3646-6_6</a></p></div>]]></content:encoded>
  156.      <guid isPermaLink="false">pubmed:38549011</guid>
  157.      <pubDate>Fri, 29 Mar 2024 06:00:00 -0400</pubDate>
  158.      <dc:creator>Alexandre K Tashima</dc:creator>
  159.      <dc:creator>Leandro M de Castro</dc:creator>
  160.      <dc:creator>Lloyd D Fricker</dc:creator>
  161.      <dc:date>2024-03-29</dc:date>
  162.      <dc:source>Methods in molecular biology (Clifton, N.J.)</dc:source>
  163.      <dc:title>Quantitative Peptidomics Using Reductive Methylation of Amines</dc:title>
  164.      <dc:identifier>pmid:38549011</dc:identifier>
  165.      <dc:identifier>doi:10.1007/978-1-0716-3646-6_6</dc:identifier>
  166.    </item>
  167.    <item>
  168.      <title>Quantitative Peptidomics: General Considerations</title>
  169.      <link>https://pubmed.ncbi.nlm.nih.gov/38549010/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  170.      <description>Peptidomics is the detection and identification of the peptides present in a sample, and quantitative peptidomics provides additional information about the amounts of these peptides. It is possible to perform absolute quantitation of peptide levels in which the biological sample is compared to synthetic standards of each peptide. More commonly, relative quantitation is performed to compare peptide levels between two or more samples. Relative quantitation can measure differences between all...</description>
  171.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Methods Mol Biol. 2024;2758:89-108. doi: 10.1007/978-1-0716-3646-6_5.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Peptidomics is the detection and identification of the peptides present in a sample, and quantitative peptidomics provides additional information about the amounts of these peptides. It is possible to perform absolute quantitation of peptide levels in which the biological sample is compared to synthetic standards of each peptide. More commonly, relative quantitation is performed to compare peptide levels between two or more samples. Relative quantitation can measure differences between all peptides that are detectable, which can exceed 1000 peptides in a complex sample. In this chapter, various techniques used for quantitative peptidomics are described along with discussion of the advantages and disadvantages of each approach. A guide to selecting the optimal quantitative approach is provided, based on the goals of the experiment and the resources that are available.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38549010/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38549010</a> | DOI:<a href=https://doi.org/10.1007/978-1-0716-3646-6_5>10.1007/978-1-0716-3646-6_5</a></p></div>]]></content:encoded>
  172.      <guid isPermaLink="false">pubmed:38549010</guid>
  173.      <pubDate>Fri, 29 Mar 2024 06:00:00 -0400</pubDate>
  174.      <dc:creator>Lloyd D Fricker</dc:creator>
  175.      <dc:date>2024-03-29</dc:date>
  176.      <dc:source>Methods in molecular biology (Clifton, N.J.)</dc:source>
  177.      <dc:title>Quantitative Peptidomics: General Considerations</dc:title>
  178.      <dc:identifier>pmid:38549010</dc:identifier>
  179.      <dc:identifier>doi:10.1007/978-1-0716-3646-6_5</dc:identifier>
  180.    </item>
  181.    <item>
  182.      <title>Data-Independent Acquisition Peptidomics</title>
  183.      <link>https://pubmed.ncbi.nlm.nih.gov/38549009/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  184.      <description>In recent years, data-independent acquisition (DIA) has emerged as a powerful analysis method in biological mass spectrometry (MS). Compared to the previously predominant data-dependent acquisition (DDA), it offers a way to achieve greater reproducibility, sensitivity, and dynamic range in MS measurements. To make DIA accessible to non-expert users, a multifunctional, automated high-throughput pipeline DIAproteomics was implemented in the computational workflow framework "Nextflow" (...</description>
  185.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Methods Mol Biol. 2024;2758:77-88. doi: 10.1007/978-1-0716-3646-6_4.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">In recent years, data-independent acquisition (DIA) has emerged as a powerful analysis method in biological mass spectrometry (MS). Compared to the previously predominant data-dependent acquisition (DDA), it offers a way to achieve greater reproducibility, sensitivity, and dynamic range in MS measurements. To make DIA accessible to non-expert users, a multifunctional, automated high-throughput pipeline DIAproteomics was implemented in the computational workflow framework "Nextflow" ( https://nextflow.io ). This allows high-throughput processing of proteomics and peptidomics DIA datasets on diverse computing infrastructures. This chapter provides a short summary and usage protocol guide for the most important modes of operation of this pipeline regarding the analysis of peptidomics datasets using the command line. In brief, DIAproteomics is a wrapper around the OpenSwathWorkflow and relies on either existing or ad-hoc generated spectral libraries from matching DDA runs. The OpenSwathWorkflow extracts chromatograms from the DIA runs and performs chromatographic peak-picking. Further downstream of the pipeline, these peaks are scored, aligned, and statistically evaluated for qualitative and quantitative differences across conditions depending on the user's interest. DIAproteomics is open-source and available under a permissive license. We encourage the scientific community to use or modify the pipeline to meet their specific requirements.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38549009/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38549009</a> | DOI:<a href=https://doi.org/10.1007/978-1-0716-3646-6_4>10.1007/978-1-0716-3646-6_4</a></p></div>]]></content:encoded>
  186.      <guid isPermaLink="false">pubmed:38549009</guid>
  187.      <pubDate>Fri, 29 Mar 2024 06:00:00 -0400</pubDate>
  188.      <dc:creator>Leon Bichmann</dc:creator>
  189.      <dc:creator>Shubham Gupta</dc:creator>
  190.      <dc:creator>Hannes Röst</dc:creator>
  191.      <dc:date>2024-03-29</dc:date>
  192.      <dc:source>Methods in molecular biology (Clifton, N.J.)</dc:source>
  193.      <dc:title>Data-Independent Acquisition Peptidomics</dc:title>
  194.      <dc:identifier>pmid:38549009</dc:identifier>
  195.      <dc:identifier>doi:10.1007/978-1-0716-3646-6_4</dc:identifier>
  196.    </item>
  197.    <item>
  198.      <title>Origins, Technological Advancement, and Applications of Peptidomics</title>
  199.      <link>https://pubmed.ncbi.nlm.nih.gov/38549006/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  200.      <description>Peptidomics is the comprehensive characterization of peptides from biological sources instead of heading for a few single peptides in former peptide research. Mass spectrometry allows to detect a multitude of peptides in complex mixtures and thus enables new strategies leading to peptidomics. The term was established in the year 2001, and up to now, this new field has grown to over 3000 publications. Analytical techniques originally developed for fast and comprehensive analysis of peptides in...</description>
  201.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Methods Mol Biol. 2024;2758:3-47. doi: 10.1007/978-1-0716-3646-6_1.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Peptidomics is the comprehensive characterization of peptides from biological sources instead of heading for a few single peptides in former peptide research. Mass spectrometry allows to detect a multitude of peptides in complex mixtures and thus enables new strategies leading to peptidomics. The term was established in the year 2001, and up to now, this new field has grown to over 3000 publications. Analytical techniques originally developed for fast and comprehensive analysis of peptides in proteomics were specifically adjusted for peptidomics. Although it is thus closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. Fundamental technological advancements of peptidomics since have occurred in mass spectrometry and data processing, including quantification, and more slightly in separation technology. Different strategies and diverse sources of peptidomes are mentioned by numerous applications, such as discovery of neuropeptides and other bioactive peptides, including the use of biochemical assays. Furthermore, food and plant peptidomics are introduced similarly. Additionally, applications with a clinical focus are included, comprising biomarker discovery as well as immunopeptidomics. This overview extensively reviews recent methods, strategies, and applications including links to all other chapters of this book.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38549006/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38549006</a> | DOI:<a href=https://doi.org/10.1007/978-1-0716-3646-6_1>10.1007/978-1-0716-3646-6_1</a></p></div>]]></content:encoded>
  202.      <guid isPermaLink="false">pubmed:38549006</guid>
  203.      <pubDate>Fri, 29 Mar 2024 06:00:00 -0400</pubDate>
  204.      <dc:creator>Michael Schrader</dc:creator>
  205.      <dc:date>2024-03-29</dc:date>
  206.      <dc:source>Methods in molecular biology (Clifton, N.J.)</dc:source>
  207.      <dc:title>Origins, Technological Advancement, and Applications of Peptidomics</dc:title>
  208.      <dc:identifier>pmid:38549006</dc:identifier>
  209.      <dc:identifier>doi:10.1007/978-1-0716-3646-6_1</dc:identifier>
  210.    </item>
  211.    <item>
  212.      <title>Screening for Metal-Chelating Activity in Potato Protein Hydrolysates Using Surface Plasmon Resonance and Peptidomics</title>
  213.      <link>https://pubmed.ncbi.nlm.nih.gov/38539879/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  214.      <description>Metal-catalyzed lipid oxidation is a major factor in food waste, as it reduces shelf life. Addressing this issue, our study investigates the potential of hydrolysates derived from potato protein, a by-product of potato starch production, as metal-chelating antioxidants. Through sequential enzymatic hydrolysis using alcalase or trypsin combined with Flavourzyme, we produced various hydrolysates, which were then fractionated using ultrafiltration. Using a combination of peptidomics and...</description>
  215.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Antioxidants (Basel). 2024 Mar 13;13(3):346. doi: 10.3390/antiox13030346.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Metal-catalyzed lipid oxidation is a major factor in food waste, as it reduces shelf life. Addressing this issue, our study investigates the potential of hydrolysates derived from potato protein, a by-product of potato starch production, as metal-chelating antioxidants. Through sequential enzymatic hydrolysis using alcalase or trypsin combined with Flavourzyme, we produced various hydrolysates, which were then fractionated using ultrafiltration. Using a combination of peptidomics and bioinformatics, we predicted the presence of metal-chelating and free radical-scavenging peptides across all hydrolysate fractions, with a trend indicating a higher content of antioxidant peptides in lower molecular weight fractions. To validate these predictions, we utilized surface plasmon resonance (SPR) and a 9-day emulsion storage experiment. While SPR demonstrated potential in identifying antioxidant activity, it faced challenges in differentiating between hydrolysate fractions due to significant standard errors. In the storage experiment, all hydrolysates showed lipid oxidation inhibition, though not as effectively as ethylenediaminetetraacetic acid (EDTA). Remarkably, one fraction (AF13) was not significantly different (<i>p</i> &lt; 0.05) from EDTA in suppressing hexanal formation. These results highlight SPR and peptidomics/bioinformatics as promising yet limited methods for antioxidant screening. Importantly, this study reveals the potential of potato protein hydrolysates as antioxidants in food products, warranting further research.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38539879/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38539879</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10968033/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10968033</a> | DOI:<a href=https://doi.org/10.3390/antiox13030346>10.3390/antiox13030346</a></p></div>]]></content:encoded>
  216.      <guid isPermaLink="false">pubmed:38539879</guid>
  217.      <pubDate>Thu, 28 Mar 2024 06:00:00 -0400</pubDate>
  218.      <dc:creator>Mads Bjørlie</dc:creator>
  219.      <dc:creator>Julie Christina Hartmann</dc:creator>
  220.      <dc:creator>Line Hyrup Rasmussen</dc:creator>
  221.      <dc:creator>Betül Yesiltas</dc:creator>
  222.      <dc:creator>Ann-Dorit Moltke Sørensen</dc:creator>
  223.      <dc:creator>Simon Gregersen Echers</dc:creator>
  224.      <dc:creator>Charlotte Jacobsen</dc:creator>
  225.      <dc:date>2024-03-28</dc:date>
  226.      <dc:source>Antioxidants (Basel, Switzerland)</dc:source>
  227.      <dc:title>Screening for Metal-Chelating Activity in Potato Protein Hydrolysates Using Surface Plasmon Resonance and Peptidomics</dc:title>
  228.      <dc:identifier>pmid:38539879</dc:identifier>
  229.      <dc:identifier>pmc:PMC10968033</dc:identifier>
  230.      <dc:identifier>doi:10.3390/antiox13030346</dc:identifier>
  231.    </item>
  232.    <item>
  233.      <title>In-depth discovery and taste presentation mechanism studies on umami peptides derived from fermented sea bass based on peptidomics and machine learning</title>
  234.      <link>https://pubmed.ncbi.nlm.nih.gov/38522302/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  235.      <description>Umami peptides originating from fermented sea bass impart a distinctive flavor to food. Nevertheless, large-scale and rapid screening for umami peptides using conventional techniques is challenging because of problems such as prolonged duration and complicated operation. Therefore, we aimed to screen fermented sea bass using peptidomics and machine learning approaches. The taste presentation mechanism of umami peptides was assessed by molecular docking of T1R1/T1R3. Seventy umami peptides...</description>
  236.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Chem. 2024 Mar 16;448:138999. doi: 10.1016/j.foodchem.2024.138999. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Umami peptides originating from fermented sea bass impart a distinctive flavor to food. Nevertheless, large-scale and rapid screening for umami peptides using conventional techniques is challenging because of problems such as prolonged duration and complicated operation. Therefore, we aimed to screen fermented sea bass using peptidomics and machine learning approaches. The taste presentation mechanism of umami peptides was assessed by molecular docking of T1R1/T1R3. Seventy umami peptides identified in fermented sea bass predominantly originated from 28 precursor proteins, including troponin, myosin, motor protein, and creatine kinase. Six umami peptides with the lowest energies formed stable complexes by binding to T1R3. SER170, SER147, GLN389, and HIS145 are critical binding sites for T1R1/T1R3. Four dominant interacting surface forces were identified: aromatic interactions, hydrogen bonding, hydrophilic bonds, and solvent-accessible surfaces. Our study unveils a method to screen umami peptides efficiently, providing a basis for further exploration of their flavor in fermented sea bass.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38522302/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38522302</a> | DOI:<a href=https://doi.org/10.1016/j.foodchem.2024.138999>10.1016/j.foodchem.2024.138999</a></p></div>]]></content:encoded>
  237.      <guid isPermaLink="false">pubmed:38522302</guid>
  238.      <pubDate>Sun, 24 Mar 2024 06:00:00 -0400</pubDate>
  239.      <dc:creator>Chunxin Wang</dc:creator>
  240.      <dc:creator>Yanyan Wu</dc:creator>
  241.      <dc:creator>Huan Xiang</dc:creator>
  242.      <dc:creator>Shengjun Chen</dc:creator>
  243.      <dc:creator>Yongqiang Zhao</dc:creator>
  244.      <dc:creator>Qiuxing Cai</dc:creator>
  245.      <dc:creator>Di Wang</dc:creator>
  246.      <dc:creator>Yueqi Wang</dc:creator>
  247.      <dc:date>2024-03-24</dc:date>
  248.      <dc:source>Food chemistry</dc:source>
  249.      <dc:title>In-depth discovery and taste presentation mechanism studies on umami peptides derived from fermented sea bass based on peptidomics and machine learning</dc:title>
  250.      <dc:identifier>pmid:38522302</dc:identifier>
  251.      <dc:identifier>doi:10.1016/j.foodchem.2024.138999</dc:identifier>
  252.    </item>
  253.    <item>
  254.      <title>An Integrated Comprehensive Peptidomics and In Silico Analysis of Bioactive Peptide-Rich Milk Fermented by Three Autochthonous Cocci Strains</title>
  255.      <link>https://pubmed.ncbi.nlm.nih.gov/38397111/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  256.      <description>Bioactive peptides (BPs) are molecules of paramount importance with great potential for the development of functional foods, nutraceuticals or therapeutics for the prevention or treatment of various diseases. A functional BP-rich dairy product was produced by lyophilisation of bovine milk fermented by the autochthonous strains Lactococcus lactis subsp. lactis ZGBP5-51, Enterococcus faecium ZGBP5-52 and Enterococcus faecalis ZGBP5-53 isolated from the same artisanal fresh cheese. The efficiency...</description>
  257.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Int J Mol Sci. 2024 Feb 19;25(4):2431. doi: 10.3390/ijms25042431.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Bioactive peptides (BPs) are molecules of paramount importance with great potential for the development of functional foods, nutraceuticals or therapeutics for the prevention or treatment of various diseases. A functional BP-rich dairy product was produced by lyophilisation of bovine milk fermented by the autochthonous strains <i>Lactococcus lactis</i> subsp. <i>lactis</i> ZGBP5-51, <i>Enterococcus faecium</i> ZGBP5-52 and <i>Enterococcus faecalis</i> ZGBP5-53 isolated from the same artisanal fresh cheese. The efficiency of the proteolytic system of the implemented strains in the production of BPs was confirmed by a combined high-throughput mass spectrometry (MS)-based peptidome profiling and an in silico approach. First, peptides released by microbial fermentation were identified via a non-targeted peptide analysis (NTA) comprising reversed-phase nano-liquid chromatography (RP nano-LC) coupled with matrix-assisted laser desorption/ionisation-time-of-flight/time-of-flight (MALDI-TOF/TOF) MS, and then quantified by targeted peptide analysis (TA) involving RP ultrahigh-performance LC (RP-UHPLC) coupled with triple-quadrupole MS (QQQ-MS). A combined database and literature search revealed that 10 of the 25 peptides identified in this work have bioactive properties described in the literature. Finally, by combining the output of MS-based peptidome profiling with in silico bioactivity prediction tools, three peptides (<sup>75</sup>QFLPYPYYAKPA<sup>86</sup>, <sup>40</sup>VAPFPEVFGK<sup>49</sup>, <sup>117</sup>ARHPHPHLSF<sup>126</sup>), whose bioactive properties have not been previously reported in the literature, were identified as potential BP candidates.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38397111/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38397111</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10888711/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10888711</a> | DOI:<a href=https://doi.org/10.3390/ijms25042431>10.3390/ijms25042431</a></p></div>]]></content:encoded>
  258.      <guid isPermaLink="false">pubmed:38397111</guid>
  259.      <pubDate>Sat, 24 Feb 2024 06:00:00 -0500</pubDate>
  260.      <dc:creator>Martina Banić</dc:creator>
  261.      <dc:creator>Katarina Butorac</dc:creator>
  262.      <dc:creator>Nina Čuljak</dc:creator>
  263.      <dc:creator>Ana Butorac</dc:creator>
  264.      <dc:creator>Jasna Novak</dc:creator>
  265.      <dc:creator>Andreja Leboš Pavunc</dc:creator>
  266.      <dc:creator>Anamarija Rušanac</dc:creator>
  267.      <dc:creator>Željka Stanečić</dc:creator>
  268.      <dc:creator>Marija Lovrić</dc:creator>
  269.      <dc:creator>Jagoda Šušković</dc:creator>
  270.      <dc:creator>Blaženka Kos</dc:creator>
  271.      <dc:date>2024-02-24</dc:date>
  272.      <dc:source>International journal of molecular sciences</dc:source>
  273.      <dc:title>An Integrated Comprehensive Peptidomics and In Silico Analysis of Bioactive Peptide-Rich Milk Fermented by Three Autochthonous Cocci Strains</dc:title>
  274.      <dc:identifier>pmid:38397111</dc:identifier>
  275.      <dc:identifier>pmc:PMC10888711</dc:identifier>
  276.      <dc:identifier>doi:10.3390/ijms25042431</dc:identifier>
  277.    </item>
  278.    <item>
  279.      <title>Identification and molecular mechanism of novel bifunctional peptides from Duroc (Landrace Yorkshire) pig dry-cured ham: A peptidomics and in silico analysis</title>
  280.      <link>https://pubmed.ncbi.nlm.nih.gov/38395557/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  281.      <description>Duroc × (Landrace × Yorkshire) pigs are popular in the Chinese market because of their rapid growth, leanness, and economic value. Despite their widespread use in dry-cured ham processing, there is a lack of research on the bioactive peptides of Duroc × (Landrace × Yorkshire) pig ham (DLYH). This study aimed to investigate the presence of peptides with antioxidant and α-glucosidase inhibitory activities in DLYH using peptidomics and in silico analysis. A total of 453 peptides were identified...</description>
  282.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Res Int. 2024 Mar;180:114066. doi: 10.1016/j.foodres.2024.114066. Epub 2024 Jan 30.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Duroc × (Landrace × Yorkshire) pigs are popular in the Chinese market because of their rapid growth, leanness, and economic value. Despite their widespread use in dry-cured ham processing, there is a lack of research on the bioactive peptides of Duroc × (Landrace × Yorkshire) pig ham (DLYH). This study aimed to investigate the presence of peptides with antioxidant and α-glucosidase inhibitory activities in DLYH using peptidomics and in silico analysis. A total of 453 peptides were identified from DLYH, originating mainly from myosin, actin, and the EF-hand domain-containing protein. Notably, two peptides, YDEAGPSIVH (YH10) and FAGDDAPRAVF (FF11), emerged as novel bioactive peptides with antioxidant and α-glucosidase inhibitory activities. Among these peptides, YH10 exhibited a high DPPH radical scavenging activity (IC<sub>50</sub> = 1.93 mM), ABTS radical scavenging activity (IC<sub>50</sub> = 0.10 mM), α-glucosidase inhibitory activity (IC<sub>50</sub> = 2.13 mM), and good gastrointestinal tolerance. Molecular docking analysis showed that YH10 was bound to the ABTS and DPPH radicals and the active site of α-glucosidase (3A4A) primarily through hydrogen bonding and hydrophobic interactions. Furthermore, molecular dynamics (MD) simulation indicated that the YH10-3A4A complexes maintained stable and compact conformations. In conclusion, our findings indicated that peptide YH10 derived from DLYH possesses bifunctional properties of α-glucosidase inhibition and antioxidant activity, which could be beneficial for maintaining ham quality and promoting human health.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38395557/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38395557</a> | DOI:<a href=https://doi.org/10.1016/j.foodres.2024.114066>10.1016/j.foodres.2024.114066</a></p></div>]]></content:encoded>
  283.      <guid isPermaLink="false">pubmed:38395557</guid>
  284.      <pubDate>Fri, 23 Feb 2024 06:00:00 -0500</pubDate>
  285.      <dc:creator>Daodian Wang</dc:creator>
  286.      <dc:creator>Guangqiang Wei</dc:creator>
  287.      <dc:creator>Yanying Yang</dc:creator>
  288.      <dc:creator>Yanling Zou</dc:creator>
  289.      <dc:creator>Xiang Li</dc:creator>
  290.      <dc:creator>Yanan Shi</dc:creator>
  291.      <dc:creator>Aixiang Huang</dc:creator>
  292.      <dc:date>2024-02-23</dc:date>
  293.      <dc:source>Food research international (Ottawa, Ont.)</dc:source>
  294.      <dc:title>Identification and molecular mechanism of novel bifunctional peptides from Duroc (Landrace Yorkshire) pig dry-cured ham: A peptidomics and in silico analysis</dc:title>
  295.      <dc:identifier>pmid:38395557</dc:identifier>
  296.      <dc:identifier>doi:10.1016/j.foodres.2024.114066</dc:identifier>
  297.    </item>
  298.    <item>
  299.      <title>Comparative peptidomics analysis in the discovery of umami peptides from Chinese Douchi</title>
  300.      <link>https://pubmed.ncbi.nlm.nih.gov/38387312/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  301.      <description>Douchi is a kind of traditional Chinese fermented soybean product with outstanding umami taste. Besides the umami amino acids in Douchi, peptides were also considered as an important contributor for the umami taste of Douchi. Peptides with molecular weight below 0.66 kDa accounted for more than 50 % in all samples except for TongChuan Douchi, and a total of 421 peptides were identified from the ten kinds of Douchi samples by using LC-MS/MS. Combined with sensory evaluation results, 19 peptides...</description>
  302.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Chem. 2024 Jul 1;445:138692. doi: 10.1016/j.foodchem.2024.138692. Epub 2024 Feb 10.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Douchi is a kind of traditional Chinese fermented soybean product with outstanding umami taste. Besides the umami amino acids in Douchi, peptides were also considered as an important contributor for the umami taste of Douchi. Peptides with molecular weight below 0.66 kDa accounted for more than 50 % in all samples except for TongChuan Douchi, and a total of 421 peptides were identified from the ten kinds of Douchi samples by using LC-MS/MS. Combined with sensory evaluation results, 19 peptides containing Glu, Asp or known umami peptide sequences were chosen as potential umami peptides via PLS-DA and RDA analysis. Among them, 17 soluble peptides exhibited obvious umami taste and the threshold of 7 peptides were lower than MSG solution. Especially, the VD was detected with a minimum umami taste threshold at 0.16 mg/mL. The results indicated that the umami peptides might be the important components affecting the umami taste of Douchi.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38387312/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38387312</a> | DOI:<a href=https://doi.org/10.1016/j.foodchem.2024.138692>10.1016/j.foodchem.2024.138692</a></p></div>]]></content:encoded>
  303.      <guid isPermaLink="false">pubmed:38387312</guid>
  304.      <pubDate>Thu, 22 Feb 2024 06:00:00 -0500</pubDate>
  305.      <dc:creator>Xiao Zhou</dc:creator>
  306.      <dc:creator>Liwen Jiang</dc:creator>
  307.      <dc:creator>Qianqian Liu</dc:creator>
  308.      <dc:creator>Xinxin Zhang</dc:creator>
  309.      <dc:creator>Jucai Xu</dc:creator>
  310.      <dc:creator>Yang Liu</dc:creator>
  311.      <dc:date>2024-02-22</dc:date>
  312.      <dc:source>Food chemistry</dc:source>
  313.      <dc:title>Comparative peptidomics analysis in the discovery of umami peptides from Chinese Douchi</dc:title>
  314.      <dc:identifier>pmid:38387312</dc:identifier>
  315.      <dc:identifier>doi:10.1016/j.foodchem.2024.138692</dc:identifier>
  316.    </item>
  317.    <item>
  318.      <title>Revealing the diversity of endogenous peptides and parent proteins in human colostrum and mature milk through peptidomics analysis</title>
  319.      <link>https://pubmed.ncbi.nlm.nih.gov/38359565/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  320.      <description>Endogenous peptides and their parent proteins are important nutritional components with diverse biological functions. The objective of this study was to analyze and compare endogenous peptides and parent proteins found in human colostrum (HC) and human mature milk (HM) using a 4D label-free technique. In total, 5162 and 940 endogenous peptides derived from 258 parent proteins were identified in human milk by database (DB) search and de novo, respectively. Among these peptides, 2446...</description>
  321.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Chem. 2024 Jul 1;445:138651. doi: 10.1016/j.foodchem.2024.138651. Epub 2024 Feb 5.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Endogenous peptides and their parent proteins are important nutritional components with diverse biological functions. The objective of this study was to analyze and compare endogenous peptides and parent proteins found in human colostrum (HC) and human mature milk (HM) using a 4D label-free technique. In total, 5162 and 940 endogenous peptides derived from 258 parent proteins were identified in human milk by database (DB) search and de novo, respectively. Among these peptides, 2446 differentially expressed endogenous peptides with various bioactivities were identified. The Gene Ontology analysis unveiled the cellular components, biological processes, and molecular functions associated with these parent proteins. Metabolic pathway analysis suggested that neutrophil extracellular trap formation had the greatest significance with 24 parent proteins. These findings will offer a fresh perspective on the development of infant formula powder, highlighting the potential for incorporating these changes to enhance its nutritional composition and benefits.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38359565/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38359565</a> | DOI:<a href=https://doi.org/10.1016/j.foodchem.2024.138651>10.1016/j.foodchem.2024.138651</a></p></div>]]></content:encoded>
  322.      <guid isPermaLink="false">pubmed:38359565</guid>
  323.      <pubDate>Thu, 15 Feb 2024 06:00:00 -0500</pubDate>
  324.      <dc:creator>Jianting Ning</dc:creator>
  325.      <dc:creator>Mei Yang</dc:creator>
  326.      <dc:creator>Qing Zhu</dc:creator>
  327.      <dc:creator>Xiaoyu Liu</dc:creator>
  328.      <dc:creator>Mohan Li</dc:creator>
  329.      <dc:creator>Xue Luo</dc:creator>
  330.      <dc:creator>Xiqing Yue</dc:creator>
  331.      <dc:date>2024-02-15</dc:date>
  332.      <dc:source>Food chemistry</dc:source>
  333.      <dc:title>Revealing the diversity of endogenous peptides and parent proteins in human colostrum and mature milk through peptidomics analysis</dc:title>
  334.      <dc:identifier>pmid:38359565</dc:identifier>
  335.      <dc:identifier>doi:10.1016/j.foodchem.2024.138651</dc:identifier>
  336.    </item>
  337.    <item>
  338.      <title>Insights into characteristic metabolites and potential bioactive peptides profiles of fresh cheese fermented with three novel probiotics based metabolomics and peptidomics</title>
  339.      <link>https://pubmed.ncbi.nlm.nih.gov/38312486/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  340.      <description>The metabolite and peptide profiles of fresh cheese fermented by three novel probiotics, Lacticaseibacillus rhamnosus B6, Limosylactobacillus fermentum B44 and Lacticaseibacillus rhamnosus KF7, were investigated using LC-MS/MS-based metabolomics and peptidomics. The multivariate analysis revealed significant differences in metabolite composition between the probiotic fresh cheese and the control sample. The differential metabolites were primarily lipids and lipid-like molecules and organic...</description>
  341.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Chem X. 2024 Jan 18;21:101147. doi: 10.1016/j.fochx.2024.101147. eCollection 2024 Mar 30.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The metabolite and peptide profiles of fresh cheese fermented by three novel probiotics, <i>Lacticaseibacillus rhamnosus</i> B6, <i>Limosylactobacillus fermentum</i> B44 and <i>Lacticaseibacillus rhamnosus</i> KF7, were investigated using LC-MS/MS-based metabolomics and peptidomics. The multivariate analysis revealed significant differences in metabolite composition between the probiotic fresh cheese and the control sample. The differential metabolites were primarily lipids and lipid-like molecules and organic oxygen compounds, which were associated with fatty acid and carbohydrate-related pathways. Among three probiotics, <i>L. rhamnosus</i> KF7 showed the highest effectiveness in sucrose decomposition. 147 potential bioactive peptides, mainly derived from casein, were identified in probiotic fresh cheese. Furthermore, 112 bioactive peptides were significantly up-regulated in probiotic fresh cheese. Molecular docking analysis indicated that two short peptides (LVYPFPGPIP and YPQRDMPIQ) in the B44 and KF7 groups exhibited low estimated binding energy values (-9.9 and -6.9 kcal/mol) with ACE. These findings provide a theoretical basis for developing novel probiotic-enriched fresh cheese.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38312486/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38312486</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10837474/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10837474</a> | DOI:<a href=https://doi.org/10.1016/j.fochx.2024.101147>10.1016/j.fochx.2024.101147</a></p></div>]]></content:encoded>
  342.      <guid isPermaLink="false">pubmed:38312486</guid>
  343.      <pubDate>Mon, 05 Feb 2024 06:00:00 -0500</pubDate>
  344.      <dc:creator>Xin Zhang</dc:creator>
  345.      <dc:creator>Yuanrong Zheng</dc:creator>
  346.      <dc:creator>Zhenmin Liu</dc:creator>
  347.      <dc:creator>Miya Su</dc:creator>
  348.      <dc:creator>Zhengjun Wu</dc:creator>
  349.      <dc:creator>Huanchang Zhang</dc:creator>
  350.      <dc:creator>Chi Zhang</dc:creator>
  351.      <dc:creator>Xingmin Xu</dc:creator>
  352.      <dc:date>2024-02-05</dc:date>
  353.      <dc:source>Food chemistry: X</dc:source>
  354.      <dc:title>Insights into characteristic metabolites and potential bioactive peptides profiles of fresh cheese fermented with three novel probiotics based metabolomics and peptidomics</dc:title>
  355.      <dc:identifier>pmid:38312486</dc:identifier>
  356.      <dc:identifier>pmc:PMC10837474</dc:identifier>
  357.      <dc:identifier>doi:10.1016/j.fochx.2024.101147</dc:identifier>
  358.    </item>
  359.    <item>
  360.      <title>Comparative peptidomics analysis of preeclamptic placenta and the identification of a novel bioactive SERPINA1 C-terminal peptide</title>
  361.      <link>https://pubmed.ncbi.nlm.nih.gov/38290226/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  362.      <description>Preeclampsia (PE) is a life-threatening disease that severely harms pregnant women and infants' health but has a poorly understood etiology. Peptidomics can supply important information about the occurrence of diseases. However, application of peptidomics in preeclamptic placentas has never been reported. We conducted a comparative peptidomics analysis of PE placentas and performed bio-informatics analysis on differentially expressed peptides. Effects of differential peptide...</description>
  363.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Reprod Biol. 2024 Mar;24(1):100858. doi: 10.1016/j.repbio.2024.100858. Epub 2024 Jan 29.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Preeclampsia (PE) is a life-threatening disease that severely harms pregnant women and infants' health but has a poorly understood etiology. Peptidomics can supply important information about the occurrence of diseases. However, application of peptidomics in preeclamptic placentas has never been reported. We conducted a comparative peptidomics analysis of PE placentas and performed bio-informatics analysis on differentially expressed peptides. Effects of differential peptide <sup>405</sup>SPLFMGKVVNPTQK<sup>418</sup> on the behaviors of trophoblasts and angiogenesis were assessed by CCK8, transwell assays, and tube network formation assays. And we also confirmed the role of peptide in the zebrafish xenograft model. A total of 3582 peptide were identified. 48 peptides were differentially expressed. Bioinformatics analysis indicated that precursor proteins of these differentially expressed peptides correlate with "complement and coagulation cascades," and "platelet activation" pathways. Of the 48 differential peptides, we found that peptide <sup>405</sup>SPLFMGKVVNPTQK<sup>418</sup> can significantly increase proliferation, migration of trophoblasts and stimulate angiogenesis of HUVECs in vitro and zebrafish model. These findings suggest peptidomes can aid in understanding the pathogenesis of PE more comprehensively. Peptide <sup>405</sup>SPLFMGKVVNPTQK<sup>418</sup> can be novel target and strategy to alleviate the condition of preeclampsia.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38290226/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38290226</a> | DOI:<a href=https://doi.org/10.1016/j.repbio.2024.100858>10.1016/j.repbio.2024.100858</a></p></div>]]></content:encoded>
  364.      <guid isPermaLink="false">pubmed:38290226</guid>
  365.      <pubDate>Tue, 30 Jan 2024 06:00:00 -0500</pubDate>
  366.      <dc:creator>Lingling Jiang</dc:creator>
  367.      <dc:creator>Yuanyuan Zhu</dc:creator>
  368.      <dc:creator>Liuxin Wu</dc:creator>
  369.      <dc:creator>Cong Wang</dc:creator>
  370.      <dc:creator>Nana Yang</dc:creator>
  371.      <dc:creator>Yetao Xu</dc:creator>
  372.      <dc:creator>Lizhou Sun</dc:creator>
  373.      <dc:date>2024-01-30</dc:date>
  374.      <dc:source>Reproductive biology</dc:source>
  375.      <dc:title>Comparative peptidomics analysis of preeclamptic placenta and the identification of a novel bioactive SERPINA1 C-terminal peptide</dc:title>
  376.      <dc:identifier>pmid:38290226</dc:identifier>
  377.      <dc:identifier>doi:10.1016/j.repbio.2024.100858</dc:identifier>
  378.    </item>
  379.    <item>
  380.      <title>Peptidomics Unveils Distinct Acetylation Patterns of Histone and Annexin A1 in Differentiated Thyroid Cancer</title>
  381.      <link>https://pubmed.ncbi.nlm.nih.gov/38203548/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  382.      <description>Thyroid cancer is a common malignancy of the endocrine system. Nodules are routinely evaluated for malignancy risk by fine needle aspiration biopsy (FNAB), and in cases such as follicular lesions, differential diagnosis between benign and malignant nodules is highly uncertain. Therefore, the discovery of new biomarkers for this disease could be helpful in improving diagnostic accuracy. Thyroid nodule biopsies were subjected to a precipitation step with both the insoluble and supernatant...</description>
  383.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Int J Mol Sci. 2023 Dec 27;25(1):376. doi: 10.3390/ijms25010376.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Thyroid cancer is a common malignancy of the endocrine system. Nodules are routinely evaluated for malignancy risk by fine needle aspiration biopsy (FNAB), and in cases such as follicular lesions, differential diagnosis between benign and malignant nodules is highly uncertain. Therefore, the discovery of new biomarkers for this disease could be helpful in improving diagnostic accuracy. Thyroid nodule biopsies were subjected to a precipitation step with both the insoluble and supernatant fractions subjected to proteome and peptidome profiling. Proteomic analysis identified annexin A1 as a potential biomarker of thyroid cancer malignancy, with its levels increased in malignant samples. Also upregulated were the acetylated peptides of annexin A1, revealed by the peptidome analysis of the supernatant fraction. In addition, supernatant peptidomic analysis revealed a number of acetylated histone peptides that were significantly elevated in the malignant group, suggesting higher gene transcription activity in malignant tissue. Two of these peptides were found to be robust malignancy predictors, with an area under the receiver operating a characteristic curve (ROC AUC) above 0.95. Thus, this combination of proteomics and peptidomics analyses improved the detection of malignant lesions and also provided new evidence linking thyroid cancer development to heightened transcription activity. This study demonstrates the importance of peptidomic profiling in complementing traditional proteomics approaches.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38203548/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38203548</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10778789/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10778789</a> | DOI:<a href=https://doi.org/10.3390/ijms25010376>10.3390/ijms25010376</a></p></div>]]></content:encoded>
  384.      <guid isPermaLink="false">pubmed:38203548</guid>
  385.      <pubDate>Thu, 11 Jan 2024 06:00:00 -0500</pubDate>
  386.      <dc:creator>Margarida Coelho</dc:creator>
  387.      <dc:creator>João Capela</dc:creator>
  388.      <dc:creator>Vera M Mendes</dc:creator>
  389.      <dc:creator>João Pacheco</dc:creator>
  390.      <dc:creator>Margarida Sá Fernandes</dc:creator>
  391.      <dc:creator>Isabel Amendoeira</dc:creator>
  392.      <dc:creator>John G Jones</dc:creator>
  393.      <dc:creator>Luís Raposo</dc:creator>
  394.      <dc:creator>Bruno Manadas</dc:creator>
  395.      <dc:date>2024-01-11</dc:date>
  396.      <dc:source>International journal of molecular sciences</dc:source>
  397.      <dc:title>Peptidomics Unveils Distinct Acetylation Patterns of Histone and Annexin A1 in Differentiated Thyroid Cancer</dc:title>
  398.      <dc:identifier>pmid:38203548</dc:identifier>
  399.      <dc:identifier>pmc:PMC10778789</dc:identifier>
  400.      <dc:identifier>doi:10.3390/ijms25010376</dc:identifier>
  401.    </item>
  402.    <item>
  403.      <title>ProtPipe: A Multifunctional Data Analysis Pipeline for Proteomics and Peptidomics</title>
  404.      <link>https://pubmed.ncbi.nlm.nih.gov/38168437/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  405.      <description>Mass spectrometry (MS) is a technique widely employed for the identification and characterization of proteins, personalized medicine, systems biology and biomedical applications. By combining MS with different proteomics approaches such as immunopurification MS, immunopeptidomics, and total protein proteomics, researchers can gain insights into protein-protein interactions, immune responses, cellular processes, and disease mechanisms. The application of MS-based proteomics in these areas...</description>
  406.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">bioRxiv [Preprint]. 2023 Dec 13:2023.12.12.571327. doi: 10.1101/2023.12.12.571327.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Mass spectrometry (MS) is a technique widely employed for the identification and characterization of proteins, personalized medicine, systems biology and biomedical applications. By combining MS with different proteomics approaches such as immunopurification MS, immunopeptidomics, and total protein proteomics, researchers can gain insights into protein-protein interactions, immune responses, cellular processes, and disease mechanisms. The application of MS-based proteomics in these areas continues to advance our understanding of protein function, cellular signaling, and complex biological systems. Data analysis for mass spectrometry is a critical process that includes identifying and quantifying proteins and peptides and exploring biological functions for these proteins in downstream analysis. To address the complexities associated with MS data analysis, we developed ProtPipe to streamline and automate the processing and analysis of high-throughput proteomics and peptidomics datasets. The pipeline facilitates data quality control, sample filtering, and normalization, ensuring robust and reliable downstream analysis. ProtPipe provides downstream analysis including identifying differential abundance proteins and peptides, pathway enrichment analysis, protein-protein interaction analysis, and MHC1-peptide binding affinity. ProtPipe generates annotated tables and diagnostic visualizations from statistical postprocessing and computation of fold-changes across pairwise conditions, predefined in an experimental design. ProtPipe is well-documented open-source software and is available at https://github.com/NIH-CARD/ProtPipe , accompanied by a web interface.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38168437/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38168437</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10760195/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10760195</a> | DOI:<a href=https://doi.org/10.1101/2023.12.12.571327>10.1101/2023.12.12.571327</a></p></div>]]></content:encoded>
  407.      <guid isPermaLink="false">pubmed:38168437</guid>
  408.      <pubDate>Wed, 03 Jan 2024 06:00:00 -0500</pubDate>
  409.      <dc:creator>Ziyi Li</dc:creator>
  410.      <dc:creator>Cory A Weller</dc:creator>
  411.      <dc:creator>Syed Shah</dc:creator>
  412.      <dc:creator>Nicholas Johnson</dc:creator>
  413.      <dc:creator>Ying Hao</dc:creator>
  414.      <dc:creator>Jessica Roberts</dc:creator>
  415.      <dc:creator>Colleen Bereda</dc:creator>
  416.      <dc:creator>Sydney Klaisner</dc:creator>
  417.      <dc:creator>Pedro Machado</dc:creator>
  418.      <dc:creator>Pietro Fratta</dc:creator>
  419.      <dc:creator>Leonard Petrucelli</dc:creator>
  420.      <dc:creator>Mercedes Prudencio</dc:creator>
  421.      <dc:creator>Björn Oskarsson</dc:creator>
  422.      <dc:creator>Nathan P Staff</dc:creator>
  423.      <dc:creator>Dennis W Dickson</dc:creator>
  424.      <dc:creator>Mark R Cookson</dc:creator>
  425.      <dc:creator>Michael E Ward</dc:creator>
  426.      <dc:creator>Andrew B Singleton</dc:creator>
  427.      <dc:creator>Mike A Nalls</dc:creator>
  428.      <dc:creator>Yue A Qi</dc:creator>
  429.      <dc:date>2024-01-03</dc:date>
  430.      <dc:source>bioRxiv : the preprint server for biology</dc:source>
  431.      <dc:title>ProtPipe: A Multifunctional Data Analysis Pipeline for Proteomics and Peptidomics</dc:title>
  432.      <dc:identifier>pmid:38168437</dc:identifier>
  433.      <dc:identifier>pmc:PMC10760195</dc:identifier>
  434.      <dc:identifier>doi:10.1101/2023.12.12.571327</dc:identifier>
  435.    </item>
  436.    <item>
  437.      <title>Enzymatic debittering of cheese flavoring and bitterness characterization of peptide mixture using sensory and peptidomics approach</title>
  438.      <link>https://pubmed.ncbi.nlm.nih.gov/38159315/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  439.      <description>Peptides in cheese flavoring produced through proteolysis plus fermentation generated bitterness. Bitterness of individual peptide can be quantified using quantitative structure-activity relationship, where molecular mass (M), hydrophobicity, residues, C-terminal hydrophobic amino acids (C-HAAs), and N-terminal basic ones (N-BAAs) are crucial. However, their accumulative influence on the overall bitterness of peptide mixture remains unknown. This study delved into extensive proteolysis to...</description>
  440.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Chem. 2024 May 15;440:138229. doi: 10.1016/j.foodchem.2023.138229. Epub 2023 Dec 17.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Peptides in cheese flavoring produced through proteolysis plus fermentation generated bitterness. Bitterness of individual peptide can be quantified using quantitative structure-activity relationship, where molecular mass (M), hydrophobicity, residues, C-terminal hydrophobic amino acids (C-HAAs), and N-terminal basic ones (N-BAAs) are crucial. However, their accumulative influence on the overall bitterness of peptide mixture remains unknown. This study delved into extensive proteolysis to debitter and to correlate the multi-influencing factors of peptides and the collective bitterness. As hydrolysis increased from 7.5 % to 28.0 %, bitterness reduced from 5.0 to 0.3-2.7 scores, contingent on proteases used, in which FU was optimal. The overall bitterness cannot be predicted through the summation of individual peptide bitterness, which depended on M (0.5-3 kDa) and 5-23 residues, followed by N-BAAs and C-HAAs. Analysis of enzymatic cleavage sites and substrate characteristics revealed, to more effectively debitter bovine milk protein hydrolysates, proteases specifically cleaving Pro, Leu, Phe, and Val were desired.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38159315/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38159315</a> | DOI:<a href=https://doi.org/10.1016/j.foodchem.2023.138229>10.1016/j.foodchem.2023.138229</a></p></div>]]></content:encoded>
  441.      <guid isPermaLink="false">pubmed:38159315</guid>
  442.      <pubDate>Sat, 30 Dec 2023 06:00:00 -0500</pubDate>
  443.      <dc:creator>Qin Xiang</dc:creator>
  444.      <dc:creator>Yixun Xia</dc:creator>
  445.      <dc:creator>Sicong Fang</dc:creator>
  446.      <dc:creator>Fang Zhong</dc:creator>
  447.      <dc:date>2023-12-30</dc:date>
  448.      <dc:source>Food chemistry</dc:source>
  449.      <dc:title>Enzymatic debittering of cheese flavoring and bitterness characterization of peptide mixture using sensory and peptidomics approach</dc:title>
  450.      <dc:identifier>pmid:38159315</dc:identifier>
  451.      <dc:identifier>doi:10.1016/j.foodchem.2023.138229</dc:identifier>
  452.    </item>
  453.    <item>
  454.      <title>Peptidomics insights: neutrophil extracellular traps (NETs) related to the chronic subdural hemorrhage</title>
  455.      <link>https://pubmed.ncbi.nlm.nih.gov/38144176/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  456.      <description>Chronic subdural hemorrhage (CSDH) refers to a hematoma with an envelope between the dura mater and the arachnoid membrane and is more common among the elderly. It was reported that the dura mater, which is highly vascularized with capillary beds, precapillary arterioles and postcapillary venules play an important role in the protection of the central nervous system (CNS). Numerous evidences suggests that peptides play an important role in neuroprotection of CNS. However, whether dura mater...</description>
  457.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">PeerJ. 2023 Dec 21;11:e16676. doi: 10.7717/peerj.16676. eCollection 2023.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Chronic subdural hemorrhage (CSDH) refers to a hematoma with an envelope between the dura mater and the arachnoid membrane and is more common among the elderly. It was reported that the dura mater, which is highly vascularized with capillary beds, precapillary arterioles and postcapillary venules play an important role in the protection of the central nervous system (CNS). Numerous evidences suggests that peptides play an important role in neuroprotection of CNS. However, whether dura mater derived endogenous peptides participate in the pathogenesis of CSDH remains undetermined. In the current study, the peptidomic profiles were performed in human dura of CSDH (three patients) and the relative control group (three non-CSDH samples) by LC-MS (liquid chromatography-mass spectrometry). The results suggested that a total of 569 peptides were differentially expressed in the dura matter of CSDH compared with relative controls, including 217 up-regulated peptides and 352 down-regulated peptides. Gene Ontology (GO) analysis demonstrated that the precursor proteins of those differentially expressed peptides were involved in the various biological processes. Interestingly, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that NETs participated in the pathogenies of CSDH. Further investigate showed that H3Cit was significantly elevated in the dural and hematoma membranes of patients with CSDH compared to patients without CSDH. Taken together, our results showed the differentially expressed peptides in human dura mater of CSDH and demonstrated that NETs formation in the dural and hematoma membranes might be involved in the pathogenesis of CSDH. It is worth noting that pharmacological inhibition of NETs may have potential therapeutic implications for CSDH.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38144176/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38144176</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10749094/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10749094</a> | DOI:<a href=https://doi.org/10.7717/peerj.16676>10.7717/peerj.16676</a></p></div>]]></content:encoded>
  458.      <guid isPermaLink="false">pubmed:38144176</guid>
  459.      <pubDate>Mon, 25 Dec 2023 06:00:00 -0500</pubDate>
  460.      <dc:creator>Jie Li</dc:creator>
  461.      <dc:creator>Jing Zhao</dc:creator>
  462.      <dc:creator>Shuchen Sun</dc:creator>
  463.      <dc:creator>Sen Shen</dc:creator>
  464.      <dc:creator>Bincheng Zhong</dc:creator>
  465.      <dc:creator>Xiaohua Dong</dc:creator>
  466.      <dc:date>2023-12-25</dc:date>
  467.      <dc:source>PeerJ</dc:source>
  468.      <dc:title>Peptidomics insights: neutrophil extracellular traps (NETs) related to the chronic subdural hemorrhage</dc:title>
  469.      <dc:identifier>pmid:38144176</dc:identifier>
  470.      <dc:identifier>pmc:PMC10749094</dc:identifier>
  471.      <dc:identifier>doi:10.7717/peerj.16676</dc:identifier>
  472.    </item>
  473.    <item>
  474.      <title>Peptidomics Screening and Molecular Docking with Umami Receptors T1R1/T1R3 of Novel Umami Peptides from Oyster (Crassostrea gigas) Hydrolysates</title>
  475.      <link>https://pubmed.ncbi.nlm.nih.gov/38131198/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  476.      <description>In this study, novel umami peptides were prepared from oyster (Crassostrea gigas) hydrolysates, and their umami mechanisms were investigated. Umami fractions G2 and G3 were isolated by gel filtration chromatography (GFC) and sensory evaluation. The umami scores of the G2 and G3 fractions were 7.8 ± 0.12 and 7.5 ± 0.18, respectively. 36 potential umami peptides with molecular weights below 1500 Da, E and D accounting for &gt;30% of the peptides and iUmami-SCM &gt; 588 were screened by peptidomics....</description>
  477.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Agric Food Chem. 2024 Jan 10;72(1):634-646. doi: 10.1021/acs.jafc.3c06859. Epub 2023 Dec 22.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">In this study, novel umami peptides were prepared from oyster (<i>Crassostrea gigas</i>) hydrolysates, and their umami mechanisms were investigated. Umami fractions G2 and G3 were isolated by gel filtration chromatography (GFC) and sensory evaluation. The umami scores of the G2 and G3 fractions were 7.8 ± 0.12 and 7.5 ± 0.18, respectively. 36 potential umami peptides with molecular weights below 1500 Da, E and D accounting for &gt;30% of the peptides and iUmami-SCM &gt; 588 were screened by peptidomics. Peptide source analysis revealed that myosin, paramyosin, and sarcoplasmic were the major precursor proteins for these peptides. The electronic tongue results demonstrated that the synthetic peptides DPNDPDMKY and NARIEELEEE possessed an umami characteristic, whereas SIEDVEESRNK and ISIEDVEESRNK possessed a saltiness characteristic. Additionally, molecular docking results indicated that the umami peptide (DPNDPDMKY, NARIEELEEE, SIEDVEESRNK, and ISIEDVEESRNK) binds to H145, S276, H388, T305, Y218, D216, and Q389 residues in the T1R3 taste receptor via a conventional hydrogen bond and a carbon-hydrogen bond. This research provides a new strategy for the screening of umami peptides.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38131198/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38131198</a> | DOI:<a href=https://doi.org/10.1021/acs.jafc.3c06859>10.1021/acs.jafc.3c06859</a></p></div>]]></content:encoded>
  478.      <guid isPermaLink="false">pubmed:38131198</guid>
  479.      <pubDate>Fri, 22 Dec 2023 06:00:00 -0500</pubDate>
  480.      <dc:creator>Junwei Zhang</dc:creator>
  481.      <dc:creator>Zongcai Tu</dc:creator>
  482.      <dc:creator>Pingwei Wen</dc:creator>
  483.      <dc:creator>Hui Wang</dc:creator>
  484.      <dc:creator>Yueming Hu</dc:creator>
  485.      <dc:date>2023-12-22</dc:date>
  486.      <dc:source>Journal of agricultural and food chemistry</dc:source>
  487.      <dc:title>Peptidomics Screening and Molecular Docking with Umami Receptors T1R1/T1R3 of Novel Umami Peptides from Oyster (Crassostrea gigas) Hydrolysates</dc:title>
  488.      <dc:identifier>pmid:38131198</dc:identifier>
  489.      <dc:identifier>doi:10.1021/acs.jafc.3c06859</dc:identifier>
  490.    </item>
  491.    <item>
  492.      <title>Application of serum peptidomics for Parkinson's disease in SNCA-A30P mice</title>
  493.      <link>https://pubmed.ncbi.nlm.nih.gov/38125428/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  494.      <description>Intraneuronal inclusions of alpha-synuclein (α-synuclein, α-syn) are commonly found in the brain of patients with Parkinson's disease (PD). The pathogenesis of the abundant α-syn protein in the blood has been extensively studied to understand its properties better. In recent years, peptidome analysis has received increasing attention. In this study, we identified and analyzed serum peptides from wild-type (WT) and the (Thy-1)-h[A30P] alpha-synuclein transgenic mice (SNCA-A30P mice) using liquid...</description>
  495.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Heliyon. 2023 Nov 14;9(12):e21125. doi: 10.1016/j.heliyon.2023.e21125. eCollection 2023 Dec.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Intraneuronal inclusions of alpha-synuclein (α-synuclein, α-syn) are commonly found in the brain of patients with Parkinson's disease (PD). The pathogenesis of the abundant α-syn protein in the blood has been extensively studied to understand its properties better. In recent years, peptidome analysis has received increasing attention. In this study, we identified and analyzed serum peptides from wild-type (WT) and the (Thy-1)-h[A30P] alpha-synuclein transgenic mice (SNCA-A30P mice) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). One thousand eight hundred fifty-six peptides from 771 proteins were analyzed. Among them, 151 peptides from 107 proteins were significantly differentially expressed. The glycoprotein VI platelet pathway (GP6) was the pathway's most significant differentially expressed signaling pathway. Cleavage sites of the differentially expressed peptides may reflect protease distribution and activity. We selected the most significantly differentially expressed peptide, VGGDPI, and found that it contained cathepsin K (Ctsk) and trypsin-1 cleavage sites, suggesting that Ctsk and trypsin-1 may be key peptidases in PD. α-syn is a protein associated with the pathogenesis of PD. mutations in several genes, including SNCA, which encodes α-syn, are associated with the development of PD. Bioinformatics analysis of the physiological pathways related to SNCA genes and apoptosis genes found the five most markedly up-regulated proteins: formin homology 2 domain-containing 1 (FHOD1), insulin receptor substrate 1(IRS1), TRPM8 channel-associated factor 1 (TCAF1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and interleukin-16 (IL-16). Therefore, the differentially expressed peptides in the five precursor protein domains may be potential bioactive peptides associated with α-syn and apoptosis. This study provides a validated peptidomics profile of SNCA-A30P mice and identifies potentially bioactive peptides linked to α-syn and apoptosis.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38125428/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38125428</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10730432/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10730432</a> | DOI:<a href=https://doi.org/10.1016/j.heliyon.2023.e21125>10.1016/j.heliyon.2023.e21125</a></p></div>]]></content:encoded>
  496.      <guid isPermaLink="false">pubmed:38125428</guid>
  497.      <pubDate>Thu, 21 Dec 2023 06:00:00 -0500</pubDate>
  498.      <dc:creator>Zi Yin</dc:creator>
  499.      <dc:creator>Guangqiong Xu</dc:creator>
  500.      <dc:creator>Yue Qi</dc:creator>
  501.      <dc:creator>Dong-Ming Tan</dc:creator>
  502.      <dc:creator>Er-Hua Chen</dc:creator>
  503.      <dc:creator>Xu Ding</dc:creator>
  504.      <dc:creator>Run-Yuan Ji</dc:creator>
  505.      <dc:date>2023-12-21</dc:date>
  506.      <dc:source>Heliyon</dc:source>
  507.      <dc:title>Application of serum peptidomics for Parkinson's disease in SNCA-A30P mice</dc:title>
  508.      <dc:identifier>pmid:38125428</dc:identifier>
  509.      <dc:identifier>pmc:PMC10730432</dc:identifier>
  510.      <dc:identifier>doi:10.1016/j.heliyon.2023.e21125</dc:identifier>
  511.    </item>
  512.    <item>
  513.      <title>Identification of bitter peptides in aged Cheddar cheese by crossflow filtration-based Fractionation, Peptidomics, statistical screening and sensory analysis</title>
  514.      <link>https://pubmed.ncbi.nlm.nih.gov/38104442/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  515.      <description>Despite bitterness being a common flavor attribute of aged cheese linked to casein-derived peptides, excessive bitterness is a sensory flaw that can lead to consumer rejection and economic loss for creameries. Our research employs a unique approach to identify bitter peptides in cheese samples using crossflow filtration-based fractionation, mass spectrometry-based peptidomics, statistics and sensory analysis. Applying peptidomics and statistical screening tools, rather than traditional chemical...</description>
  516.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Chem. 2024 May 1;439:138111. doi: 10.1016/j.foodchem.2023.138111. Epub 2023 Nov 30.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Despite bitterness being a common flavor attribute of aged cheese linked to casein-derived peptides, excessive bitterness is a sensory flaw that can lead to consumer rejection and economic loss for creameries. Our research employs a unique approach to identify bitter peptides in cheese samples using crossflow filtration-based fractionation, mass spectrometry-based peptidomics, statistics and sensory analysis. Applying peptidomics and statistical screening tools, rather than traditional chemical separation techniques, to identify bitter peptides allows for screening the whole peptide profile. Five peptides-YPFPGP (β-casein [60-65]), YPFPGPIPN (βA2-casein [60-68]), LSQSKVLPVPQKAVPYPQRDMPIQA (β-casein [165-189]), YPFPGPIHNS (βA1-casein [60-69]) and its serine phosphorylated version YPFPGPIHN[S] (βA1-casein [60-69])- demonstrated high levels of bitterness with mean bitterness intensity values above 7 on a 15-point scale. In the future, this data can be combined with the microbial and protease profile of the Cheddar samples to help understand how these factors contribute to bitter taste development.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38104442/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">38104442</a> | DOI:<a href=https://doi.org/10.1016/j.foodchem.2023.138111>10.1016/j.foodchem.2023.138111</a></p></div>]]></content:encoded>
  517.      <guid isPermaLink="false">pubmed:38104442</guid>
  518.      <pubDate>Sun, 17 Dec 2023 06:00:00 -0500</pubDate>
  519.      <dc:creator>R F Kuhfeld</dc:creator>
  520.      <dc:creator>H Eshpari</dc:creator>
  521.      <dc:creator>B J Kim</dc:creator>
  522.      <dc:creator>M R Kuhfeld</dc:creator>
  523.      <dc:creator>Z Atamer</dc:creator>
  524.      <dc:creator>D C Dallas</dc:creator>
  525.      <dc:date>2023-12-17</dc:date>
  526.      <dc:source>Food chemistry</dc:source>
  527.      <dc:title>Identification of bitter peptides in aged Cheddar cheese by crossflow filtration-based Fractionation, Peptidomics, statistical screening and sensory analysis</dc:title>
  528.      <dc:identifier>pmid:38104442</dc:identifier>
  529.      <dc:identifier>doi:10.1016/j.foodchem.2023.138111</dc:identifier>
  530.    </item>
  531.    <item>
  532.      <title>Exploring novel ANGICon-EIPs through ameliorated peptidomics techniques: Can deep learning strategies as a core breakthrough in peptide structure and function prediction?</title>
  533.      <link>https://pubmed.ncbi.nlm.nih.gov/37986483/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  534.      <description>Dairy-derived angiotensin-I-converting enzyme inhibitory peptides (ANGICon-EIPs) have been regarded as a relatively safe supplementary diet-therapy strategy for individuals with hypertension, and short-chain peptides may have more relevant antihypertensive benefits due to their direct intestinal absorption. Our previous explorations have confirmed that endogenous goat milk short-chain peptides are also an essential source of ANGICon-EIPs. Nonetheless, there are limited explorations on endogenous...</description>
  535.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Res Int. 2023 Dec;174(Pt 1):113640. doi: 10.1016/j.foodres.2023.113640. Epub 2023 Oct 27.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Dairy-derived angiotensin-I-converting enzyme inhibitory peptides (ANGICon-EIPs) have been regarded as a relatively safe supplementary diet-therapy strategy for individuals with hypertension, and short-chain peptides may have more relevant antihypertensive benefits due to their direct intestinal absorption. Our previous explorations have confirmed that endogenous goat milk short-chain peptides are also an essential source of ANGICon-EIPs. Nonetheless, there are limited explorations on endogenous ANGICon-EIPs owing to the limitations of the extraction and enrichment of endogenous peptides, currently. This review outlined ameliorated pre-treatment strategies, data acquisition methods, and tools for the prediction of peptide structure and function, aiming to provide creative ideas for discovering novel ANGICon-EIPs. Currently, deep learning-based peptide structure and function prediction algorithms have achieved significant advancements. The convolutional neural network (CNN) and peptide sequence-based multi-label deep learning approach for determining the multi-functionalities of bioactive peptides (MLBP) can predict multiple peptide functions with absolute true value and accuracy of 0.699 and 0.708, respectively. Utilizing peptide sequence input, torsion angles, and inter-residue distance to train neural networks, APPTEST predicted the average backbone root mean square deviation (RMSD) value of peptide (5-40 aa) structures as low as 1.96 Å. Overall, with the exploration of more neural network architectures, deep learning could be considered a critical research tool to reduce the cost and improve the efficiency of identifying novel endogenous ANGICon-EIPs.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37986483/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37986483</a> | DOI:<a href=https://doi.org/10.1016/j.foodres.2023.113640>10.1016/j.foodres.2023.113640</a></p></div>]]></content:encoded>
  536.      <guid isPermaLink="false">pubmed:37986483</guid>
  537.      <pubDate>Tue, 21 Nov 2023 06:00:00 -0500</pubDate>
  538.      <dc:creator>Wei Jia</dc:creator>
  539.      <dc:creator>Jian Peng</dc:creator>
  540.      <dc:creator>Yan Zhang</dc:creator>
  541.      <dc:creator>Jiying Zhu</dc:creator>
  542.      <dc:creator>Xin Qiang</dc:creator>
  543.      <dc:creator>Rong Zhang</dc:creator>
  544.      <dc:creator>Lin Shi</dc:creator>
  545.      <dc:date>2023-11-21</dc:date>
  546.      <dc:source>Food research international (Ottawa, Ont.)</dc:source>
  547.      <dc:title>Exploring novel ANGICon-EIPs through ameliorated peptidomics techniques: Can deep learning strategies as a core breakthrough in peptide structure and function prediction?</dc:title>
  548.      <dc:identifier>pmid:37986483</dc:identifier>
  549.      <dc:identifier>doi:10.1016/j.foodres.2023.113640</dc:identifier>
  550.    </item>
  551.    <item>
  552.      <title>Functional peptidomics analysis of Saccharomyces pastorianus protein hydrolysates based on different enzyme treatments</title>
  553.      <link>https://pubmed.ncbi.nlm.nih.gov/37968818/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  554.      <description>The aim of this study is to explore differences in the peptidomics of Saccharomyces pastorianus protein hydrolysates treated with different enzymes. Briefly, differences in the peptide fingerprints and active peptides of neutral protease/papain-hydrolyzed S. pastorianus were analyzed using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) combined with PEAKS Online 1.7 analysis software, Peptide Ranker, and the BIOPEP database. Compared to traditional...</description>
  555.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Se Pu. 2023 Nov;41(11):995-1001. doi: 10.3724/SP.J.1123.2023.08029.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The aim of this study is to explore differences in the peptidomics of <i>Saccharomyces pastorianus</i> protein hydrolysates treated with different enzymes. Briefly, differences in the peptide fingerprints and active peptides of neutral protease/papain-hydrolyzed <i>S. pastorianus</i> were analyzed using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) combined with PEAKS Online 1.7 analysis software, Peptide Ranker, and the BIOPEP database. Compared to traditional databases, the PEAKS Online uses de novo sequencing for analysis to obtain oligopeptides smaller than pentapeptides. It provides more comprehensive data of the peptide sample. In this study, enzymatic hydrolysates of <i>S. pastorianus</i> protein were prepared under the optimum conditions of neutral protease and papain respectively. In total, 7221 and 7062 polypeptides were identified in the hydrolysates of neutral protease and papain, respectively; among these polypeptides, 980 were common to the two enzymes. The 6241 and 6082 unique peptides found in the hydrolysates of neutral protease and papain, respectively, indicated that the peptide fingerprints of the two hydrolysates are quite different. Peptide Ranker predicted that 3013 (41.73%) and 3095 (43.83%) peptides were potentially bioactive in the hydrolysates of neutral protease and papain, respectively. According to the BIOPEP database, neutral protease and papain contained 295 and 357 active peptides, respectively; these peptides were mainly composed of angiotensin converting enzyme (ACE) inhibitors and dipeptidyl peptidase IV inhibitors and antioxidant peptides. The number of active peptides in the hydrolysate of papain was higher than that in the hydrolysate of neutral protease, but the total ion intensity of active peptides in the former was lower than that in the latter. This study revealed the influence of protease type on the composition of enzymatic hydrolysates from <i>S. pastorianus</i> protein. The above results provide a reference for the development of functional products of <i>S. pastorianus</i> protein peptides and the high-value utilization of yeast resources.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37968818/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37968818</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10654869/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10654869</a> | DOI:<a href=https://doi.org/10.3724/SP.J.1123.2023.08029>10.3724/SP.J.1123.2023.08029</a></p></div>]]></content:encoded>
  556.      <guid isPermaLink="false">pubmed:37968818</guid>
  557.      <pubDate>Thu, 16 Nov 2023 06:00:00 -0500</pubDate>
  558.      <dc:creator>Yu-Tong Yan</dc:creator>
  559.      <dc:creator>Chun-Yu Gao</dc:creator>
  560.      <dc:creator>Xiao-Mei Zhang</dc:creator>
  561.      <dc:creator>Zi-Zhe An</dc:creator>
  562.      <dc:creator>Yun-Zhen Ma</dc:creator>
  563.      <dc:creator>Lin-Lin Han</dc:creator>
  564.      <dc:creator>Hong-Wei Zhang</dc:creator>
  565.      <dc:creator>Xue Zhao</dc:creator>
  566.      <dc:date>2023-11-16</dc:date>
  567.      <dc:source>Se pu = Chinese journal of chromatography</dc:source>
  568.      <dc:title>Functional peptidomics analysis of Saccharomyces pastorianus protein hydrolysates based on different enzyme treatments</dc:title>
  569.      <dc:identifier>pmid:37968818</dc:identifier>
  570.      <dc:identifier>pmc:PMC10654869</dc:identifier>
  571.      <dc:identifier>doi:10.3724/SP.J.1123.2023.08029</dc:identifier>
  572.    </item>
  573.    <item>
  574.      <title>Proteomics and Peptidomics As a Tool to Compare the Proteins and Endogenous Peptides in Human, Cow, and Donkey Milk</title>
  575.      <link>https://pubmed.ncbi.nlm.nih.gov/37882656/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  576.      <description>Cow's milk is the most widely used ingredient in infant formulas. However, its specific protein composition can cause allergic reactions. Finding alternatives to replace cow's milk and fill the nutritional gap with human milk is essential for the health of infants. Proteomic and peptidomic techniques have supported the elucidation of milk's nutritional ingredients. Recently, omics approaches have attracted increasing interest in the investigation of milk because of their high throughput,...</description>
  577.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Agric Food Chem. 2023 Nov 8;71(44):16435-16451. doi: 10.1021/acs.jafc.3c04534. Epub 2023 Oct 26.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Cow's milk is the most widely used ingredient in infant formulas. However, its specific protein composition can cause allergic reactions. Finding alternatives to replace cow's milk and fill the nutritional gap with human milk is essential for the health of infants. Proteomic and peptidomic techniques have supported the elucidation of milk's nutritional ingredients. Recently, omics approaches have attracted increasing interest in the investigation of milk because of their high throughput, precision, sensitivity, and reproducibility. This review offers a significant overview of recent developments in proteomics and peptidomics used to study the differences in human, cow, and donkey milk. All three types of milks were identified to have critical biological functions in human health, particularly in infants. Donkey milk proteins were closer in composition to human milk, were less likely to cause allergic reactions, and may be developed as novel raw materials for formula milk powders.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37882656/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37882656</a> | DOI:<a href=https://doi.org/10.1021/acs.jafc.3c04534>10.1021/acs.jafc.3c04534</a></p></div>]]></content:encoded>
  578.      <guid isPermaLink="false">pubmed:37882656</guid>
  579.      <pubDate>Thu, 26 Oct 2023 06:00:00 -0400</pubDate>
  580.      <dc:creator>Jianting Ning</dc:creator>
  581.      <dc:creator>Mei Yang</dc:creator>
  582.      <dc:creator>Wanting Liu</dc:creator>
  583.      <dc:creator>Xue Luo</dc:creator>
  584.      <dc:creator>Xiqing Yue</dc:creator>
  585.      <dc:date>2023-10-26</dc:date>
  586.      <dc:source>Journal of agricultural and food chemistry</dc:source>
  587.      <dc:title>Proteomics and Peptidomics As a Tool to Compare the Proteins and Endogenous Peptides in Human, Cow, and Donkey Milk</dc:title>
  588.      <dc:identifier>pmid:37882656</dc:identifier>
  589.      <dc:identifier>doi:10.1021/acs.jafc.3c04534</dc:identifier>
  590.    </item>
  591.    <item>
  592.      <title>Corrigendum to "Peptidomics analysis of Jiang-Flavor Daqu from high-temperature fermentation to mature and in different preparation season" [Journal of Proteomics, 273, 2023, 104804]</title>
  593.      <link>https://pubmed.ncbi.nlm.nih.gov/37863733/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  594.      <description>No abstract</description>
  595.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Proteomics. 2023 Oct 30;289:105020. doi: 10.1016/j.jprot.2023.105020. Epub 2023 Oct 19.</p><p><b>NO ABSTRACT</b></p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37863733/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37863733</a> | DOI:<a href=https://doi.org/10.1016/j.jprot.2023.105020>10.1016/j.jprot.2023.105020</a></p></div>]]></content:encoded>
  596.      <guid isPermaLink="false">pubmed:37863733</guid>
  597.      <pubDate>Fri, 20 Oct 2023 06:00:00 -0400</pubDate>
  598.      <dc:creator>Yang Yu</dc:creator>
  599.      <dc:creator>Wenhao Yu</dc:creator>
  600.      <dc:creator>Yan Jin</dc:creator>
  601.      <dc:date>2023-10-20</dc:date>
  602.      <dc:source>Journal of proteomics</dc:source>
  603.      <dc:title>Corrigendum to "Peptidomics analysis of Jiang-Flavor Daqu from high-temperature fermentation to mature and in different preparation season" [Journal of Proteomics, 273, 2023, 104804]</dc:title>
  604.      <dc:identifier>pmid:37863733</dc:identifier>
  605.      <dc:identifier>doi:10.1016/j.jprot.2023.105020</dc:identifier>
  606.    </item>
  607.    <item>
  608.      <title>The use of urine peptidomics to define dietary gluten peptides from patients with celiac disease and the clinical relevance</title>
  609.      <link>https://pubmed.ncbi.nlm.nih.gov/37855116/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  610.      <description>INTRODUCTION: Determination of urinary gluten immunogenic peptides (GIP) has emerged as one of the most attractive test to monitor the adherence to the gluten-free diet (GFD) of patients with celiac disease (CD), being a simple, noninvasive and direct method to detect gluten contamination of the GFD.</description>
  611.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Expert Rev Proteomics. 2023 Jul-Dec;20(11):281-290. doi: 10.1080/14789450.2023.2270775. Epub 2023 Oct 30.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">INTRODUCTION: Determination of urinary gluten immunogenic peptides (GIP) has emerged as one of the most attractive test to monitor the adherence to the gluten-free diet (GFD) of patients with celiac disease (CD), being a simple, noninvasive and direct method to detect gluten contamination of the GFD.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">AREAS COVERED: We conducted a scoping review in Medline (PubMed) of articles published up to April 2023 that analyzed any aspect of the clinical relevance of the use of urinary GIP measurement in patients with CD. A total of 17 articles reporting the clinical use of urinary peptidomics for the follow-up of CD patients were finally included.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">EXPERT OPINION: Available data suggest that a negative urinary GIP result is a reliable noninvasive predictor of intestinal mucosa healing in CD patients treated with the GFD, especially if testing three urine samples on different days including the weekend. Due to conflicting results about the sensitivity and the specificity of the urinary GIP determination, additional in-depth information is needed, particularly related to (1) the relationship between the amount of ingested gluten and the quantity of urinary GIP excreted in treated CD patients, (2) the GIP kinetics and best timing for sample collection.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37855116/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37855116</a> | DOI:<a href=https://doi.org/10.1080/14789450.2023.2270775>10.1080/14789450.2023.2270775</a></p></div>]]></content:encoded>
  612.      <guid isPermaLink="false">pubmed:37855116</guid>
  613.      <pubDate>Thu, 19 Oct 2023 06:00:00 -0400</pubDate>
  614.      <dc:creator>Chiara Monachesi</dc:creator>
  615.      <dc:creator>Giulia Catassi</dc:creator>
  616.      <dc:creator>Carlo Catassi</dc:creator>
  617.      <dc:date>2023-10-19</dc:date>
  618.      <dc:source>Expert review of proteomics</dc:source>
  619.      <dc:title>The use of urine peptidomics to define dietary gluten peptides from patients with celiac disease and the clinical relevance</dc:title>
  620.      <dc:identifier>pmid:37855116</dc:identifier>
  621.      <dc:identifier>doi:10.1080/14789450.2023.2270775</dc:identifier>
  622.    </item>
  623.    <item>
  624.      <title>Clinical Peptidomics: Advances in Instrumentation, Analyses, and Applications</title>
  625.      <link>https://pubmed.ncbi.nlm.nih.gov/37849662/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  626.      <description>Extensive effort has been devoted to the discovery, development, and validation of biomarkers for early disease diagnosis and prognosis as well as rapid evaluation of the response to therapeutic interventions. Genomic and transcriptomic profiling are well-established means to identify disease-associated biomarkers. However, analysis of disease-associated peptidomes can also identify novel peptide biomarkers or signatures that provide sensitive and specific diagnostic and prognostic information...</description>
  627.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">BME Front. 2023 May 15;4:0019. doi: 10.34133/bmef.0019. eCollection 2023.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Extensive effort has been devoted to the discovery, development, and validation of biomarkers for early disease diagnosis and prognosis as well as rapid evaluation of the response to therapeutic interventions. Genomic and transcriptomic profiling are well-established means to identify disease-associated biomarkers. However, analysis of disease-associated peptidomes can also identify novel peptide biomarkers or signatures that provide sensitive and specific diagnostic and prognostic information for specific malignant, chronic, and infectious diseases. Growing evidence also suggests that peptidomic changes in liquid biopsies may more effectively detect changes in disease pathophysiology than other molecular methods. Knowledge gained from peptide-based diagnostic, therapeutic, and imaging approaches has led to promising new theranostic applications that can increase their bioavailability in target tissues at reduced doses to decrease side effects and improve treatment responses. However, despite major advances, multiple factors can still affect the utility of peptidomic data. This review summarizes several remaining challenges that affect peptide biomarker discovery and their use as diagnostics, with a focus on technological advances that can improve the detection, identification, and monitoring of peptide biomarkers for personalized medicine.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37849662/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37849662</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10521655/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10521655</a> | DOI:<a href=https://doi.org/10.34133/bmef.0019>10.34133/bmef.0019</a></p></div>]]></content:encoded>
  628.      <guid isPermaLink="false">pubmed:37849662</guid>
  629.      <pubDate>Wed, 18 Oct 2023 06:00:00 -0400</pubDate>
  630.      <dc:creator>Lin Li</dc:creator>
  631.      <dc:creator>Jing Wu</dc:creator>
  632.      <dc:creator>Christopher J Lyon</dc:creator>
  633.      <dc:creator>Li Jiang</dc:creator>
  634.      <dc:creator>Tony Y Hu</dc:creator>
  635.      <dc:date>2023-10-18</dc:date>
  636.      <dc:source>BME frontiers</dc:source>
  637.      <dc:title>Clinical Peptidomics: Advances in Instrumentation, Analyses, and Applications</dc:title>
  638.      <dc:identifier>pmid:37849662</dc:identifier>
  639.      <dc:identifier>pmc:PMC10521655</dc:identifier>
  640.      <dc:identifier>doi:10.34133/bmef.0019</dc:identifier>
  641.    </item>
  642.    <item>
  643.      <title>Characterization of natural peptides in Pheretima by integrating proteogenomics and label-free peptidomics</title>
  644.      <link>https://pubmed.ncbi.nlm.nih.gov/37842652/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  645.      <description>Pheretima, also called "earthworms", is a well-known animal-derived traditional Chinese medicine that is extensively used in over 50 Chinese patent medicines (CPMs) in Chinese Pharmacopoeia (2020 edition). However, its zoological origin is unclear, both in the herbal market and CPMs. In this study, a strategy for integrating in-house annotated protein databases constructed from close evolutionary relationship-sourced RNA sequencing data from public archival resources and various sequencing...</description>
  646.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Pharm Anal. 2023 Sep;13(9):1070-1079. doi: 10.1016/j.jpha.2023.06.006. Epub 2023 Jun 15.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Pheretima, also called "earthworms", is a well-known animal-derived traditional Chinese medicine that is extensively used in over 50 Chinese patent medicines (CPMs) in Chinese Pharmacopoeia (2020 edition). However, its zoological origin is unclear, both in the herbal market and CPMs. In this study, a strategy for integrating in-house annotated protein databases constructed from close evolutionary relationship-sourced RNA sequencing data from public archival resources and various sequencing algorithms (restricted search, open search, and de novo) was developed to characterize the phenotype of natural peptides of three major commercial species of Pheretima, including <i>Pheretima aspergillum</i> (PA), <i>Pheretima</i> <i>vulgaris</i> (PV), and <i>Metaphire magna</i> (MM). We identified 10,477 natural peptides in the PA, 7,451 in PV, and 5,896 in MM samples. Five specific signature peptides were screened and then validated using synthetic peptides; these demonstrated robust specificity for the authentication of PA, PV, and MM. Finally, all marker peptides were successfully applied to identify the zoological origins of Brain Heart capsules and Xiaohuoluo pills, revealing the inconsistent Pheretima species used in these CPMs. In conclusion, our integrated strategy could be used for the in-depth characterization of natural peptides of other animal-derived traditional Chinese medicines, especially non-model species with poorly annotated protein databases.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37842652/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37842652</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10568111/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10568111</a> | DOI:<a href=https://doi.org/10.1016/j.jpha.2023.06.006>10.1016/j.jpha.2023.06.006</a></p></div>]]></content:encoded>
  647.      <guid isPermaLink="false">pubmed:37842652</guid>
  648.      <pubDate>Mon, 16 Oct 2023 06:00:00 -0400</pubDate>
  649.      <dc:creator>Xiaoxiao Luo</dc:creator>
  650.      <dc:creator>Qirui Bi</dc:creator>
  651.      <dc:creator>Dongdong Huang</dc:creator>
  652.      <dc:creator>Yun Li</dc:creator>
  653.      <dc:creator>Changliang Yao</dc:creator>
  654.      <dc:creator>Jianqing Zhang</dc:creator>
  655.      <dc:creator>Wenlong Wei</dc:creator>
  656.      <dc:creator>Jiayuan Li</dc:creator>
  657.      <dc:creator>Zhenwei Li</dc:creator>
  658.      <dc:creator>Jingxian Zhang</dc:creator>
  659.      <dc:creator>Shen Ji</dc:creator>
  660.      <dc:creator>Yurong Wang</dc:creator>
  661.      <dc:creator>De-An Guo</dc:creator>
  662.      <dc:date>2023-10-16</dc:date>
  663.      <dc:source>Journal of pharmaceutical analysis</dc:source>
  664.      <dc:title>Characterization of natural peptides in Pheretima by integrating proteogenomics and label-free peptidomics</dc:title>
  665.      <dc:identifier>pmid:37842652</dc:identifier>
  666.      <dc:identifier>pmc:PMC10568111</dc:identifier>
  667.      <dc:identifier>doi:10.1016/j.jpha.2023.06.006</dc:identifier>
  668.    </item>
  669.    <item>
  670.      <title>Corrigendum to "Identification and prediction of milk-derived bitter taste peptides based on peptidomics technology and machine learning method" [Food Chem. 433 (2024) 137288]</title>
  671.      <link>https://pubmed.ncbi.nlm.nih.gov/37806864/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  672.      <description>No abstract</description>
  673.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Chem. 2024 Mar 1;435:137606. doi: 10.1016/j.foodchem.2023.137606. Epub 2023 Oct 7.</p><p><b>NO ABSTRACT</b></p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37806864/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37806864</a> | DOI:<a href=https://doi.org/10.1016/j.foodchem.2023.137606>10.1016/j.foodchem.2023.137606</a></p></div>]]></content:encoded>
  674.      <guid isPermaLink="false">pubmed:37806864</guid>
  675.      <pubDate>Sun, 08 Oct 2023 06:00:00 -0400</pubDate>
  676.      <dc:creator>Yang Yu</dc:creator>
  677.      <dc:creator>Shengchi Liu</dc:creator>
  678.      <dc:creator>Xinchen Zhang</dc:creator>
  679.      <dc:creator>Wenhao Yu</dc:creator>
  680.      <dc:creator>Xiaoyan Pei</dc:creator>
  681.      <dc:creator>Li Liu</dc:creator>
  682.      <dc:creator>Yan Jin</dc:creator>
  683.      <dc:date>2023-10-08</dc:date>
  684.      <dc:source>Food chemistry</dc:source>
  685.      <dc:title>Corrigendum to "Identification and prediction of milk-derived bitter taste peptides based on peptidomics technology and machine learning method" [Food Chem. 433 (2024) 137288]</dc:title>
  686.      <dc:identifier>pmid:37806864</dc:identifier>
  687.      <dc:identifier>doi:10.1016/j.foodchem.2023.137606</dc:identifier>
  688.    </item>
  689.    <item>
  690.      <title>Effect of pH treatment on egg white protein digestion and the peptidomics of their in vitro digests</title>
  691.      <link>https://pubmed.ncbi.nlm.nih.gov/37803637/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  692.      <description>The pH treatment significantly enhanced the functional properties of egg white protein (EWP), but little is known about the relationship between pH treatment and in vitro digestion of EWP. In this paper, we explored the effect of pH treatment (pH 2, pH 2-7, pH 12 and pH 12-7) on the digestibility of egg white protein and peptide profiling using the digestion kinetics and peptidomics methods, separately. The results implied that all pH treatment reduced the protein digestibility in gastric phase,...</description>
  693.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Res Int. 2023 Nov;173(Pt 1):113327. doi: 10.1016/j.foodres.2023.113327. Epub 2023 Jul 26.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The pH treatment significantly enhanced the functional properties of egg white protein (EWP), but little is known about the relationship between pH treatment and in vitro digestion of EWP. In this paper, we explored the effect of pH treatment (pH 2, pH 2-7, pH 12 and pH 12-7) on the digestibility of egg white protein and peptide profiling using the digestion kinetics and peptidomics methods, separately. The results implied that all pH treatment reduced the protein digestibility in gastric phase, while alkaline pH (pH 12 and pH 12-7) showed greater digestion level and more gastric peptides, and more importantly, produced a greater amount of potentially bioactive peptides than acid treated samples. Besides, the least number of potentially bioactive peptides was obtained at pH 2, but this could be improved by adjusting pH 2 back to 7. Notably, the unique bioactive peptides induced by pH were mainly relevant to DPP IV inhibitor. These differences of digestibility and peptide profiling might be attributed to the change of protein structure and the formation of molten sphere, altering cleavage sites of digestive enzymes. This work would give an enlightening insight into the digestive and nutritional characteristics of the pH-induced EWP to expand their application in the field of food and healthcare.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37803637/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37803637</a> | DOI:<a href=https://doi.org/10.1016/j.foodres.2023.113327>10.1016/j.foodres.2023.113327</a></p></div>]]></content:encoded>
  694.      <guid isPermaLink="false">pubmed:37803637</guid>
  695.      <pubDate>Sat, 07 Oct 2023 06:00:00 -0400</pubDate>
  696.      <dc:creator>Ting Zhang</dc:creator>
  697.      <dc:creator>Tingting Chen</dc:creator>
  698.      <dc:creator>Hongyu Jiang</dc:creator>
  699.      <dc:creator>Min Zhang</dc:creator>
  700.      <dc:creator>Ping Gong</dc:creator>
  701.      <dc:creator>Jingbo Liu</dc:creator>
  702.      <dc:creator>Xuanting Liu</dc:creator>
  703.      <dc:date>2023-10-07</dc:date>
  704.      <dc:source>Food research international (Ottawa, Ont.)</dc:source>
  705.      <dc:title>Effect of pH treatment on egg white protein digestion and the peptidomics of their in vitro digests</dc:title>
  706.      <dc:identifier>pmid:37803637</dc:identifier>
  707.      <dc:identifier>doi:10.1016/j.foodres.2023.113327</dc:identifier>
  708.    </item>
  709.    <item>
  710.      <title>Identification of novel alpha-glucosidase and ACE inhibitory peptides from Douchi using peptidomics approach and molecular docking</title>
  711.      <link>https://pubmed.ncbi.nlm.nih.gov/37780236/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  712.      <description>In this study, the effect of Douchi extract (DWE) on α-glucosidase and angiotensin-converting enzymes (ACE) were investigated, and several novel peptides with inhibitory activity against α-glucosidase and ACE were identified using peptidomics approach based on UPLC-MS/MS. The average inhibition rates of DWE on α-glucosidase and ACE were 73.75-78.10% and 4.56-27.07%, respectively. In the DWE, a total of 710 peptides were detected. Two novel peptides with potential inhibitory activity against...</description>
  713.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Chem X. 2023 Jul 7;19:100779. doi: 10.1016/j.fochx.2023.100779. eCollection 2023 Oct 30.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">In this study, the effect of Douchi extract (<i>DWE</i>) on α-glucosidase and angiotensin-converting enzymes (ACE) were investigated, and several novel peptides with inhibitory activity against α-glucosidase and ACE were identified using peptidomics approach based on UPLC-MS/MS. The average inhibition rates of <i>DWE</i> on α-glucosidase and ACE were 73.75-78.10% and 4.56-27.07%, respectively. In the <i>DWE</i>, a total of 710 peptides were detected. Two novel peptides with potential inhibitory activity against α-glucosidase were identified using the correlation analysis, database alignment and molecular docking methods. They were DVFRAIPSEVL and DRPSINGLAGAN, with the IC<sub>50</sub> values of 0.121 and 0.128 mg/mL, respectively. Also, four novel peptides with potential inhibitory activity against ACE were identified: PSSPFTDLWD, EEQDERQFPF, PVPVPVQQAFPF and PSSPFTDL, with IC<sub>50</sub> values of 1.388, 0.041, 0.761 and 0.097 mg/mL, respectively. These results indicated that combining peptidomics and molecular docking is an effective alternative strategy for rapidly screening numbers of novel bioactive peptides from foods.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37780236/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37780236</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10534093/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10534093</a> | DOI:<a href=https://doi.org/10.1016/j.fochx.2023.100779>10.1016/j.fochx.2023.100779</a></p></div>]]></content:encoded>
  714.      <guid isPermaLink="false">pubmed:37780236</guid>
  715.      <pubDate>Mon, 02 Oct 2023 06:00:00 -0400</pubDate>
  716.      <dc:creator>Weidan Guo</dc:creator>
  717.      <dc:creator>Yu Xiao</dc:creator>
  718.      <dc:creator>Xiangjin Fu</dc:creator>
  719.      <dc:creator>Zhao Long</dc:creator>
  720.      <dc:creator>Yue Wu</dc:creator>
  721.      <dc:creator>Qinlu Lin</dc:creator>
  722.      <dc:creator>Kangzi Ren</dc:creator>
  723.      <dc:creator>Liwen Jiang</dc:creator>
  724.      <dc:date>2023-10-02</dc:date>
  725.      <dc:source>Food chemistry: X</dc:source>
  726.      <dc:title>Identification of novel alpha-glucosidase and ACE inhibitory peptides from Douchi using peptidomics approach and molecular docking</dc:title>
  727.      <dc:identifier>pmid:37780236</dc:identifier>
  728.      <dc:identifier>pmc:PMC10534093</dc:identifier>
  729.      <dc:identifier>doi:10.1016/j.fochx.2023.100779</dc:identifier>
  730.    </item>
  731.    <item>
  732.      <title>Peptidomics Analysis of Soy Protein Hydrolysates-Antioxidant Properties and Mechanism of their Inhibition of the Oxidation of Palm Olein during Frying Cycles</title>
  733.      <link>https://pubmed.ncbi.nlm.nih.gov/37761207/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  734.      <description>This study determined for the first time the structure of the peptides (i.e., peptidomics) in soy protein hydrolysates and elucidated their effects on an oil's oxidative stability during frying cycles. The oil investigated was palm olein during 0, 4, 8, and 12 frying cycles of plantain banana chips. Proteins were extracted and hydrolyzed with two proteases. Trypsin hydrolysate (HTRY) exhibited higher anti-radical activity (DPPH, 70.2%) than the control (unhydrolyzed proteins, 33.49%) and pepsin...</description>
  735.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Foods. 2023 Sep 20;12(18):3498. doi: 10.3390/foods12183498.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">This study determined for the first time the structure of the peptides (i.e., peptidomics) in soy protein hydrolysates and elucidated their effects on an oil's oxidative stability during frying cycles. The oil investigated was palm olein during 0, 4, 8, and 12 frying cycles of plantain banana chips. Proteins were extracted and hydrolyzed with two proteases. Trypsin hydrolysate (HTRY) exhibited higher anti-radical activity (DPPH, 70.2%) than the control (unhydrolyzed proteins, 33.49%) and pepsin hydrolysate (HPEP, 46.1%) at 200 µg/mL. HPEP however showed a 4.6-fold greater reduction of ferric ions (FRAP) while also possessing a higher peroxyl radical scavenging ability (716 ± 30 µM Trolox Eq/g) than HTRY (38.5 ± 35 µM Trolox Eq/g). During oil oxidative stability tests, HPEP improved the oxidative stability of the palm olein oil after 8 and 12 frying cycles, characterized by lower concentrations of hydroperoxides, and carbonyl and volatile compounds. HTRY however exerteda pro-oxidant activity. Structural data from SDS-PAGE and tandem mass spectrometry showed that the mechanism for the greater activity of the pepsin hydrolysate occurred due to unique structural features and a higher percentage of short-chain peptides. This was justified by a 25, 31, and 48% higher contents of tryptophan, histidine, and methionine, respectively (important amino acids with hydrogen atom transfer and electron-donating capacities) in the peptides identified in the pepsin hydrolysate.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37761207/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37761207</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10528889/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10528889</a> | DOI:<a href=https://doi.org/10.3390/foods12183498>10.3390/foods12183498</a></p></div>]]></content:encoded>
  736.      <guid isPermaLink="false">pubmed:37761207</guid>
  737.      <pubDate>Thu, 28 Sep 2023 06:00:00 -0400</pubDate>
  738.      <dc:creator>Annick Arcelle Pougoue Ngueukam</dc:creator>
  739.      <dc:creator>Mathilde Julie Klang</dc:creator>
  740.      <dc:creator>Ronice Zokou</dc:creator>
  741.      <dc:creator>Gires Teboukeu Boungo</dc:creator>
  742.      <dc:creator>Fabrice Djikeng Tonfack</dc:creator>
  743.      <dc:creator>Barakat Koyinsola Azeez</dc:creator>
  744.      <dc:creator>Hilaire Macaire Womeni</dc:creator>
  745.      <dc:creator>Apollinaire Tsopmo</dc:creator>
  746.      <dc:date>2023-09-28</dc:date>
  747.      <dc:source>Foods (Basel, Switzerland)</dc:source>
  748.      <dc:title>Peptidomics Analysis of Soy Protein Hydrolysates-Antioxidant Properties and Mechanism of their Inhibition of the Oxidation of Palm Olein during Frying Cycles</dc:title>
  749.      <dc:identifier>pmid:37761207</dc:identifier>
  750.      <dc:identifier>pmc:PMC10528889</dc:identifier>
  751.      <dc:identifier>doi:10.3390/foods12183498</dc:identifier>
  752.    </item>
  753.    <item>
  754.      <title>Identifying and Measuring Endogenous Peptides through Peptidomics</title>
  755.      <link>https://pubmed.ncbi.nlm.nih.gov/37751547/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  756.      <description>Endogenous peptides, such as neuropeptides and peptide hormones, play important roles in intercellular communication, can provide information on physiology, and are potential sources of biomarkers. Mass spectrometry-based peptidomics methods are underutilized tools to identify and measure endogenous peptides in a relatively nontargeted manner. The purpose of this Viewpoint is to serve as a brief introduction to the field of peptidomics so that researchers interested in studying endogenous...</description>
  757.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">ACS Chem Neurosci. 2023 Oct 18;14(20):3728-3731. doi: 10.1021/acschemneuro.3c00546. Epub 2023 Sep 26.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Endogenous peptides, such as neuropeptides and peptide hormones, play important roles in intercellular communication, can provide information on physiology, and are potential sources of biomarkers. Mass spectrometry-based peptidomics methods are underutilized tools to identify and measure endogenous peptides in a relatively nontargeted manner. The purpose of this Viewpoint is to serve as a brief introduction to the field of peptidomics so that researchers interested in studying endogenous peptides are aware of this powerful approach and can consider its application.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37751547/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37751547</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10614431/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10614431</a> | DOI:<a href=https://doi.org/10.1021/acschemneuro.3c00546>10.1021/acschemneuro.3c00546</a></p></div>]]></content:encoded>
  758.      <guid isPermaLink="false">pubmed:37751547</guid>
  759.      <pubDate>Tue, 26 Sep 2023 06:00:00 -0400</pubDate>
  760.      <dc:creator>James W Checco</dc:creator>
  761.      <dc:date>2023-09-26</dc:date>
  762.      <dc:source>ACS chemical neuroscience</dc:source>
  763.      <dc:title>Identifying and Measuring Endogenous Peptides through Peptidomics</dc:title>
  764.      <dc:identifier>pmid:37751547</dc:identifier>
  765.      <dc:identifier>pmc:PMC10614431</dc:identifier>
  766.      <dc:identifier>doi:10.1021/acschemneuro.3c00546</dc:identifier>
  767.    </item>
  768.    <item>
  769.      <title>Empowering peptidomics: utilizing computational tools and approaches</title>
  770.      <link>https://pubmed.ncbi.nlm.nih.gov/37737150/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  771.      <description>Bioinformatics plays a critical role in the advancement of peptidomics by providing powerful tools for data analysis, interpretation and integration. Peptidomics is concerned with the study of peptides, short chains of amino acids with diverse biological functions. This area includes peptide identification and characterization, database construction, de novo sequencing, functional annotation, omics data integration and systems biology. Artificial intelligence techniques, such as machine learning...</description>
  772.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Bioanalysis. 2023 Nov;15(21):1315-1325. doi: 10.4155/bio-2023-0102. Epub 2023 Sep 22.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Bioinformatics plays a critical role in the advancement of peptidomics by providing powerful tools for data analysis, interpretation and integration. Peptidomics is concerned with the study of peptides, short chains of amino acids with diverse biological functions. This area includes peptide identification and characterization, database construction, <i>de novo</i> sequencing, functional annotation, omics data integration and systems biology. Artificial intelligence techniques, such as machine learning and natural language processing, aid in the interpretation of peptide sequence data and the generation of biological insights. By using bioinformatics approaches, peptidomics researchers can accelerate peptide discovery, understand their functions and gain insights into complex molecular interactions.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37737150/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37737150</a> | DOI:<a href=https://doi.org/10.4155/bio-2023-0102>10.4155/bio-2023-0102</a></p></div>]]></content:encoded>
  773.      <guid isPermaLink="false">pubmed:37737150</guid>
  774.      <pubDate>Fri, 22 Sep 2023 06:00:00 -0400</pubDate>
  775.      <dc:creator>Rita Ferreira</dc:creator>
  776.      <dc:creator>Francisco Amado</dc:creator>
  777.      <dc:creator>Rui Vitorino</dc:creator>
  778.      <dc:date>2023-09-22</dc:date>
  779.      <dc:source>Bioanalysis</dc:source>
  780.      <dc:title>Empowering peptidomics: utilizing computational tools and approaches</dc:title>
  781.      <dc:identifier>pmid:37737150</dc:identifier>
  782.      <dc:identifier>doi:10.4155/bio-2023-0102</dc:identifier>
  783.    </item>
  784.    <item>
  785.      <title>Genomics, transcriptomics, and peptidomics of the greater wax moth Galleria mellonella neuropeptides and their expression in response to lead stress</title>
  786.      <link>https://pubmed.ncbi.nlm.nih.gov/37689966/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  787.      <description>Neuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G. mellonella genome and transcriptome, in which 40...</description>
  788.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Insect Sci. 2023 Sep 9. doi: 10.1111/1744-7917.13264. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Neuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G. mellonella genome and transcriptome, in which 40 neuropeptide precursors were confirmed in the G. mellonella peptidome. Interestingly, we identified 12 neuropeptide precursor genes present in G. mellonella but absent in honeybees, which may be potential novel pesticide target sites. Honeybee hives were contaminated with heavy metals such as lead, enabling its bioaccumulation in G. mellonella bodies through the food chain, we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G. mellonella neuropeptide precursors. After treatment by Pb, the expression of neuropeptide F1 was found to be significantly downregulated, implying that this neuropeptide might be associated with responding to the heavy metal stress in G. mellonella. This study comprehensively identified neuropeptide precursors in G. mellonella, and discussed the effects of heavy metals on insect neuropeptides, with the example of G. mellonella. The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G. mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37689966/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37689966</a> | DOI:<a href=https://doi.org/10.1111/1744-7917.13264>10.1111/1744-7917.13264</a></p></div>]]></content:encoded>
  789.      <guid isPermaLink="false">pubmed:37689966</guid>
  790.      <pubDate>Sun, 10 Sep 2023 06:00:00 -0400</pubDate>
  791.      <dc:creator>Li-Lin Luo</dc:creator>
  792.      <dc:creator>Yang Lin</dc:creator>
  793.      <dc:creator>Jun-Hong Linghu</dc:creator>
  794.      <dc:creator>Wei Gong</dc:creator>
  795.      <dc:creator>Yuan-Hong Luo</dc:creator>
  796.      <dc:creator>Man Liu</dc:creator>
  797.      <dc:creator>Dao-Chao Jin</dc:creator>
  798.      <dc:creator>Guy Smagghe</dc:creator>
  799.      <dc:creator>Tong-Xian Liu</dc:creator>
  800.      <dc:creator>Shun-Hua Gui</dc:creator>
  801.      <dc:creator>Tian-Ci Yi</dc:creator>
  802.      <dc:date>2023-09-10</dc:date>
  803.      <dc:source>Insect science</dc:source>
  804.      <dc:title>Genomics, transcriptomics, and peptidomics of the greater wax moth Galleria mellonella neuropeptides and their expression in response to lead stress</dc:title>
  805.      <dc:identifier>pmid:37689966</dc:identifier>
  806.      <dc:identifier>doi:10.1111/1744-7917.13264</dc:identifier>
  807.    </item>
  808.    <item>
  809.      <title>Virtual screening, identification, and potential antioxidant mechanism of novel bioactive peptides during aging by a short-chain peptidomics, quantitative structure-activity relationship analysis, and molecular docking</title>
  810.      <link>https://pubmed.ncbi.nlm.nih.gov/37689894/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  811.      <description>Antioxidant peptides have received a great deal of attention. However, only a few studies have been conducted on the antioxidant peptides originating from Baijiu. A total of 1490 features deemed potential short-chain peptides (the amino acid number between 2 and 4, SCPs) were screened and analyzed by a customized short-chain peptidomics approach in Feng-flavor Baijiu (FFB) during 14 years of aging, with an obvious discrepancy between FFB aged for 3 years and 6 years being observed. Thirty-nine...</description>
  812.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Res Int. 2023 Oct;172:113129. doi: 10.1016/j.foodres.2023.113129. Epub 2023 Jun 11.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Antioxidant peptides have received a great deal of attention. However, only a few studies have been conducted on the antioxidant peptides originating from Baijiu. A total of 1490 features deemed potential short-chain peptides (the amino acid number between 2 and 4, SCPs) were screened and analyzed by a customized short-chain peptidomics approach in Feng-flavor Baijiu (FFB) during 14 years of aging, with an obvious discrepancy between FFB aged for 3 years and 6 years being observed. Thirty-nine characteristic SCPs in total were identified and accurately quantified by high-throughput parallel reaction monitoring-based synthetic standards, with the contents ranging from 0.16 to 279.33 μg L<sup>-1</sup>. Combined with the absorption, distribution, metabolism, excretion, and toxicity analysis model, PGRW, WK, SC, and PAW, four novel antioxidant peptides with high ABTS radical scavenging capacity, were obtained using a customized quantitative structure-activity relationship (QSAR) model based on a two terminal position numbering method, with satisfied coefficients of determination (R<sup>2</sup>), internal cross-validated R<sup>2</sup> (Q<sup>2</sup>), and external R<sup>2</sup> (R<sup>2</sup>pre) of 0.925, 0.808, and 0.665, respectively. Furthermore, these 4 antioxidant peptides could block the Keap-Nrf2 interaction and promote the accumulation of Nrf2 by molecular docking analysis, and the interaction energy between peptide PGRW and Keap1 was higher than that between epigallocatechin gallate and Keap1 based on CHARMm forced field. Overall, this study facilitated the discovery of functional peptides in Baijiu and the understanding of aging mechanisms.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37689894/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37689894</a> | DOI:<a href=https://doi.org/10.1016/j.foodres.2023.113129>10.1016/j.foodres.2023.113129</a></p></div>]]></content:encoded>
  813.      <guid isPermaLink="false">pubmed:37689894</guid>
  814.      <pubDate>Sun, 10 Sep 2023 06:00:00 -0400</pubDate>
  815.      <dc:creator>An Du</dc:creator>
  816.      <dc:creator>Wei Jia</dc:creator>
  817.      <dc:date>2023-09-10</dc:date>
  818.      <dc:source>Food research international (Ottawa, Ont.)</dc:source>
  819.      <dc:title>Virtual screening, identification, and potential antioxidant mechanism of novel bioactive peptides during aging by a short-chain peptidomics, quantitative structure-activity relationship analysis, and molecular docking</dc:title>
  820.      <dc:identifier>pmid:37689894</dc:identifier>
  821.      <dc:identifier>doi:10.1016/j.foodres.2023.113129</dc:identifier>
  822.    </item>
  823.    <item>
  824.      <title>Evaluation of milk photooxidation based on peptidomics</title>
  825.      <link>https://pubmed.ncbi.nlm.nih.gov/37689842/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  826.      <description>Photooxidation is one of the main causes of the deterioration of milk quality during processing and marketing. This study aimed to investigate the variation in peptides after photooxidation using peptidomic techniques, and how cow species, oxygen content, and light intensity affect photooxidation. The different peptides were identified and quantified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Eighteen milk samples were...</description>
  827.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Res Int. 2023 Oct;172:113113. doi: 10.1016/j.foodres.2023.113113. Epub 2023 Jun 10.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Photooxidation is one of the main causes of the deterioration of milk quality during processing and marketing. This study aimed to investigate the variation in peptides after photooxidation using peptidomic techniques, and how cow species, oxygen content, and light intensity affect photooxidation. The different peptides were identified and quantified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Eighteen milk samples were subjected to light treatment. Seven types of peptides were identified as photooxidation markers. Subsequently, the effects of milk variety, oxygen content, and light intensity on photooxidation were studied, and sensory evaluations were performed. Dairy cow breed, oxygen content, and light intensity all affect photooxidation. Sensory evaluation verified that light and oxygen are necessary for the photooxidation of milk. The peptide m/z<sup>+</sup> 529.2783 (LLDEIKEVV), both in different varieties of milk and in different brands of commercially available milk, showed a large variation in multiplicity, and its content was closely related to oxygen and light. This peptide was not produced in the absence of oxygen and light, and its relative content increased with the duration of light exposure. These results suggest that the peptidomics method is an effective tool for distinguishing between normal and photooxidized milk.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37689842/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37689842</a> | DOI:<a href=https://doi.org/10.1016/j.foodres.2023.113113>10.1016/j.foodres.2023.113113</a></p></div>]]></content:encoded>
  828.      <guid isPermaLink="false">pubmed:37689842</guid>
  829.      <pubDate>Sun, 10 Sep 2023 06:00:00 -0400</pubDate>
  830.      <dc:creator>Sijia Tan</dc:creator>
  831.      <dc:creator>Qingyang Zhang</dc:creator>
  832.      <dc:creator>Xiaoyan Pei</dc:creator>
  833.      <dc:creator>Dongfei Tan</dc:creator>
  834.      <dc:creator>Can Guo</dc:creator>
  835.      <dc:creator>Sumeng Chen</dc:creator>
  836.      <dc:creator>Gang Chen</dc:creator>
  837.      <dc:date>2023-09-10</dc:date>
  838.      <dc:source>Food research international (Ottawa, Ont.)</dc:source>
  839.      <dc:title>Evaluation of milk photooxidation based on peptidomics</dc:title>
  840.      <dc:identifier>pmid:37689842</dc:identifier>
  841.      <dc:identifier>doi:10.1016/j.foodres.2023.113113</dc:identifier>
  842.    </item>
  843.    <item>
  844.      <title>Urinary Peptidomics and Pulse Wave Velocity: The African-PREDICT Study</title>
  845.      <link>https://pubmed.ncbi.nlm.nih.gov/37688558/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  846.      <description>Increased arterial stiffness is related to early vascular aging and is an independent predictor for cardiovascular disease and mortality. Molecular mechanisms underlying increased arterial stiffness are largely unexplored, especially at the proteome level. We aimed to explore the relationship between pulse wave velocity and urinary proteomics. We included 919 apparently healthy (no chronic illnesses) Black and White men and women (equally distributed) between 20 and 30 years from the...</description>
  847.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Proteome Res. 2023 Oct 6;22(10):3282-3289. doi: 10.1021/acs.jproteome.3c00347. Epub 2023 Sep 9.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Increased arterial stiffness is related to early vascular aging and is an independent predictor for cardiovascular disease and mortality. Molecular mechanisms underlying increased arterial stiffness are largely unexplored, especially at the proteome level. We aimed to explore the relationship between pulse wave velocity and urinary proteomics. We included 919 apparently healthy (no chronic illnesses) Black and White men and women (equally distributed) between 20 and 30 years from the African-PREDICT study. Capillary electrophoresis time-of-flight mass spectrometry was used to analyze the urinary proteome. We measured the carotid-femoral pulse wave velocity to estimate arterial stiffness. In the total group, pulse wave velocity correlated positively with collagen-derived peptides including collagen types I, II, III, IV, V, and IX and inversely with collagen type XI (adjusted for mean arterial pressure). Regarding noncollagen-derived peptides, pulse wave velocity positively correlated with polymeric immunoglobulin receptor peptides (<i>n</i> = 2) (all <i>q</i>-value ≤0.05). In multivariable adjusted analyses, pulse wave velocity associated positively and independently with seven urinary peptides (collagen type I, <i>n</i> = 5) (all <i>p</i>-value ≤0.05). We found significant positive and independent associations between pulse wave velocity and the collagen type I-derived peptides, suggesting that dysregulation of collagen type I in the extracellular matrix scaffold could lead to early onset of increased arterial stiffness.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37688558/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37688558</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10563154/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10563154</a> | DOI:<a href=https://doi.org/10.1021/acs.jproteome.3c00347>10.1021/acs.jproteome.3c00347</a></p></div>]]></content:encoded>
  848.      <guid isPermaLink="false">pubmed:37688558</guid>
  849.      <pubDate>Sat, 09 Sep 2023 06:00:00 -0400</pubDate>
  850.      <dc:creator>Dalene de Beer</dc:creator>
  851.      <dc:creator>Catharina Mc Mels</dc:creator>
  852.      <dc:creator>Aletta E Schutte</dc:creator>
  853.      <dc:creator>Christian Delles</dc:creator>
  854.      <dc:creator>Sheon Mary</dc:creator>
  855.      <dc:creator>William Mullen</dc:creator>
  856.      <dc:creator>Harald Mischak</dc:creator>
  857.      <dc:creator>Ruan Kruger</dc:creator>
  858.      <dc:date>2023-09-09</dc:date>
  859.      <dc:source>Journal of proteome research</dc:source>
  860.      <dc:title>Urinary Peptidomics and Pulse Wave Velocity: The African-PREDICT Study</dc:title>
  861.      <dc:identifier>pmid:37688558</dc:identifier>
  862.      <dc:identifier>pmc:PMC10563154</dc:identifier>
  863.      <dc:identifier>doi:10.1021/acs.jproteome.3c00347</dc:identifier>
  864.    </item>
  865.    <item>
  866.      <title>Identification and prediction of milk-derived bitter taste peptides based on peptidomics technology and machine learning method</title>
  867.      <link>https://pubmed.ncbi.nlm.nih.gov/37683467/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  868.      <description>Bitter taste peptides (BPs) are vital for drug and nutrition research, but large-scale screening of them is still time-consuming and costly. This study developed a complete workflow for screening BPs based on peptidomics technology and machine learning method. Using an expanded dataset and a new combination of BPs' characteristic factors, a novel classification prediction model (CPM-BP) based on the Light Gradient Boosting Machine algorithm was constructed with an accuracy of 90.3 % for...</description>
  869.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Chem. 2024 Feb 1;433:137288. doi: 10.1016/j.foodchem.2023.137288. Epub 2023 Sep 1.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Bitter taste peptides (BPs) are vital for drug and nutrition research, but large-scale screening of them is still time-consuming and costly. This study developed a complete workflow for screening BPs based on peptidomics technology and machine learning method. Using an expanded dataset and a new combination of BPs' characteristic factors, a novel classification prediction model (CPM-BP) based on the Light Gradient Boosting Machine algorithm was constructed with an accuracy of 90.3 % for predicting BPs. Among 724 significantly different peptides between spoiled and fresh UHT milk, 180 potential BPs were predicted using CPM-BP and eleven of them were previously reported. One known BP (FALPQYLK) and three predicted potential BPs (FALPQYL, FFVAPFPEVFGKE, EMPFPKYP) were verified by determination of calcium mobilization of HEK293T cells expressing human bitter taste receptor T2R4 (hT2R4). Three potential BPs could activate the hT2R4 and are demonstrated to be BPs, which proved the effectiveness of CPM-BP.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37683467/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37683467</a> | DOI:<a href=https://doi.org/10.1016/j.foodchem.2023.137288>10.1016/j.foodchem.2023.137288</a></p></div>]]></content:encoded>
  870.      <guid isPermaLink="false">pubmed:37683467</guid>
  871.      <pubDate>Fri, 08 Sep 2023 06:00:00 -0400</pubDate>
  872.      <dc:creator>Yang Yu</dc:creator>
  873.      <dc:creator>Shengchi Liu</dc:creator>
  874.      <dc:creator>Xinchen Zhang</dc:creator>
  875.      <dc:creator>Wenhao Yu</dc:creator>
  876.      <dc:creator>Xiaoyan Pei</dc:creator>
  877.      <dc:creator>Li Liu</dc:creator>
  878.      <dc:creator>Yan Jin</dc:creator>
  879.      <dc:date>2023-09-08</dc:date>
  880.      <dc:source>Food chemistry</dc:source>
  881.      <dc:title>Identification and prediction of milk-derived bitter taste peptides based on peptidomics technology and machine learning method</dc:title>
  882.      <dc:identifier>pmid:37683467</dc:identifier>
  883.      <dc:identifier>doi:10.1016/j.foodchem.2023.137288</dc:identifier>
  884.    </item>
  885.    <item>
  886.      <title>Peptidomics Methods Applied to the Study of Flower Development</title>
  887.      <link>https://pubmed.ncbi.nlm.nih.gov/37540375/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  888.      <description>Understanding the global and dynamic nature of plant developmental processes requires not only the study of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional peptides. To validate the accumulation in tissues of sORF-encoded polypeptides...</description>
  889.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Methods Mol Biol. 2023;2686:509-536. doi: 10.1007/978-1-0716-3299-4_24.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Understanding the global and dynamic nature of plant developmental processes requires not only the study of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional peptides. To validate the accumulation in tissues of sORF-encoded polypeptides (SEPs), the basic setup of proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small (up to ~100 aa, 6-7 kDa) and novel (i.e., not annotated in reference databases) presents specific challenges that need to be addressed both experimentally and with computational biology resources. Several methods have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we outline two different peptide extraction protocols and the subsequent peptide identification by mass spectrometry using the database search or the de novo identification methods.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37540375/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37540375</a> | DOI:<a href=https://doi.org/10.1007/978-1-0716-3299-4_24>10.1007/978-1-0716-3299-4_24</a></p></div>]]></content:encoded>
  890.      <guid isPermaLink="false">pubmed:37540375</guid>
  891.      <pubDate>Fri, 04 Aug 2023 06:00:00 -0400</pubDate>
  892.      <dc:creator>Raquel Álvarez-Urdiola</dc:creator>
  893.      <dc:creator>Eva Borràs</dc:creator>
  894.      <dc:creator>Federico Valverde</dc:creator>
  895.      <dc:creator>José Tomás Matus</dc:creator>
  896.      <dc:creator>Eduard Sabidó</dc:creator>
  897.      <dc:creator>José Luis Riechmann</dc:creator>
  898.      <dc:date>2023-08-04</dc:date>
  899.      <dc:source>Methods in molecular biology (Clifton, N.J.)</dc:source>
  900.      <dc:title>Peptidomics Methods Applied to the Study of Flower Development</dc:title>
  901.      <dc:identifier>pmid:37540375</dc:identifier>
  902.      <dc:identifier>doi:10.1007/978-1-0716-3299-4_24</dc:identifier>
  903.    </item>
  904.    <item>
  905.      <title>Development of a Two-Step Hydrolysis Hypoallergenic Cow's Milk Formula and Evaluation of Residue Allergenicity by Peptidomics and Immunoreactivity Analysis</title>
  906.      <link>https://pubmed.ncbi.nlm.nih.gov/37531557/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  907.      <description>Cow's milk allergy (CMA) is an abnormal immune response that severely affects the nutritional supplementation of allergic infants. Currently, only a limited number of hypoallergenic formulas are available on the market, and these are only categorized according to their degree of hydrolysis, which still poses an allergy risk and cannot be consumed by CMA patients, especially infants. To address this issue, we developed a two-step hydrolysis hypoallergenic formula targeting destruction of allergen...</description>
  908.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Agric Food Chem. 2023 Aug 16;71(32):12237-12249. doi: 10.1021/acs.jafc.3c01221. Epub 2023 Aug 2.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Cow's milk allergy (CMA) is an abnormal immune response that severely affects the nutritional supplementation of allergic infants. Currently, only a limited number of hypoallergenic formulas are available on the market, and these are only categorized according to their degree of hydrolysis, which still poses an allergy risk and cannot be consumed by CMA patients, especially infants. To address this issue, we developed a two-step hydrolysis hypoallergenic formula targeting destruction of allergen epitope from whey protein. Then, a comprehensive evaluation system was constructed, including peptidomics analysis, in vivo and in vitro allergenicity assessments, revealing allergic changes in the product from the epitope structure level to the immunological level. The results showed that 97.14% of hydrolyzed peptides from α-lactalbumin and β-lactoglobulin did not contain allergenic epitopes after treatment with trypsin and flavourzyme. In vitro and in vivo allergenicity assessment results confirmed that the two-step hydrolysis method effectively reduced the allergenicity of whey protein. Compared with the common milk powder, the hypoallergenic formula induced lower levels of basophil degranulation and relieved the body's anaphylactic symptoms caused by cow milk. This study provides a promising solution to the limited hypoallergenic formula problem and may benefit allergic infants who require nutritional supplements.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37531557/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37531557</a> | DOI:<a href=https://doi.org/10.1021/acs.jafc.3c01221>10.1021/acs.jafc.3c01221</a></p></div>]]></content:encoded>
  909.      <guid isPermaLink="false">pubmed:37531557</guid>
  910.      <pubDate>Wed, 02 Aug 2023 06:00:00 -0400</pubDate>
  911.      <dc:creator>Ziyi Xiong</dc:creator>
  912.      <dc:creator>Wenjie Wang</dc:creator>
  913.      <dc:creator>Xin Ma</dc:creator>
  914.      <dc:creator>Xing Zhang</dc:creator>
  915.      <dc:creator>Zhihua Wu</dc:creator>
  916.      <dc:creator>Anshu Yang</dc:creator>
  917.      <dc:creator>Yong Wu</dc:creator>
  918.      <dc:creator>Xuanyi Meng</dc:creator>
  919.      <dc:creator>Hongbing Chen</dc:creator>
  920.      <dc:creator>Xin Li</dc:creator>
  921.      <dc:date>2023-08-02</dc:date>
  922.      <dc:source>Journal of agricultural and food chemistry</dc:source>
  923.      <dc:title>Development of a Two-Step Hydrolysis Hypoallergenic Cow's Milk Formula and Evaluation of Residue Allergenicity by Peptidomics and Immunoreactivity Analysis</dc:title>
  924.      <dc:identifier>pmid:37531557</dc:identifier>
  925.      <dc:identifier>doi:10.1021/acs.jafc.3c01221</dc:identifier>
  926.    </item>
  927.    <item>
  928.      <title>Anti-inflammatory therapeutic biomarkers identified of human bone marrow mesenchymal stem cell therapy on aging mice by serum proteomics and peptidomics study</title>
  929.      <link>https://pubmed.ncbi.nlm.nih.gov/37524227/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  930.      <description>Aging is accompanied by deterioration in physical condition, and creates high risks of diseases. Stem cell therapy exhibited promising potential in delaying aging. However, the unelucidated therapeutic mechanism limits future clinical application. Herein, to systematically understand the response to stem cell transfusion at the molecular level, we performed quantitative serum proteomic and peptidomics analyses in the 24-month-old aging mice model with or without mesenchymal stem cell (MSC)...</description>
  931.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Proteomics. 2023 Sep 30;288:104979. doi: 10.1016/j.jprot.2023.104979. Epub 2023 Jul 29.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Aging is accompanied by deterioration in physical condition, and creates high risks of diseases. Stem cell therapy exhibited promising potential in delaying aging. However, the unelucidated therapeutic mechanism limits future clinical application. Herein, to systematically understand the response to stem cell transfusion at the molecular level, we performed quantitative serum proteomic and peptidomics analyses in the 24-month-old aging mice model with or without mesenchymal stem cell (MSC) treatment. As a result, a total of 560 proteins and 2131 endogenous peptides were identified, among which, 6 proteins and 9 endogenous peptides derived from 6 precursor proteins were finally identified as therapeutic biomarkers after MSC transfusion on aging mice both by untargeted label-free quantification and targeted parallel reaction monitoring (PRM) quantification. Amazingly, the biological function of these differential proteins was mainly related to inflammation, which is not only the important hallmark of aging, but also the main cause of inducing aging. The reduction of these inflammatory protein content after MSC treatment further suggests the anti-inflammatory effect of MSC therapy reported elsewhere. Therefore, our study provides new evidence for the anti-inflammatory effect of MSC therapy for anti-aging and offers abundant data to support deeper investigations of the therapeutic mechanism of MSC in delaying aging.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37524227/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37524227</a> | DOI:<a href=https://doi.org/10.1016/j.jprot.2023.104979>10.1016/j.jprot.2023.104979</a></p></div>]]></content:encoded>
  932.      <guid isPermaLink="false">pubmed:37524227</guid>
  933.      <pubDate>Mon, 31 Jul 2023 06:00:00 -0400</pubDate>
  934.      <dc:creator>Huan Niu</dc:creator>
  935.      <dc:creator>Bo-Yan Wang</dc:creator>
  936.      <dc:creator>Xiao-Yue Wei</dc:creator>
  937.      <dc:creator>Yan-Nan Wang</dc:creator>
  938.      <dc:creator>Wen-Hui Zhu</dc:creator>
  939.      <dc:creator>Wei-Jie Li</dc:creator>
  940.      <dc:creator>Ying Zhang</dc:creator>
  941.      <dc:creator>Jian-Cheng Wang</dc:creator>
  942.      <dc:date>2023-07-31</dc:date>
  943.      <dc:source>Journal of proteomics</dc:source>
  944.      <dc:title>Anti-inflammatory therapeutic biomarkers identified of human bone marrow mesenchymal stem cell therapy on aging mice by serum proteomics and peptidomics study</dc:title>
  945.      <dc:identifier>pmid:37524227</dc:identifier>
  946.      <dc:identifier>doi:10.1016/j.jprot.2023.104979</dc:identifier>
  947.    </item>
  948.    <item>
  949.      <title>Peptidomics Analysis Reveals the Buccal Gland of Jawless Vertebrate Lamprey as a Source of Multiple Bioactive Peptides</title>
  950.      <link>https://pubmed.ncbi.nlm.nih.gov/37504920/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  951.      <description>Various proteins with antibacterial, anticoagulant, and anti-inflammatory properties have been identified in the buccal glands of jawless blood-sucking vertebrate lampreys. However, studies on endogenous peptides in the buccal gland of lampreys are limited. In this study, 4528 endogenous peptides were identified from 1224 precursor proteins using peptidomics and screened for bioactivity in the buccal glands of the lamprey, Lethenteron camtschaticum. We synthesized four candidate bioactive...</description>
  952.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Mar Drugs. 2023 Jun 29;21(7):389. doi: 10.3390/md21070389.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Various proteins with antibacterial, anticoagulant, and anti-inflammatory properties have been identified in the buccal glands of jawless blood-sucking vertebrate lampreys. However, studies on endogenous peptides in the buccal gland of lampreys are limited. In this study, 4528 endogenous peptides were identified from 1224 precursor proteins using peptidomics and screened for bioactivity in the buccal glands of the lamprey, <i>Lethenteron camtschaticum</i>. We synthesized four candidate bioactive peptides (VSLNLPYSVVRGEQFVVQA, DIPVPEVPILE, VVQLPPVVLGTFG, and VPPPPLVLPPASVK), calculated their secondary structures, and validated their bioactivity. The results showed that the peptide VSLNLPYSVVRGEQFVVQA possessed anti-inflammatory activity, which significantly increased the expression of anti-inflammatory factors and decreased the expression of inflammatory factors in THP-1 cells. The peptide VVQLPPVVLGTFG showed antibacterial activity against some gram-positive bacteria. The peptide VSLNLPYSVVRGEQFVQA possessed good ACE inhibitory activity at low concentrations, but no dose-related correlation was observed. Our study revealed that the buccal glands of the jawless vertebrate lamprey are a source of multiple bioactive peptides, which will provide new insights into the blood-sucking mechanism of lamprey.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37504920/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37504920</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10381800/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">PMC10381800</a> | DOI:<a href=https://doi.org/10.3390/md21070389>10.3390/md21070389</a></p></div>]]></content:encoded>
  953.      <guid isPermaLink="false">pubmed:37504920</guid>
  954.      <pubDate>Fri, 28 Jul 2023 06:00:00 -0400</pubDate>
  955.      <dc:creator>Yaocen Wang</dc:creator>
  956.      <dc:creator>Feng Sun</dc:creator>
  957.      <dc:creator>Zhuoying Wang</dc:creator>
  958.      <dc:creator>Xuyuan Duan</dc:creator>
  959.      <dc:creator>Qingwei Li</dc:creator>
  960.      <dc:creator>Yue Pang</dc:creator>
  961.      <dc:creator>Meng Gou</dc:creator>
  962.      <dc:date>2023-07-28</dc:date>
  963.      <dc:source>Marine drugs</dc:source>
  964.      <dc:title>Peptidomics Analysis Reveals the Buccal Gland of Jawless Vertebrate Lamprey as a Source of Multiple Bioactive Peptides</dc:title>
  965.      <dc:identifier>pmid:37504920</dc:identifier>
  966.      <dc:identifier>pmc:PMC10381800</dc:identifier>
  967.      <dc:identifier>doi:10.3390/md21070389</dc:identifier>
  968.    </item>
  969.    <item>
  970.      <title>Human colostrum in vitro protein digestion: peptidomics by liquid chromatography-Orbitrap-high-resolution MS and prospection for bioactive peptides via bioinformatics</title>
  971.      <link>https://pubmed.ncbi.nlm.nih.gov/37485899/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  972.      <description>Breast milk is known to contain bioactive peptides that are released during digestion, being a major source of bioactive peptides to the new-born, some of which act against invading pathogens. However, the formation of bioactive peptides during digestion of human colostrum remains largely uninvestigated. This study aimed to investigate the formation of peptides during simulated digestion of human colostrum from adult women and to prospect antimicrobial peptides. For this purpose, we used...</description>
  973.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Br J Nutr. 2024 Jan 14;131(1):17-26. doi: 10.1017/S0007114523001459. Epub 2023 Jul 24.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Breast milk is known to contain bioactive peptides that are released during digestion, being a major source of bioactive peptides to the new-born, some of which act against invading pathogens. However, the formation of bioactive peptides during digestion of human colostrum remains largely uninvestigated. This study aimed to investigate the formation of peptides during simulated digestion of human colostrum from adult women and to prospect antimicrobial peptides. For this purpose, we used high-resolution MS to monitor the release of peptides during <i>in vitro</i> digestion. Bioinformatics was used for the prospection of antimicrobial activity of peptides. During simulated digestion (oral, gastric and duodenal phases), 2318 peptide sequences derived from 112 precursor proteins were identified. At the end of simulated digestion, casein-derived peptide sequences were the most frequently observed. Among precursors, some proteins were seen for the first time in this study. The resulting peptides were rich in proline, glutamine, valine and leucine residues, providing characteristic traits of antimicrobial peptides. From bioinformatics analysis, seven peptides showed potentially high antimicrobial activity towards bacteria, viruses and fungi, from which the latter was the most prominent predicted activity. Antimicrobial peptides released during digestion may provide a defence platform with controlled release for the new-born.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37485899/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37485899</a> | DOI:<a href=https://doi.org/10.1017/S0007114523001459>10.1017/S0007114523001459</a></p></div>]]></content:encoded>
  974.      <guid isPermaLink="false">pubmed:37485899</guid>
  975.      <pubDate>Mon, 24 Jul 2023 06:00:00 -0400</pubDate>
  976.      <dc:creator>Isabele Batista Campanhon</dc:creator>
  977.      <dc:creator>Paula Fernandes de Aguiar</dc:creator>
  978.      <dc:creator>Flávia Fioruci Bezerra</dc:creator>
  979.      <dc:creator>Márcia Regina Soares</dc:creator>
  980.      <dc:creator>Alexandre Guedes Torres</dc:creator>
  981.      <dc:date>2023-07-24</dc:date>
  982.      <dc:source>The British journal of nutrition</dc:source>
  983.      <dc:title>Human colostrum in vitro protein digestion: peptidomics by liquid chromatography-Orbitrap-high-resolution MS and prospection for bioactive peptides via bioinformatics</dc:title>
  984.      <dc:identifier>pmid:37485899</dc:identifier>
  985.      <dc:identifier>doi:10.1017/S0007114523001459</dc:identifier>
  986.    </item>
  987.    <item>
  988.      <title>Enzymatic preparation of casein hydrolysates with high digestibility and low bitterness studied by peptidomics and random forests analysis</title>
  989.      <link>https://pubmed.ncbi.nlm.nih.gov/37435793/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&amp;fc=None&amp;ff=20240419164318&amp;v=2.18.0.post9+e462414</link>
  990.      <description>Enzymatic hydrolysis can not only increase the digestibility of casein, but also cause bitterness. This study aimed to investigate the effect of hydrolysis on the digestibility and bitterness of casein hydrolysates and provided a novel strategy for the preparation of high-digestibility and low-bitterness casein hydrolysates based on the release pattern of bitter peptides. Results showed that with the increase of the degree of hydrolysis (DH), the digestibility and bitterness of hydrolysates...</description>
  991.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Funct. 2023 Jul 31;14(15):6802-6812. doi: 10.1039/d3fo01222k.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Enzymatic hydrolysis can not only increase the digestibility of casein, but also cause bitterness. This study aimed to investigate the effect of hydrolysis on the digestibility and bitterness of casein hydrolysates and provided a novel strategy for the preparation of high-digestibility and low-bitterness casein hydrolysates based on the release pattern of bitter peptides. Results showed that with the increase of the degree of hydrolysis (DH), the digestibility and bitterness of hydrolysates increased. However, the bitterness of casein trypsin hydrolysates rapidly increased in the low DH range (3%-8%), while the bitterness of casein alcalase hydrolysates rapidly increased in a higher DH range (10.5%-13%), indicating the discrepancy in the release pattern of bitter peptides. Peptidomics and random forests revealed that peptides containing &gt;6 residues with hydrophobic amino acids (HAAs) at the N-terminal and basic amino acids (BAAs) at the C-terminal (HAA-BAA type) obtained from trypsin contributed more to the bitterness of casein hydrolysates than those containing 2-6 residues. On the other hand, peptides containing 2-6 residues with HAAs at both N- and C-terminals (HAA-HAA type) released by alcalase contributed more to the bitterness of casein hydrolysates than those containing &gt;6 residues. Furthermore, a casein hydrolysate with a significantly lower bitter value containing short-chain HAA-BAA type peptides and long-chain HAA-HAA type peptides from the combination of trypsin and alcalase was obtained. The digestibility of the resultant hydrolysate was 79.19% (52.09% higher than casein). This work is of great significance for the preparation of high-digestibility and low-bitterness casein hydrolysates.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37435793/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc&ff=20240419164318&v=2.18.0.post9+e462414">37435793</a> | DOI:<a href=https://doi.org/10.1039/d3fo01222k>10.1039/d3fo01222k</a></p></div>]]></content:encoded>
  992.      <guid isPermaLink="false">pubmed:37435793</guid>
  993.      <pubDate>Wed, 12 Jul 2023 06:00:00 -0400</pubDate>
  994.      <dc:creator>Yixin Hu</dc:creator>
  995.      <dc:creator>Chenyang Wang</dc:creator>
  996.      <dc:creator>Mingtao Huang</dc:creator>
  997.      <dc:creator>Lin Zheng</dc:creator>
  998.      <dc:creator>Mouming Zhao</dc:creator>
  999.      <dc:date>2023-07-12</dc:date>
  1000.      <dc:source>Food &amp; function</dc:source>
  1001.      <dc:title>Enzymatic preparation of casein hydrolysates with high digestibility and low bitterness studied by peptidomics and random forests analysis</dc:title>
  1002.      <dc:identifier>pmid:37435793</dc:identifier>
  1003.      <dc:identifier>doi:10.1039/d3fo01222k</dc:identifier>
  1004.    </item>
  1005.  </channel>
  1006. </rss>
  1007.  

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//www.ncbi.nlm.nih.gov/entrez/eutils/erss.cgi%3Frss_guid%3D1LceN0X8SIzgd5TaMGcqY9QO-aLvFkqVstuNQhHQxP6yfudAIc

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda