Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://www.ncbi.nlm.nih.gov/entrez/eutils/erss.cgi?rss_guid=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ

  1. <?xml version='1.0' encoding='UTF-8'?>
  2. <rss xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:content="http://purl.org/rss/1.0/modules/content/" version="2.0">
  3.  <channel>
  4.    <title>(((((((((((((((((((((mcneill h[author]) not brock)not capron)n...</title>
  5.    <link>https://pubmed.ncbi.nlm.nih.gov/rss-feed/?feed_id=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;ff=20240503110554&amp;utm_medium=rss&amp;v=2.18.0.post9+e462414&amp;utm_source=Feedvalidator</link>
  6.    <description>(((((((((((((((((((((mcneill h[author]) not brock)not capron)n...: Latest results from PubMed</description>
  7.    <atom:link href="https://pubmed.ncbi.nlm.nih.gov/rss-feed/?feed_id=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;ff=20240503110554&amp;utm_medium=rss&amp;v=2.18.0.post9+e462414&amp;utm_source=Feedvalidator" rel="self"/>
  8.    <docs>http://www.rssboard.org/rss-specification</docs>
  9.    <generator>PubMed RSS feeds (2.18.0.post9+e462414)</generator>
  10.    <language>en</language>
  11.    <lastBuildDate>Fri, 03 May 2024 15:05:56 +0000</lastBuildDate>
  12.    <pubDate>Sat, 03 Jun 2023 06:00:00 -0400</pubDate>
  13.    <ttl>120</ttl>
  14.    <item>
  15.      <title>SOX9 Governs Gastric Mucous Neck Cell Identity and Is Required for Injury-Induced Metaplasia</title>
  16.      <link>https://pubmed.ncbi.nlm.nih.gov/37270061/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  17.      <description>CONCLUSIONS: Sox9 is a master regulator of mucous neck cell differentiation during gastric development. Sox9 also is required for chief cells to fully reprogram into SPEM after injury.</description>
  18.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Cell Mol Gastroenterol Hepatol. 2023;16(3):325-339. doi: 10.1016/j.jcmgh.2023.05.009. Epub 2023 Jun 1.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">BACKGROUND & AIMS: Acute and chronic gastric injury induces alterations in differentiation within the corpus of the stomach called pyloric metaplasia. Pyloric metaplasia is characterized by the death of parietal cells and reprogramming of mitotically quiescent zymogenic chief cells into proliferative, mucin-rich spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Overall, pyloric metaplastic units show increased proliferation and specific expansion of mucous lineages, both by proliferation of normal mucous neck cells and recruitment of SPEM cells. Here, we identify Sox9 as a potential gene of interest in the regulation of mucous neck and SPEM cell identity in the stomach.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: We used immunostaining and electron microscopy to characterize the expression pattern of SRY-box transcription factor 9 (SOX9) during murine gastric development, homeostasis, and injury in homeostasis, after genetic deletion of Sox9 and after targeted genetic misexpression of Sox9 in the gastric epithelium and chief cells.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: SOX9 is expressed in all early gastric progenitors and strongly expressed in mature mucous neck cells with minor expression in the other principal gastric lineages during adult homeostasis. After injury, strong SOX9 expression was induced in the neck and base of corpus units in SPEM cells. Adult corpus units derived from Sox9-deficient gastric progenitors lacked normal mucous neck cells. Misexpression of Sox9 during postnatal development and adult homeostasis expanded mucous gene expression throughout corpus units including within the chief cell zone in the base. Sox9 deletion specifically in chief cells blunts their reprogramming into SPEM.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSIONS: Sox9 is a master regulator of mucous neck cell differentiation during gastric development. Sox9 also is required for chief cells to fully reprogram into SPEM after injury.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37270061/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">37270061</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10444955/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC10444955</a> | DOI:<a href=https://doi.org/10.1016/j.jcmgh.2023.05.009>10.1016/j.jcmgh.2023.05.009</a></p></div>]]></content:encoded>
  19.      <guid isPermaLink="false">pubmed:37270061</guid>
  20.      <pubDate>Sat, 03 Jun 2023 06:00:00 -0400</pubDate>
  21.      <dc:creator>Spencer G Willet</dc:creator>
  22.      <dc:creator>Nattapon Thanintorn</dc:creator>
  23.      <dc:creator>Helen McNeill</dc:creator>
  24.      <dc:creator>Sung-Ho Huh</dc:creator>
  25.      <dc:creator>David M Ornitz</dc:creator>
  26.      <dc:creator>Won Jae Huh</dc:creator>
  27.      <dc:creator>Stella G Hoft</dc:creator>
  28.      <dc:creator>Richard J DiPaolo</dc:creator>
  29.      <dc:creator>Jason C Mills</dc:creator>
  30.      <dc:date>2023-06-03</dc:date>
  31.      <dc:source>Cellular and molecular gastroenterology and hepatology</dc:source>
  32.      <dc:title>SOX9 Governs Gastric Mucous Neck Cell Identity and Is Required for Injury-Induced Metaplasia</dc:title>
  33.      <dc:identifier>pmid:37270061</dc:identifier>
  34.      <dc:identifier>pmc:PMC10444955</dc:identifier>
  35.      <dc:identifier>doi:10.1016/j.jcmgh.2023.05.009</dc:identifier>
  36.    </item>
  37.    <item>
  38.      <title>Fat and Dachsous cadherins in mammalian development</title>
  39.      <link>https://pubmed.ncbi.nlm.nih.gov/37100519/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  40.      <description>Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which...</description>
  41.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Curr Top Dev Biol. 2023;154:223-244. doi: 10.1016/bs.ctdb.2023.02.008. Epub 2023 Apr 6.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which are expressed in many tissues, but mutations in these cadherins that affect growth and tissue organization are context dependent. Here we examine how mutations in the Fat and Dachsous mammalian genes affect development in mammals and contribute to human disease.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37100519/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">37100519</a> | DOI:<a href=https://doi.org/10.1016/bs.ctdb.2023.02.008>10.1016/bs.ctdb.2023.02.008</a></p></div>]]></content:encoded>
  42.      <guid isPermaLink="false">pubmed:37100519</guid>
  43.      <pubDate>Wed, 26 Apr 2023 06:00:00 -0400</pubDate>
  44.      <dc:creator>Jennysue Kasiah</dc:creator>
  45.      <dc:creator>Helen McNeill</dc:creator>
  46.      <dc:date>2023-04-26</dc:date>
  47.      <dc:source>Current topics in developmental biology</dc:source>
  48.      <dc:title>Fat and Dachsous cadherins in mammalian development</dc:title>
  49.      <dc:identifier>pmid:37100519</dc:identifier>
  50.      <dc:identifier>doi:10.1016/bs.ctdb.2023.02.008</dc:identifier>
  51.    </item>
  52.    <item>
  53.      <title>Expanded directly binds conserved regions of Fat to restrain growth via the Hippo pathway</title>
  54.      <link>https://pubmed.ncbi.nlm.nih.gov/37071483/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  55.      <description>The Hippo pathway is a conserved and critical regulator of tissue growth. The FERM protein Expanded is a key signaling hub that promotes activation of the Hippo pathway, thereby inhibiting the transcriptional co-activator Yorkie. Previous work identified the polarity determinant Crumbs as a primary regulator of Expanded. Here, we show that the giant cadherin Fat also regulates Expanded directly and independently of Crumbs. We show that direct binding between Expanded and a highly conserved...</description>
  56.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Cell Biol. 2023 May 1;222(5):e202204059. doi: 10.1083/jcb.202204059. Epub 2023 Apr 18.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The Hippo pathway is a conserved and critical regulator of tissue growth. The FERM protein Expanded is a key signaling hub that promotes activation of the Hippo pathway, thereby inhibiting the transcriptional co-activator Yorkie. Previous work identified the polarity determinant Crumbs as a primary regulator of Expanded. Here, we show that the giant cadherin Fat also regulates Expanded directly and independently of Crumbs. We show that direct binding between Expanded and a highly conserved region of the Fat cytoplasmic domain recruits Expanded to the apicolateral junctional zone and stabilizes Expanded. In vivo deletion of Expanded binding regions in Fat causes loss of apical Expanded and promotes tissue overgrowth. Unexpectedly, we find Fat can bind its ligand Dachsous via interactions of their cytoplasmic domains, in addition to the known extracellular interactions. Importantly, Expanded is stabilized by Fat independently of Dachsous binding. These data provide new mechanistic insights into how Fat regulates Expanded, and how Hippo signaling is regulated during organ growth.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37071483/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">37071483</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10120405/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC10120405</a> | DOI:<a href=https://doi.org/10.1083/jcb.202204059>10.1083/jcb.202204059</a></p></div>]]></content:encoded>
  57.      <guid isPermaLink="false">pubmed:37071483</guid>
  58.      <pubDate>Tue, 18 Apr 2023 06:00:00 -0400</pubDate>
  59.      <dc:creator>Alexander D Fulford</dc:creator>
  60.      <dc:creator>Leonie Enderle</dc:creator>
  61.      <dc:creator>Jannette Rusch</dc:creator>
  62.      <dc:creator>Didier Hodzic</dc:creator>
  63.      <dc:creator>Maxine V Holder</dc:creator>
  64.      <dc:creator>Alex Earl</dc:creator>
  65.      <dc:creator>Robin Hyunseo Oh</dc:creator>
  66.      <dc:creator>Nicolas Tapon</dc:creator>
  67.      <dc:creator>Helen McNeill</dc:creator>
  68.      <dc:date>2023-04-18</dc:date>
  69.      <dc:source>The Journal of cell biology</dc:source>
  70.      <dc:title>Expanded directly binds conserved regions of Fat to restrain growth via the Hippo pathway</dc:title>
  71.      <dc:identifier>pmid:37071483</dc:identifier>
  72.      <dc:identifier>pmc:PMC10120405</dc:identifier>
  73.      <dc:identifier>doi:10.1083/jcb.202204059</dc:identifier>
  74.    </item>
  75.    <item>
  76.      <title>MnFe&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt;@SiO&lt;sub&gt;2&lt;/sub&gt;@CeO&lt;sub&gt;2&lt;/sub&gt; core-shell nanostructures for applications in water remediation</title>
  77.      <link>https://pubmed.ncbi.nlm.nih.gov/37021101/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  78.      <description>Removal of dye pollutants from wastewater is among the most important emerging needs in environmental science and engineering. The main objective of our work is to develop new magnetic core-shell nanostructures and explore their use for potential removal of pollutants from water using an external magnetic field. Herein, we have prepared magnetic core-shell nanoparticles that demonstrated excellent dye pollutant adsorbent properties. These nanoparticles are composed of a manganese ferrite...</description>
  79.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">RSC Adv. 2023 Apr 3;13(16):10513-10522. doi: 10.1039/d3ra01112g. eCollection 2023 Apr 3.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Removal of dye pollutants from wastewater is among the most important emerging needs in environmental science and engineering. The main objective of our work is to develop new magnetic core-shell nanostructures and explore their use for potential removal of pollutants from water using an external magnetic field. Herein, we have prepared magnetic core-shell nanoparticles that demonstrated excellent dye pollutant adsorbent properties. These nanoparticles are composed of a manganese ferrite magnetic core coated with silica, to protect the core and enable further functionalisation, then finally coated with ceria, which is shown to be an effective adsorbent. The magnetic core-shell nanostructures have been synthesized by a modification of solvothermal synthesis. The nanoparticles were fully characterised at each stage of the synthesis by powder X-ray diffraction (pXRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy (FTIR). These particles were found to be effective in removing methylene blue (MB) dye from water, which was validated by UV-visible (UV-vis) spectroscopy. These particles can be quickly removed from solution using a permanent magnet and then can be recycled after being placed in the furnace at 400 °C to burn off any organic residues. The particles were found to retain their ability to adsorb the pollutant after several cycles and TEM images of the particles after several cycles showed no change in the morphology. This research demonstrated the capacity of magnetic core-shell nanostructures to be used for water remediation.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/37021101/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">37021101</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10069623/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC10069623</a> | DOI:<a href=https://doi.org/10.1039/d3ra01112g>10.1039/d3ra01112g</a></p></div>]]></content:encoded>
  80.      <guid isPermaLink="false">pubmed:37021101</guid>
  81.      <pubDate>Thu, 06 Apr 2023 06:00:00 -0400</pubDate>
  82.      <dc:creator>Garret Dee</dc:creator>
  83.      <dc:creator>Hend Shayoub</dc:creator>
  84.      <dc:creator>Helen McNeill</dc:creator>
  85.      <dc:creator>Itziar Sánchez Lozano</dc:creator>
  86.      <dc:creator>Aran Rafferty</dc:creator>
  87.      <dc:creator>Yurii K Gun'ko</dc:creator>
  88.      <dc:date>2023-04-06</dc:date>
  89.      <dc:source>RSC advances</dc:source>
  90.      <dc:title>MnFe&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt;@SiO&lt;sub&gt;2&lt;/sub&gt;@CeO&lt;sub&gt;2&lt;/sub&gt; core-shell nanostructures for applications in water remediation</dc:title>
  91.      <dc:identifier>pmid:37021101</dc:identifier>
  92.      <dc:identifier>pmc:PMC10069623</dc:identifier>
  93.      <dc:identifier>doi:10.1039/d3ra01112g</dc:identifier>
  94.    </item>
  95.    <item>
  96.      <title>Transgenic force sensors and software to measure force transmission across the mammalian nuclear envelope in vivo</title>
  97.      <link>https://pubmed.ncbi.nlm.nih.gov/36350289/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  98.      <description>Nuclear mechanotransduction is a growing field with exciting implications for the regulation of gene expression and cellular function. Mechanical signals may be transduced to the nuclear interior biochemically or physically through connections between the cell surface and chromatin. To define mechanical stresses upon the nucleus in physiological settings, we generated transgenic mouse strains that harbour FRET-based tension sensors or control constructs in the outer and inner aspects of the...</description>
  99.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Biol Open. 2022 Nov 1;11(11):bio059656. doi: 10.1242/bio.059656. Epub 2022 Nov 9.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Nuclear mechanotransduction is a growing field with exciting implications for the regulation of gene expression and cellular function. Mechanical signals may be transduced to the nuclear interior biochemically or physically through connections between the cell surface and chromatin. To define mechanical stresses upon the nucleus in physiological settings, we generated transgenic mouse strains that harbour FRET-based tension sensors or control constructs in the outer and inner aspects of the nuclear envelope. We knocked-in a published esprin-2G sensor to measure tensions across the LINC complex and generated a new sensor that links the inner nuclear membrane to chromatin. To mitigate challenges inherent to fluorescence lifetime analysis in vivo, we developed software (FLIMvivo) that markedly improves the fitting of fluorescence decay curves. In the mouse embryo, the sensors responded to cytoskeletal relaxation and stretch applied by micro-aspiration. They reported organ-specific differences and a spatiotemporal tension gradient along the proximodistal axis of the limb bud, raising the possibility that mechanical mechanisms coregulate pattern formation. These mouse strains and software are potentially valuable tools for testing and refining mechanotransduction hypotheses in vivo.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/36350289/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">36350289</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC9672859/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC9672859</a> | DOI:<a href=https://doi.org/10.1242/bio.059656>10.1242/bio.059656</a></p></div>]]></content:encoded>
  100.      <guid isPermaLink="false">pubmed:36350289</guid>
  101.      <pubDate>Wed, 09 Nov 2022 06:00:00 -0500</pubDate>
  102.      <dc:creator>Kelli D Fenelon</dc:creator>
  103.      <dc:creator>Evan Thomas</dc:creator>
  104.      <dc:creator>Mohammad Samani</dc:creator>
  105.      <dc:creator>Min Zhu</dc:creator>
  106.      <dc:creator>Hirotaka Tao</dc:creator>
  107.      <dc:creator>Yu Sun</dc:creator>
  108.      <dc:creator>Helen McNeill</dc:creator>
  109.      <dc:creator>Sevan Hopyan</dc:creator>
  110.      <dc:date>2022-11-09</dc:date>
  111.      <dc:source>Biology open</dc:source>
  112.      <dc:title>Transgenic force sensors and software to measure force transmission across the mammalian nuclear envelope in vivo</dc:title>
  113.      <dc:identifier>pmid:36350289</dc:identifier>
  114.      <dc:identifier>pmc:PMC9672859</dc:identifier>
  115.      <dc:identifier>doi:10.1242/bio.059656</dc:identifier>
  116.    </item>
  117.    <item>
  118.      <title>The inner nuclear membrane protein NEMP1 supports nuclear envelope openings and enucleation of erythroblasts</title>
  119.      <link>https://pubmed.ncbi.nlm.nih.gov/36215313/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  120.      <description>Nuclear envelope membrane proteins (NEMPs) are a conserved family of nuclear envelope (NE) proteins that reside within the inner nuclear membrane (INM). Even though Nemp1 knockout (KO) mice are overtly normal, they display a pronounced splenomegaly. This phenotype and recent reports describing a requirement for NE openings during erythroblasts terminal maturation led us to examine a potential role for Nemp1 in erythropoiesis. Here, we report that Nemp1 KO mice show peripheral blood defects,...</description>
  121.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">PLoS Biol. 2022 Oct 10;20(10):e3001811. doi: 10.1371/journal.pbio.3001811. eCollection 2022 Oct.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Nuclear envelope membrane proteins (NEMPs) are a conserved family of nuclear envelope (NE) proteins that reside within the inner nuclear membrane (INM). Even though Nemp1 knockout (KO) mice are overtly normal, they display a pronounced splenomegaly. This phenotype and recent reports describing a requirement for NE openings during erythroblasts terminal maturation led us to examine a potential role for Nemp1 in erythropoiesis. Here, we report that Nemp1 KO mice show peripheral blood defects, anemia in neonates, ineffective erythropoiesis, splenomegaly, and stress erythropoiesis. The erythroid lineage of Nemp1 KO mice is overrepresented until the pronounced apoptosis of polychromatophilic erythroblasts. We show that NEMP1 localizes to the NE of erythroblasts and their progenitors. Mechanistically, we discovered that NEMP1 accumulates into aggregates that localize near or at the edge of NE openings and Nemp1 deficiency leads to a marked decrease of both NE openings and ensuing enucleation. Together, our results for the first time demonstrate that NEMP1 is essential for NE openings and erythropoietic maturation in vivo and provide the first mouse model of defective erythropoiesis directly linked to the loss of an INM protein.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/36215313/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">36215313</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC9595564/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC9595564</a> | DOI:<a href=https://doi.org/10.1371/journal.pbio.3001811>10.1371/journal.pbio.3001811</a></p></div>]]></content:encoded>
  122.      <guid isPermaLink="false">pubmed:36215313</guid>
  123.      <pubDate>Mon, 10 Oct 2022 06:00:00 -0400</pubDate>
  124.      <dc:creator>Didier Hodzic</dc:creator>
  125.      <dc:creator>Jun Wu</dc:creator>
  126.      <dc:creator>Karen Krchma</dc:creator>
  127.      <dc:creator>Andrea Jurisicova</dc:creator>
  128.      <dc:creator>Yonit Tsatskis</dc:creator>
  129.      <dc:creator>Yijie Liu</dc:creator>
  130.      <dc:creator>Peng Ji</dc:creator>
  131.      <dc:creator>Kyunghee Choi</dc:creator>
  132.      <dc:creator>Helen McNeill</dc:creator>
  133.      <dc:date>2022-10-10</dc:date>
  134.      <dc:source>PLoS biology</dc:source>
  135.      <dc:title>The inner nuclear membrane protein NEMP1 supports nuclear envelope openings and enucleation of erythroblasts</dc:title>
  136.      <dc:identifier>pmid:36215313</dc:identifier>
  137.      <dc:identifier>pmc:PMC9595564</dc:identifier>
  138.      <dc:identifier>doi:10.1371/journal.pbio.3001811</dc:identifier>
  139.    </item>
  140.    <item>
  141.      <title>hiPSC-derived bone marrow milieu identifies a clinically actionable driver of niche-mediated treatment resistance in leukemia</title>
  142.      <link>https://pubmed.ncbi.nlm.nih.gov/35977468/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  143.      <description>Leukemia cells re-program their microenvironment to augment blast proliferation and enhance treatment resistance. Means of clinically targeting such niche-driven treatment resistance remain ambiguous. We develop human induced pluripotent stem cell (hiPSC)-engineered niches to reveal druggable cancer-niche dependencies. We reveal that mesenchymal (iMSC) and vascular niche-like (iANG) hiPSC-derived cells support ex vivo proliferation of patient-derived leukemia cells, affect dormancy, and mediate...</description>
  144.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Cell Rep Med. 2022 Aug 16;3(8):100717. doi: 10.1016/j.xcrm.2022.100717.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Leukemia cells re-program their microenvironment to augment blast proliferation and enhance treatment resistance. Means of clinically targeting such niche-driven treatment resistance remain ambiguous. We develop human induced pluripotent stem cell (hiPSC)-engineered niches to reveal druggable cancer-niche dependencies. We reveal that mesenchymal (iMSC) and vascular niche-like (iANG) hiPSC-derived cells support ex vivo proliferation of patient-derived leukemia cells, affect dormancy, and mediate treatment resistance. iMSCs protect dormant and cycling blasts against dexamethasone, while iANGs protect only dormant blasts. Leukemia proliferation and protection from dexamethasone-induced apoptosis is dependent on cancer-niche interactions mediated by CDH2. Consequently, we test CDH2 antagonist ADH-1 (previously in Phase I/II trials for solid tumors) in a very aggressive patient-derived xenograft leukemia mouse model. ADH-1 shows high in vivo efficacy; ADH-1/dexamethasone combination is superior to dexamethasone alone, with no ADH-1-conferred additional toxicity. These findings provide a proof-of-concept starting point to develop improved, potentially safer therapeutics targeting niche-mediated cancer dependencies in blood cancers.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/35977468/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">35977468</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC9418860/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC9418860</a> | DOI:<a href=https://doi.org/10.1016/j.xcrm.2022.100717>10.1016/j.xcrm.2022.100717</a></p></div>]]></content:encoded>
  145.      <guid isPermaLink="false">pubmed:35977468</guid>
  146.      <pubDate>Wed, 17 Aug 2022 06:00:00 -0400</pubDate>
  147.      <dc:creator>Deepali Pal</dc:creator>
  148.      <dc:creator>Helen Blair</dc:creator>
  149.      <dc:creator>Jessica Parker</dc:creator>
  150.      <dc:creator>Sean Hockney</dc:creator>
  151.      <dc:creator>Melanie Beckett</dc:creator>
  152.      <dc:creator>Mankaran Singh</dc:creator>
  153.      <dc:creator>Ricky Tirtakusuma</dc:creator>
  154.      <dc:creator>Ryan Nelson</dc:creator>
  155.      <dc:creator>Hesta McNeill</dc:creator>
  156.      <dc:creator>Sharon H Angel</dc:creator>
  157.      <dc:creator>Aaron Wilson</dc:creator>
  158.      <dc:creator>Salem Nizami</dc:creator>
  159.      <dc:creator>Sirintra Nakjang</dc:creator>
  160.      <dc:creator>Peixun Zhou</dc:creator>
  161.      <dc:creator>Claire Schwab</dc:creator>
  162.      <dc:creator>Paul Sinclair</dc:creator>
  163.      <dc:creator>Lisa J Russell</dc:creator>
  164.      <dc:creator>Jonathan Coxhead</dc:creator>
  165.      <dc:creator>Christina Halsey</dc:creator>
  166.      <dc:creator>James M Allan</dc:creator>
  167.      <dc:creator>Christine J Harrison</dc:creator>
  168.      <dc:creator>Anthony V Moorman</dc:creator>
  169.      <dc:creator>Olaf Heidenreich</dc:creator>
  170.      <dc:creator>Josef Vormoor</dc:creator>
  171.      <dc:date>2022-08-17</dc:date>
  172.      <dc:source>Cell reports. Medicine</dc:source>
  173.      <dc:title>hiPSC-derived bone marrow milieu identifies a clinically actionable driver of niche-mediated treatment resistance in leukemia</dc:title>
  174.      <dc:identifier>pmid:35977468</dc:identifier>
  175.      <dc:identifier>pmc:PMC9418860</dc:identifier>
  176.      <dc:identifier>doi:10.1016/j.xcrm.2022.100717</dc:identifier>
  177.    </item>
  178.    <item>
  179.      <title>The Hippo pathway regulates axis formation and morphogenesis in &lt;em&gt;Hydra&lt;/em&gt;</title>
  180.      <link>https://pubmed.ncbi.nlm.nih.gov/35858299/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  181.      <description>How did cells of early metazoan organisms first organize themselves to form a body axis? The canonical Wnt pathway has been shown to be sufficient for induction of axis in Cnidaria, a sister group to Bilateria, and is important in bilaterian axis formation. Here, we provide experimental evidence that in cnidarian Hydra the Hippo pathway regulates the formation of a new axis during budding upstream of the Wnt pathway. The transcriptional target of the Hippo pathway, the transcriptional...</description>
  182.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2203257119. doi: 10.1073/pnas.2203257119. Epub 2022 Jul 12.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">How did cells of early metazoan organisms first organize themselves to form a body axis? The canonical Wnt pathway has been shown to be sufficient for induction of axis in Cnidaria, a sister group to Bilateria, and is important in bilaterian axis formation. Here, we provide experimental evidence that in cnidarian <i>Hydra</i> the Hippo pathway regulates the formation of a new axis during budding upstream of the Wnt pathway. The transcriptional target of the Hippo pathway, the transcriptional coactivator YAP, inhibits the initiation of budding in <i>Hydra</i> and is regulated by <i>Hydra</i> LATS. In addition, we show functions of the Hippo pathway in regulation of actin organization and cell proliferation in <i>Hydra</i>. We hypothesize that the Hippo pathway served as a link between continuous cell division, cell density, and axis formation early in metazoan evolution.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/35858299/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">35858299</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC9304002/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC9304002</a> | DOI:<a href=https://doi.org/10.1073/pnas.2203257119>10.1073/pnas.2203257119</a></p></div>]]></content:encoded>
  183.      <guid isPermaLink="false">pubmed:35858299</guid>
  184.      <pubDate>Wed, 20 Jul 2022 06:00:00 -0400</pubDate>
  185.      <dc:creator>Maria Brooun</dc:creator>
  186.      <dc:creator>Willi Salvenmoser</dc:creator>
  187.      <dc:creator>Catherine Dana</dc:creator>
  188.      <dc:creator>Marius Sudol</dc:creator>
  189.      <dc:creator>Robert Steele</dc:creator>
  190.      <dc:creator>Bert Hobmayer</dc:creator>
  191.      <dc:creator>Helen McNeill</dc:creator>
  192.      <dc:date>2022-07-20</dc:date>
  193.      <dc:source>Proceedings of the National Academy of Sciences of the United States of America</dc:source>
  194.      <dc:title>The Hippo pathway regulates axis formation and morphogenesis in &lt;em&gt;Hydra&lt;/em&gt;</dc:title>
  195.      <dc:identifier>pmid:35858299</dc:identifier>
  196.      <dc:identifier>pmc:PMC9304002</dc:identifier>
  197.      <dc:identifier>doi:10.1073/pnas.2203257119</dc:identifier>
  198.    </item>
  199.    <item>
  200.      <title>The One Minute Preceptor: A Vital Tool During COVID-19</title>
  201.      <link>https://pubmed.ncbi.nlm.nih.gov/35342914/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  202.      <description>The One Minute Preceptor (OMP) model of teaching has an important role to play during the COVID-19 pandemic. It's quick and easy to learn and can be applied to any clinical setting. By responding directly to a student's needs, and building on the knowledge they already hold, the OMP is able to offer relevant and opportunistic teaching that the learner can immediately apply. Finally, the OMP can be taught in under two hours meaning medical staff not used to regularly teaching can develop the...</description>
  203.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Acute Med. 2022;21(1):59-60. doi: 10.52964/AMJA.0897.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The One Minute Preceptor (OMP) model of teaching has an important role to play during the COVID-19 pandemic. It's quick and easy to learn and can be applied to any clinical setting. By responding directly to a student's needs, and building on the knowledge they already hold, the OMP is able to offer relevant and opportunistic teaching that the learner can immediately apply. Finally, the OMP can be taught in under two hours meaning medical staff not used to regularly teaching can develop the confidence to offer high quality educational interventions.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/35342914/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">35342914</a> | DOI:<a href=https://doi.org/10.52964/AMJA.0897>10.52964/AMJA.0897</a></p></div>]]></content:encoded>
  204.      <guid isPermaLink="false">pubmed:35342914</guid>
  205.      <pubDate>Mon, 28 Mar 2022 06:00:00 -0400</pubDate>
  206.      <dc:creator>A O'Connor</dc:creator>
  207.      <dc:creator>J R Abbas</dc:creator>
  208.      <dc:creator>H McNeill</dc:creator>
  209.      <dc:date>2022-03-28</dc:date>
  210.      <dc:source>Acute medicine</dc:source>
  211.      <dc:title>The One Minute Preceptor: A Vital Tool During COVID-19</dc:title>
  212.      <dc:identifier>pmid:35342914</dc:identifier>
  213.      <dc:identifier>doi:10.52964/AMJA.0897</dc:identifier>
  214.    </item>
  215.    <item>
  216.      <title>Decolonizing Indigenous Burial Practices in Aotearoa, New Zealand: A Tribal Case Study</title>
  217.      <link>https://pubmed.ncbi.nlm.nih.gov/35148658/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  218.      <description>Before European contact, Māori disposed of the dead in environmentally sustainable ways. Revitalizing pre-colonial burial practices presents an opportunity for Māori to evaluate current practices and reconnect with their ancient tribal customs and practices. The research question asks: What is the decolonizing potential of urupā tautaiao (natural burials)? Paradoxically, environmentally unsustainable modern tangihanga (funerals) retain the ethos of customary funerary traditions. Urupā tautaiao...</description>
  219.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Omega (Westport). 2024 May;89(1):207-221. doi: 10.1177/00302228211070153. Epub 2022 Feb 11.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Before European contact, Māori disposed of the dead in environmentally sustainable ways. Revitalizing pre-colonial burial practices presents an opportunity for Māori to evaluate current practices and reconnect with their ancient tribal customs and practices. The research question asks: What is the decolonizing potential of <i>urupā tautaiao</i> (natural burials)? Paradoxically, environmentally unsustainable modern <i>tangihanga</i> (funerals) retain the ethos of customary funerary traditions. <i>Urupā tautaiao</i> presents an opportunity for <i>iwi</i> (tribes) to retain cultural integrity in the death space, without compromising Papatūānuku (earthmother). Methodologically, a Māori worldview frames an action research mindset. The study captures a tribal community's exploratory journey into <i>urupā tautaiao</i>.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/35148658/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">35148658</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11017688/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC11017688</a> | DOI:<a href=https://doi.org/10.1177/00302228211070153>10.1177/00302228211070153</a></p></div>]]></content:encoded>
  220.      <guid isPermaLink="false">pubmed:35148658</guid>
  221.      <pubDate>Sat, 12 Feb 2022 06:00:00 -0500</pubDate>
  222.      <dc:creator>Hinematau Naomi McNeill</dc:creator>
  223.      <dc:creator>Hannah Linda Buckley</dc:creator>
  224.      <dc:creator>Robert Marunui Iki Pouwhare</dc:creator>
  225.      <dc:date>2022-02-12</dc:date>
  226.      <dc:source>Omega</dc:source>
  227.      <dc:title>Decolonizing Indigenous Burial Practices in Aotearoa, New Zealand: A Tribal Case Study</dc:title>
  228.      <dc:identifier>pmid:35148658</dc:identifier>
  229.      <dc:identifier>pmc:PMC11017688</dc:identifier>
  230.      <dc:identifier>doi:10.1177/00302228211070153</dc:identifier>
  231.    </item>
  232.    <item>
  233.      <title>Postnatal expression profiles of atypical cadherin FAT1 suggest its role in autism</title>
  234.      <link>https://pubmed.ncbi.nlm.nih.gov/34100899/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  235.      <description>Genetic studies have linked FAT1 (FAT atypical cadherin 1) with autism spectrum disorder (ASD); however, the role that FAT1 plays in ASD remains unknown. In mice, the function of Fat1 has been primarily implicated in embryonic nervous system development with less known about its role in postnatal development. We show for the first time that FAT1 protein is expressed in mouse postnatal brains and is enriched in the cerebellum, where it localizes to granule neurons and Golgi cells in the granule...</description>
  236.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Biol Open. 2021 Jun 15;10(6):bio056457. doi: 10.1242/bio.056457. Epub 2021 Jun 8.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Genetic studies have linked FAT1 (FAT atypical cadherin 1) with autism spectrum disorder (ASD); however, the role that FAT1 plays in ASD remains unknown. In mice, the function of Fat1 has been primarily implicated in embryonic nervous system development with less known about its role in postnatal development. We show for the first time that FAT1 protein is expressed in mouse postnatal brains and is enriched in the cerebellum, where it localizes to granule neurons and Golgi cells in the granule layer, as well as inhibitory neurons in the molecular layer. Furthermore, subcellular characterization revealed FAT1 localization in neurites and soma of granule neurons, as well as being present in the synaptic plasma membrane and postsynaptic densities. Interestingly, FAT1 expression was decreased in induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) from individuals with ASD. These findings suggest a novel role for FAT1 in postnatal development and may be particularly important for cerebellum function. As the cerebellum is one of the vulnerable brain regions in ASD, our study warrants further investigation of FAT1 in the disease etiology.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/34100899/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">34100899</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC8214424/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC8214424</a> | DOI:<a href=https://doi.org/10.1242/bio.056457>10.1242/bio.056457</a></p></div>]]></content:encoded>
  237.      <guid isPermaLink="false">pubmed:34100899</guid>
  238.      <pubDate>Tue, 08 Jun 2021 06:00:00 -0400</pubDate>
  239.      <dc:creator>Jeannine A Frei</dc:creator>
  240.      <dc:creator>Cheryl Brandenburg</dc:creator>
  241.      <dc:creator>Jonathan E Nestor</dc:creator>
  242.      <dc:creator>Didier M Hodzic</dc:creator>
  243.      <dc:creator>Celine Plachez</dc:creator>
  244.      <dc:creator>Helen McNeill</dc:creator>
  245.      <dc:creator>Derek M Dykxhoorn</dc:creator>
  246.      <dc:creator>Michael W Nestor</dc:creator>
  247.      <dc:creator>Gene J Blatt</dc:creator>
  248.      <dc:creator>Yu-Chih Lin</dc:creator>
  249.      <dc:date>2021-06-08</dc:date>
  250.      <dc:source>Biology open</dc:source>
  251.      <dc:title>Postnatal expression profiles of atypical cadherin FAT1 suggest its role in autism</dc:title>
  252.      <dc:identifier>pmid:34100899</dc:identifier>
  253.      <dc:identifier>pmc:PMC8214424</dc:identifier>
  254.      <dc:identifier>doi:10.1242/bio.056457</dc:identifier>
  255.    </item>
  256.    <item>
  257.      <title>Correction: The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila</title>
  258.      <link>https://pubmed.ncbi.nlm.nih.gov/34015029/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  259.      <description>[This corrects the article DOI: 10.1371/journal.pone.0152259.].</description>
  260.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">PLoS One. 2021 May 20;16(5):e0252252. doi: 10.1371/journal.pone.0252252. eCollection 2021.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">[This corrects the article DOI: 10.1371/journal.pone.0152259.].</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/34015029/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">34015029</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC8136627/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC8136627</a> | DOI:<a href=https://doi.org/10.1371/journal.pone.0252252>10.1371/journal.pone.0252252</a></p></div>]]></content:encoded>
  261.      <guid isPermaLink="false">pubmed:34015029</guid>
  262.      <pubDate>Thu, 20 May 2021 06:00:00 -0400</pubDate>
  263.      <dc:creator>Ying-Ju Chang</dc:creator>
  264.      <dc:creator>Lily Zhou</dc:creator>
  265.      <dc:creator>Richard Binari</dc:creator>
  266.      <dc:creator>Armen Manoukian</dc:creator>
  267.      <dc:creator>Tak Mak</dc:creator>
  268.      <dc:creator>Helen McNeill</dc:creator>
  269.      <dc:creator>Vuk Stambolic</dc:creator>
  270.      <dc:date>2021-05-20</dc:date>
  271.      <dc:source>PloS one</dc:source>
  272.      <dc:title>Correction: The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila</dc:title>
  273.      <dc:identifier>pmid:34015029</dc:identifier>
  274.      <dc:identifier>pmc:PMC8136627</dc:identifier>
  275.      <dc:identifier>doi:10.1371/journal.pone.0252252</dc:identifier>
  276.    </item>
  277.    <item>
  278.      <title>Impact of Intensive Care Unit Readmissions on Patient Outcomes and the Evaluation of the National Early Warning Score to Prevent Readmissions: Literature Review</title>
  279.      <link>https://pubmed.ncbi.nlm.nih.gov/33393911/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  280.      <description>CONCLUSIONS: ICU readmissions are associated with worse patient outcomes, including hospital mortality and increased LOS. Without the use of an objective screening tool, the provider has been solely responsible for the decision of patient transfer. Assessment with the NEWS could be helpful in decreasing the frequency of inappropriate transfers and ultimately ICU readmission.</description>
  281.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">JMIR Perioper Med. 2020 May 8;3(1):e13782. doi: 10.2196/13782.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">BACKGROUND: Intensive care unit (ICU) readmissions have been shown to increase a patient's in-hospital mortality and length of stay (LOS). Despite this, no methods have been set in place to prevent readmissions from occurring.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">OBJECTIVE: The aim of this literature review was to evaluate the impact of ICU readmission on patient outcomes and to evaluate the effect of using a risk stratification tool, the National Early Warning Score (NEWS), on ICU readmissions.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: A database search was performed on PubMed, Cumulative Index of Nursing and Allied Health Literature, Google Scholar, and ProQuest. In the initial search, 2028 articles were retrieved; after inclusion and exclusion criteria were applied, 12 articles were ultimately used in this literature review.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: This literature review found that patients readmitted to the ICU have an increased mortality rate and LOS at the hospital. The sample sizes in the reviewed studies ranged from 158 to 745,187 patients. Readmissions were most commonly associated with respiratory issues about 18% to 59% of the time. The NEWS has been shown to detect early clinical deterioration in a patient within 24 hours of transfer, with a 95% CI of 0.89 to 0.94 (P&lt;.001), a sensitivity of 93.6% , and a specificity of 82.2%.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSIONS: ICU readmissions are associated with worse patient outcomes, including hospital mortality and increased LOS. Without the use of an objective screening tool, the provider has been solely responsible for the decision of patient transfer. Assessment with the NEWS could be helpful in decreasing the frequency of inappropriate transfers and ultimately ICU readmission.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/33393911/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">33393911</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC7709858/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC7709858</a> | DOI:<a href=https://doi.org/10.2196/13782>10.2196/13782</a></p></div>]]></content:encoded>
  282.      <guid isPermaLink="false">pubmed:33393911</guid>
  283.      <pubDate>Mon, 04 Jan 2021 06:00:00 -0500</pubDate>
  284.      <dc:creator>Heidi Mcneill</dc:creator>
  285.      <dc:creator>Saif Khairat</dc:creator>
  286.      <dc:date>2021-01-04</dc:date>
  287.      <dc:source>JMIR perioperative medicine</dc:source>
  288.      <dc:title>Impact of Intensive Care Unit Readmissions on Patient Outcomes and the Evaluation of the National Early Warning Score to Prevent Readmissions: Literature Review</dc:title>
  289.      <dc:identifier>pmid:33393911</dc:identifier>
  290.      <dc:identifier>pmc:PMC7709858</dc:identifier>
  291.      <dc:identifier>doi:10.2196/13782</dc:identifier>
  292.    </item>
  293.    <item>
  294.      <title>Intracellular manipulation and measurement with multipole magnetic tweezers</title>
  295.      <link>https://pubmed.ncbi.nlm.nih.gov/33137746/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  296.      <description>The capability to directly interrogate intracellular structures inside a single cell for measurement and manipulation is important for understanding subcellular and suborganelle activities, diagnosing diseases, and developing new therapeutic approaches. Compared with measurements of single cells, physical measurement and manipulation of subcellular structures and organelles remain underexplored. To improve intracellular physical measurement and manipulation, we have developed a multipole...</description>
  297.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Sci Robot. 2019 Mar 13;4(28):eaav6180. doi: 10.1126/scirobotics.aav6180.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The capability to directly interrogate intracellular structures inside a single cell for measurement and manipulation is important for understanding subcellular and suborganelle activities, diagnosing diseases, and developing new therapeutic approaches. Compared with measurements of single cells, physical measurement and manipulation of subcellular structures and organelles remain underexplored. To improve intracellular physical measurement and manipulation, we have developed a multipole magnetic tweezers system for micromanipulation involving submicrometer position control and piconewton force control of a submicrometer magnetic bead inside a single cell for measurement in different locations (spatial) and different time points (temporal). The bead was three-dimensionally positioned in the cell using a generalized predictive controller that addresses the control challenge caused by the low bandwidth of visual feedback from high-resolution confocal imaging. The average positioning error was quantified to be 0.4 μm, slightly larger than the Brownian motion-imposed constraint (0.31 μm). The system is also capable of applying a force up to 60 pN with a resolution of 4 pN for a period of time longer than 30 min. The measurement results revealed that significantly higher stiffness exists in the nucleus' major axis than in the minor axis. This stiffness polarity is likely attributed to the aligned actin filament. We also showed that the nucleus stiffens upon the application of an intracellularly applied force, which can be attributed to the response of structural protein lamin A/C and the intracellular stress fiber actin filaments.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/33137746/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">33137746</a> | DOI:<a href=https://doi.org/10.1126/scirobotics.aav6180>10.1126/scirobotics.aav6180</a></p></div>]]></content:encoded>
  298.      <guid isPermaLink="false">pubmed:33137746</guid>
  299.      <pubDate>Mon, 02 Nov 2020 06:00:00 -0500</pubDate>
  300.      <dc:creator>X Wang</dc:creator>
  301.      <dc:creator>C Ho</dc:creator>
  302.      <dc:creator>Y Tsatskis</dc:creator>
  303.      <dc:creator>J Law</dc:creator>
  304.      <dc:creator>Z Zhang</dc:creator>
  305.      <dc:creator>M Zhu</dc:creator>
  306.      <dc:creator>C Dai</dc:creator>
  307.      <dc:creator>F Wang</dc:creator>
  308.      <dc:creator>M Tan</dc:creator>
  309.      <dc:creator>S Hopyan</dc:creator>
  310.      <dc:creator>H McNeill</dc:creator>
  311.      <dc:creator>Y Sun</dc:creator>
  312.      <dc:date>2020-11-02</dc:date>
  313.      <dc:source>Science robotics</dc:source>
  314.      <dc:title>Intracellular manipulation and measurement with multipole magnetic tweezers</dc:title>
  315.      <dc:identifier>pmid:33137746</dc:identifier>
  316.      <dc:identifier>doi:10.1126/scirobotics.aav6180</dc:identifier>
  317.    </item>
  318.    <item>
  319.      <title>The NEMP family supports metazoan fertility and nuclear envelope stiffness</title>
  320.      <link>https://pubmed.ncbi.nlm.nih.gov/32923640/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  321.      <description>Human genome-wide association studies have linked single-nucleotide polymorphisms (SNPs) in NEMP1 (nuclear envelope membrane protein 1) with early menopause; however, it is unclear whether NEMP1 has any role in fertility. We show that whole-animal loss of NEMP1 homologs in Drosophila, Caenorhabditis elegans, zebrafish, and mice leads to sterility or early loss of fertility. Loss of Nemp leads to nuclear shaping defects, most prominently in the germ line. Biochemical, biophysical, and genetic...</description>
  322.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Sci Adv. 2020 Aug 28;6(35):eabb4591. doi: 10.1126/sciadv.abb4591. eCollection 2020 Aug.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Human genome-wide association studies have linked single-nucleotide polymorphisms (SNPs) in <i>NEMP1</i> (<i>nuclear envelope membrane protein 1</i>) with early menopause; however, it is unclear whether NEMP1 has any role in fertility. We show that whole-animal loss of NEMP1 homologs in <i>Drosophila</i>, <i>Caenorhabditis elegans</i>, zebrafish, and mice leads to sterility or early loss of fertility. Loss of Nemp leads to nuclear shaping defects, most prominently in the germ line. Biochemical, biophysical, and genetic studies reveal that NEMP proteins support the mechanical stiffness of the germline nuclear envelope via formation of a NEMP-EMERIN complex. These data indicate that the germline nuclear envelope has specialized mechanical properties and that NEMP proteins play essential and conserved roles in fertility.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/32923640/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">32923640</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC7455189/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC7455189</a> | DOI:<a href=https://doi.org/10.1126/sciadv.abb4591>10.1126/sciadv.abb4591</a></p></div>]]></content:encoded>
  323.      <guid isPermaLink="false">pubmed:32923640</guid>
  324.      <pubDate>Mon, 14 Sep 2020 06:00:00 -0400</pubDate>
  325.      <dc:creator>Yonit Tsatskis</dc:creator>
  326.      <dc:creator>Robyn Rosenfeld</dc:creator>
  327.      <dc:creator>Joel D Pearson</dc:creator>
  328.      <dc:creator>Curtis Boswell</dc:creator>
  329.      <dc:creator>Yi Qu</dc:creator>
  330.      <dc:creator>Kyunga Kim</dc:creator>
  331.      <dc:creator>Lacramioara Fabian</dc:creator>
  332.      <dc:creator>Ariz Mohammad</dc:creator>
  333.      <dc:creator>Xian Wang</dc:creator>
  334.      <dc:creator>Michael I Robson</dc:creator>
  335.      <dc:creator>Karen Krchma</dc:creator>
  336.      <dc:creator>Jun Wu</dc:creator>
  337.      <dc:creator>João Gonçalves</dc:creator>
  338.      <dc:creator>Didier Hodzic</dc:creator>
  339.      <dc:creator>Shu Wu</dc:creator>
  340.      <dc:creator>Daniel Potter</dc:creator>
  341.      <dc:creator>Laurence Pelletier</dc:creator>
  342.      <dc:creator>Wade H Dunham</dc:creator>
  343.      <dc:creator>Anne-Claude Gingras</dc:creator>
  344.      <dc:creator>Yu Sun</dc:creator>
  345.      <dc:creator>Jin Meng</dc:creator>
  346.      <dc:creator>Dorothea Godt</dc:creator>
  347.      <dc:creator>Tim Schedl</dc:creator>
  348.      <dc:creator>Brian Ciruna</dc:creator>
  349.      <dc:creator>Kyunghee Choi</dc:creator>
  350.      <dc:creator>John R B Perry</dc:creator>
  351.      <dc:creator>Rod Bremner</dc:creator>
  352.      <dc:creator>Eric C Schirmer</dc:creator>
  353.      <dc:creator>Julie A Brill</dc:creator>
  354.      <dc:creator>Andrea Jurisicova</dc:creator>
  355.      <dc:creator>Helen McNeill</dc:creator>
  356.      <dc:date>2020-09-14</dc:date>
  357.      <dc:source>Science advances</dc:source>
  358.      <dc:title>The NEMP family supports metazoan fertility and nuclear envelope stiffness</dc:title>
  359.      <dc:identifier>pmid:32923640</dc:identifier>
  360.      <dc:identifier>pmc:PMC7455189</dc:identifier>
  361.      <dc:identifier>doi:10.1126/sciadv.abb4591</dc:identifier>
  362.    </item>
  363.    <item>
  364.      <title>Ancestral roles of atypical cadherins in planar cell polarity</title>
  365.      <link>https://pubmed.ncbi.nlm.nih.gov/32727892/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  366.      <description>Fat, Fat-like, and Dachsous family cadherins are giant proteins that regulate planar cell polarity (PCP) and cell adhesion in bilaterians. Their evolutionary origin can be traced back to prebilaterian species, but their ancestral function(s) are unknown. We identified Fat-like and Dachsous cadherins in Hydra, a member of phylum Cnidaria a sister group of bilaterian. We found Hydra does not possess a true Fat homolog, but has homologs of Fat-like (HyFatl) and Dachsous (HyDs) that localize at the...</description>
  367.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19310-19320. doi: 10.1073/pnas.1917570117. Epub 2020 Jul 29.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Fat, Fat-like, and Dachsous family cadherins are giant proteins that regulate planar cell polarity (PCP) and cell adhesion in bilaterians. Their evolutionary origin can be traced back to prebilaterian species, but their ancestral function(s) are unknown. We identified Fat-like and Dachsous cadherins in <i>Hydra</i>, a member of phylum Cnidaria a sister group of bilaterian. We found <i>Hydra</i> does not possess a true Fat homolog, but has homologs of Fat-like (HyFatl) and Dachsous (HyDs) that localize at the apical membrane of ectodermal epithelial cells and are planar polarized perpendicular to the oral-aboral axis of the animal. Using a knockdown approach we found that HyFatl is involved in local cell alignment and cell-cell adhesion, and that reduction of HyFatl leads to defects in tissue organization in the body column. Overexpression and knockdown experiments indicate that the intracellular domain (ICD) of HyFatl affects actin organization through proline-rich repeats. Thus, planar polarization of Fat-like and Dachsous cadherins has ancient, prebilaterian origins, and Fat-like cadherins have ancient roles in cell adhesion, spindle orientation, and tissue organization.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/32727892/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">32727892</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC7430989/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC7430989</a> | DOI:<a href=https://doi.org/10.1073/pnas.1917570117>10.1073/pnas.1917570117</a></p></div>]]></content:encoded>
  368.      <guid isPermaLink="false">pubmed:32727892</guid>
  369.      <pubDate>Fri, 31 Jul 2020 06:00:00 -0400</pubDate>
  370.      <dc:creator>Maria Brooun</dc:creator>
  371.      <dc:creator>Alexander Klimovich</dc:creator>
  372.      <dc:creator>Mikhail Bashkurov</dc:creator>
  373.      <dc:creator>Bret J Pearson</dc:creator>
  374.      <dc:creator>Robert E Steele</dc:creator>
  375.      <dc:creator>Helen McNeill</dc:creator>
  376.      <dc:date>2020-07-31</dc:date>
  377.      <dc:source>Proceedings of the National Academy of Sciences of the United States of America</dc:source>
  378.      <dc:title>Ancestral roles of atypical cadherins in planar cell polarity</dc:title>
  379.      <dc:identifier>pmid:32727892</dc:identifier>
  380.      <dc:identifier>pmc:PMC7430989</dc:identifier>
  381.      <dc:identifier>doi:10.1073/pnas.1917570117</dc:identifier>
  382.    </item>
  383.    <item>
  384.      <title>Atypical cadherin FAT4 orchestrates lymphatic endothelial cell polarity in response to flow</title>
  385.      <link>https://pubmed.ncbi.nlm.nih.gov/32182215/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  386.      <description>The atypical cadherin FAT4 has established roles in the regulation of planar cell polarity and Hippo pathway signaling that are cell context dependent. The recent identification of FAT4 mutations in Hennekam syndrome, features of which include lymphedema, lymphangiectasia, and mental retardation, uncovered an important role for FAT4 in the lymphatic vasculature. Hennekam syndrome is also caused by mutations in collagen and calcium binding EGF domains 1 (CCBE1) and ADAM metallopeptidase with...</description>
  387.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Clin Invest. 2020 Jun 1;130(6):3315-3328. doi: 10.1172/JCI99027.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The atypical cadherin FAT4 has established roles in the regulation of planar cell polarity and Hippo pathway signaling that are cell context dependent. The recent identification of FAT4 mutations in Hennekam syndrome, features of which include lymphedema, lymphangiectasia, and mental retardation, uncovered an important role for FAT4 in the lymphatic vasculature. Hennekam syndrome is also caused by mutations in collagen and calcium binding EGF domains 1 (CCBE1) and ADAM metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3), encoding a matrix protein and protease, respectively, that regulate activity of the key prolymphangiogenic VEGF-C/VEGFR3 signaling axis by facilitating the proteolytic cleavage and activation of VEGF-C. The fact that FAT4, CCBE1, and ADAMTS3 mutations underlie Hennekam syndrome suggested that all 3 genes might function in a common pathway. We identified FAT4 as a target gene of GATA-binding protein 2 (GATA2), a key transcriptional regulator of lymphatic vascular development and, in particular, lymphatic vessel valve development. Here, we demonstrate that FAT4 functions in a lymphatic endothelial cell-autonomous manner to control cell polarity in response to flow and is required for lymphatic vessel morphogenesis throughout development. Our data reveal a crucial role for FAT4 in lymphangiogenesis and shed light on the mechanistic basis by which FAT4 mutations underlie a human lymphedema syndrome.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/32182215/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">32182215</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC7260025/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC7260025</a> | DOI:<a href=https://doi.org/10.1172/JCI99027>10.1172/JCI99027</a></p></div>]]></content:encoded>
  388.      <guid isPermaLink="false">pubmed:32182215</guid>
  389.      <pubDate>Wed, 18 Mar 2020 06:00:00 -0400</pubDate>
  390.      <dc:creator>Kelly L Betterman</dc:creator>
  391.      <dc:creator>Drew L Sutton</dc:creator>
  392.      <dc:creator>Genevieve A Secker</dc:creator>
  393.      <dc:creator>Jan Kazenwadel</dc:creator>
  394.      <dc:creator>Anna Oszmiana</dc:creator>
  395.      <dc:creator>Lillian Lim</dc:creator>
  396.      <dc:creator>Naoyuki Miura</dc:creator>
  397.      <dc:creator>Lydia Sorokin</dc:creator>
  398.      <dc:creator>Benjamin M Hogan</dc:creator>
  399.      <dc:creator>Mark L Kahn</dc:creator>
  400.      <dc:creator>Helen McNeill</dc:creator>
  401.      <dc:creator>Natasha L Harvey</dc:creator>
  402.      <dc:date>2020-03-18</dc:date>
  403.      <dc:source>The Journal of clinical investigation</dc:source>
  404.      <dc:title>Atypical cadherin FAT4 orchestrates lymphatic endothelial cell polarity in response to flow</dc:title>
  405.      <dc:identifier>pmid:32182215</dc:identifier>
  406.      <dc:identifier>pmc:PMC7260025</dc:identifier>
  407.      <dc:identifier>doi:10.1172/JCI99027</dc:identifier>
  408.    </item>
  409.    <item>
  410.      <title>Hedgehog-Activated Fat4 and PCP Pathways Mediate Mesenchymal Cell Clustering and Villus Formation in Gut Development</title>
  411.      <link>https://pubmed.ncbi.nlm.nih.gov/32155439/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  412.      <description>During development, intestinal epithelia undergo dramatic morphogenesis mediated by mesenchymal signaling to form villi, which are required for efficient nutrient absorption and host defense. Although both smooth-muscle-induced physical forces and mesenchymal cell clustering beneath emerging villi are implicated in epithelial folding, the underlying cellular mechanisms are unclear. Hedgehog (Hh) signaling can mediate both processes. We therefore analyzed its direct targetome and revealed GLI2...</description>
  413.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Dev Cell. 2020 Mar 9;52(5):647-658.e6. doi: 10.1016/j.devcel.2020.02.003.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">During development, intestinal epithelia undergo dramatic morphogenesis mediated by mesenchymal signaling to form villi, which are required for efficient nutrient absorption and host defense. Although both smooth-muscle-induced physical forces and mesenchymal cell clustering beneath emerging villi are implicated in epithelial folding, the underlying cellular mechanisms are unclear. Hedgehog (Hh) signaling can mediate both processes. We therefore analyzed its direct targetome and revealed GLI2 transcriptional activation of atypical cadherin and planar cell polarity (PCP) genes. By examining Fat4 and Dchs1 knockout mice, we demonstrate their critical roles in villus formation. Analyses of PCP-mutant mice and genetic interaction studies show that the Fat4-Dchs1 axis acts in parallel to the core-Vangl2 PCP axis to control mesenchymal cell clustering. Moreover, live light-sheet fluorescence microscopy and cultured PDGFRα+ cells reveal a requirement for PCP in their oriented cell migration guided by WNT5A. Therefore, mesenchymal PCP induced by Hh signaling drives cell clustering and subsequent epithelial remodeling.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/32155439/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">32155439</a> | DOI:<a href=https://doi.org/10.1016/j.devcel.2020.02.003>10.1016/j.devcel.2020.02.003</a></p></div>]]></content:encoded>
  414.      <guid isPermaLink="false">pubmed:32155439</guid>
  415.      <pubDate>Wed, 11 Mar 2020 06:00:00 -0400</pubDate>
  416.      <dc:creator>Abilasha Rao-Bhatia</dc:creator>
  417.      <dc:creator>Min Zhu</dc:creator>
  418.      <dc:creator>Wen-Chi Yin</dc:creator>
  419.      <dc:creator>Sabrina Coquenlorge</dc:creator>
  420.      <dc:creator>Xiaoyun Zhang</dc:creator>
  421.      <dc:creator>Janghee Woo</dc:creator>
  422.      <dc:creator>Yu Sun</dc:creator>
  423.      <dc:creator>Charlotte H Dean</dc:creator>
  424.      <dc:creator>Aimin Liu</dc:creator>
  425.      <dc:creator>Chi-Chung Hui</dc:creator>
  426.      <dc:creator>Ramesh A Shivdasani</dc:creator>
  427.      <dc:creator>Helen McNeill</dc:creator>
  428.      <dc:creator>Sevan Hopyan</dc:creator>
  429.      <dc:creator>Tae-Hee Kim</dc:creator>
  430.      <dc:date>2020-03-11</dc:date>
  431.      <dc:source>Developmental cell</dc:source>
  432.      <dc:title>Hedgehog-Activated Fat4 and PCP Pathways Mediate Mesenchymal Cell Clustering and Villus Formation in Gut Development</dc:title>
  433.      <dc:identifier>pmid:32155439</dc:identifier>
  434.      <dc:identifier>doi:10.1016/j.devcel.2020.02.003</dc:identifier>
  435.    </item>
  436.    <item>
  437.      <title>Localization of YAP activity in developing skeletal rudiments is responsive to mechanical stimulation</title>
  438.      <link>https://pubmed.ncbi.nlm.nih.gov/31747096/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  439.      <description>CONCLUSIONS: These findings implicate YAP signalling, independent of Fat4, in the transduction of mechanical signals during key stages of skeletal patterning in the developing limb, in particular endochondral ossification and shape emergence, as well as patterning of tissues at the developing synovial joint.</description>
  440.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Dev Dyn. 2020 Apr;249(4):523-542. doi: 10.1002/dvdy.137. Epub 2019 Dec 16.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">BACKGROUND: Normal skeletal development, in particular ossification, joint formation and shape features of condyles, depends on appropriate mechanical input from embryonic movement but it is unknown how such physical stimuli are transduced to alter gene regulation. Hippo/Yes-Associated Protein (YAP) signalling has been shown to respond to the physical environment of the cell and here we specifically investigate the YAP effector of the pathway as a potential mechanoresponsive mediator in the developing limb skeleton.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: We show spatial localization of YAP protein and of pathway target gene expression within developing skeletal rudiments where predicted biophysical stimuli patterns and shape are affected in immobilization models, coincident with the period of sensitivity to movement, but not coincident with the expression of the Hippo receptor Fat4. Furthermore, we show that under reduced mechanical stimulation, in immobile, muscle-less mouse embryos, this spatial localization is lost. In culture blocking YAP reduces chondrogenesis but the effect differs depending on the timing and/or level of YAP reduction.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSIONS: These findings implicate YAP signalling, independent of Fat4, in the transduction of mechanical signals during key stages of skeletal patterning in the developing limb, in particular endochondral ossification and shape emergence, as well as patterning of tissues at the developing synovial joint.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/31747096/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">31747096</a> | DOI:<a href=https://doi.org/10.1002/dvdy.137>10.1002/dvdy.137</a></p></div>]]></content:encoded>
  441.      <guid isPermaLink="false">pubmed:31747096</guid>
  442.      <pubDate>Thu, 21 Nov 2019 06:00:00 -0500</pubDate>
  443.      <dc:creator>Claire A Shea</dc:creator>
  444.      <dc:creator>Rebecca A Rolfe</dc:creator>
  445.      <dc:creator>Helen McNeill</dc:creator>
  446.      <dc:creator>Paula Murphy</dc:creator>
  447.      <dc:date>2019-11-21</dc:date>
  448.      <dc:source>Developmental dynamics : an official publication of the American Association of Anatomists</dc:source>
  449.      <dc:title>Localization of YAP activity in developing skeletal rudiments is responsive to mechanical stimulation</dc:title>
  450.      <dc:identifier>pmid:31747096</dc:identifier>
  451.      <dc:identifier>doi:10.1002/dvdy.137</dc:identifier>
  452.    </item>
  453.    <item>
  454.      <title>Fat/Dachsous family cadherins in cell and tissue organisation</title>
  455.      <link>https://pubmed.ncbi.nlm.nih.gov/31739265/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  456.      <description>Precisely controlled organisation at the cellular and tissue level is crucial to establish and maintain complex organisms. The atypical cadherins Fat (Ft), Fat2 and Dachsous (Ds) contribute to this organisation by regulating growth and planar cell polarity. Here we describe the recent advances in understanding how these large cadherins coordinate these processes, and discuss additional progress extending their function in regulation of microtubules, migration and disease.</description>
  457.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Curr Opin Cell Biol. 2020 Feb;62:96-103. doi: 10.1016/j.ceb.2019.10.006. Epub 2019 Nov 15.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Precisely controlled organisation at the cellular and tissue level is crucial to establish and maintain complex organisms. The atypical cadherins Fat (Ft), Fat2 and Dachsous (Ds) contribute to this organisation by regulating growth and planar cell polarity. Here we describe the recent advances in understanding how these large cadherins coordinate these processes, and discuss additional progress extending their function in regulation of microtubules, migration and disease.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/31739265/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">31739265</a> | DOI:<a href=https://doi.org/10.1016/j.ceb.2019.10.006>10.1016/j.ceb.2019.10.006</a></p></div>]]></content:encoded>
  458.      <guid isPermaLink="false">pubmed:31739265</guid>
  459.      <pubDate>Tue, 19 Nov 2019 06:00:00 -0500</pubDate>
  460.      <dc:creator>Alexander D Fulford</dc:creator>
  461.      <dc:creator>Helen McNeill</dc:creator>
  462.      <dc:date>2019-11-19</dc:date>
  463.      <dc:source>Current opinion in cell biology</dc:source>
  464.      <dc:title>Fat/Dachsous family cadherins in cell and tissue organisation</dc:title>
  465.      <dc:identifier>pmid:31739265</dc:identifier>
  466.      <dc:identifier>doi:10.1016/j.ceb.2019.10.006</dc:identifier>
  467.    </item>
  468.    <item>
  469.      <title>Electrocardiographic recognition of life-threatening hyperkalaemia: the hyperkalaemic Brugada sign</title>
  470.      <link>https://pubmed.ncbi.nlm.nih.gov/31516716/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  471.      <description>Consider life-threatening hyperkalaemia if the ECG shows high take-off with coved ST segment elevation and negative T wave in lead V1 superimposed on other ECG signs of hyperkalaemia and treat with calcium gluconate while waiting for blood chemistry results.</description>
  472.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">JRSM Open. 2019 Sep 2;10(9):2054270419834243. doi: 10.1177/2054270419834243. eCollection 2019 Sep.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Consider life-threatening hyperkalaemia if the ECG shows high take-off with coved ST segment elevation and negative T wave in lead V1 superimposed on other ECG signs of hyperkalaemia and treat with calcium gluconate while waiting for blood chemistry results.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/31516716/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">31516716</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC6719473/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC6719473</a> | DOI:<a href=https://doi.org/10.1177/2054270419834243>10.1177/2054270419834243</a></p></div>]]></content:encoded>
  473.      <guid isPermaLink="false">pubmed:31516716</guid>
  474.      <pubDate>Sat, 14 Sep 2019 06:00:00 -0400</pubDate>
  475.      <dc:creator>Holly McNeill</dc:creator>
  476.      <dc:creator>Chris Isles</dc:creator>
  477.      <dc:date>2019-09-14</dc:date>
  478.      <dc:source>JRSM open</dc:source>
  479.      <dc:title>Electrocardiographic recognition of life-threatening hyperkalaemia: the hyperkalaemic Brugada sign</dc:title>
  480.      <dc:identifier>pmid:31516716</dc:identifier>
  481.      <dc:identifier>pmc:PMC6719473</dc:identifier>
  482.      <dc:identifier>doi:10.1177/2054270419834243</dc:identifier>
  483.    </item>
  484.    <item>
  485.      <title>Position effects on promoter activity in &lt;em&gt;Escherichia coli&lt;/em&gt; and their consequences for antibiotic-resistance determinants</title>
  486.      <link>https://pubmed.ncbi.nlm.nih.gov/31189732/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  487.      <description>The activity of any bacterial promoter is generally supposed to be set by its base sequence and the different transcription factors that bind in the local vicinity. Here, we review recent data indicating that the activity of the Escherichia coli lac operon promoter also depends upon its chromosomal location. Factors that affect promoter activity include the binding of nucleoid-associated proteins to neighbouring sequences, supercoiling and the activity of neighbouring promoters. We suggest that...</description>
  488.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Biochem Soc Trans. 2019 Jun 28;47(3):839-845. doi: 10.1042/BST20180503. Epub 2019 Jun 12.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The activity of any bacterial promoter is generally supposed to be set by its base sequence and the different transcription factors that bind in the local vicinity. Here, we review recent data indicating that the activity of the <i>Escherichia coli lac</i> operon promoter also depends upon its chromosomal location. Factors that affect promoter activity include the binding of nucleoid-associated proteins to neighbouring sequences, supercoiling and the activity of neighbouring promoters. We suggest that many bacterial promoters might be susceptible to similar position-dependent effects and we review recent data showing that the expression of mobile genes encoding antibiotic-resistance determinants is also location-dependent, both when carried on a bacterial chromosome or a conjugative plasmid.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/31189732/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">31189732</a> | DOI:<a href=https://doi.org/10.1042/BST20180503>10.1042/BST20180503</a></p></div>]]></content:encoded>
  489.      <guid isPermaLink="false">pubmed:31189732</guid>
  490.      <pubDate>Fri, 14 Jun 2019 06:00:00 -0400</pubDate>
  491.      <dc:creator>Karen Cooke</dc:creator>
  492.      <dc:creator>Douglas F Browning</dc:creator>
  493.      <dc:creator>David J Lee</dc:creator>
  494.      <dc:creator>Jessica M A Blair</dc:creator>
  495.      <dc:creator>Helen E McNeill</dc:creator>
  496.      <dc:creator>Damon Huber</dc:creator>
  497.      <dc:creator>Stephen J W Busby</dc:creator>
  498.      <dc:creator>Jack A Bryant</dc:creator>
  499.      <dc:date>2019-06-14</dc:date>
  500.      <dc:source>Biochemical Society transactions</dc:source>
  501.      <dc:title>Position effects on promoter activity in &lt;em&gt;Escherichia coli&lt;/em&gt; and their consequences for antibiotic-resistance determinants</dc:title>
  502.      <dc:identifier>pmid:31189732</dc:identifier>
  503.      <dc:identifier>doi:10.1042/BST20180503</dc:identifier>
  504.    </item>
  505.    <item>
  506.      <title>Four-jointed knock-out delays renal failure in an ADPKD model with kidney injury</title>
  507.      <link>https://pubmed.ncbi.nlm.nih.gov/31038742/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  508.      <description>Autosomal Dominant Polycystic Kidney Disease is characterised by the development of fluid-filled cysts in the kidneys which lead to end-stage renal disease (ESRD). In the majority of cases, the disease is caused by a mutation in the Pkd1 gene. In a previous study, we demonstrated that renal injury can accelerate cyst formation in Pkd1 knock-out (KO) mice. In that study, we found that after injury four-jointed (Fjx1), an upstream regulator of planar cell polarity and the Hippo pathway, was...</description>
  509.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Pathol. 2019 Sep;249(1):114-125. doi: 10.1002/path.5286. Epub 2019 Jun 17.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Autosomal Dominant Polycystic Kidney Disease is characterised by the development of fluid-filled cysts in the kidneys which lead to end-stage renal disease (ESRD). In the majority of cases, the disease is caused by a mutation in the Pkd1 gene. In a previous study, we demonstrated that renal injury can accelerate cyst formation in Pkd1 knock-out (KO) mice. In that study, we found that after injury four-jointed (Fjx1), an upstream regulator of planar cell polarity and the Hippo pathway, was aberrantly expressed in Pkd1 KO mice compared to WT. Therefore, we hypothesised a role for Fjx1 in injury/repair and cyst formation. We generated single and double deletion mice for Pkd1 and Fjx1, and we induced toxic renal injury using the nephrotoxic compound 1,2-dichlorovinyl-cysteine. We confirmed that nephrotoxic injury can accelerate cyst formation in Pkd1 mutant mice. This caused Pkd1 KO mice to reach ESRD significantly faster; unexpectedly, double KO mice survived significantly longer. Cyst formation was comparable in both models, but we found significantly less fibrosis and macrophage infiltration in double KO mice. Taken together, these data suggest that Fjx1 disruption protects the cystic kidneys against kidney failure by reducing inflammation and fibrosis. Moreover, we describe, for the first time, an interesting (yet unidentified) mechanism that partially discriminates cyst growth from fibrogenesis. © 2019 The Authors. The Journal of Pathology published by John Wiley &amp; Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/31038742/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">31038742</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC6772084/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC6772084</a> | DOI:<a href=https://doi.org/10.1002/path.5286>10.1002/path.5286</a></p></div>]]></content:encoded>
  510.      <guid isPermaLink="false">pubmed:31038742</guid>
  511.      <pubDate>Wed, 01 May 2019 06:00:00 -0400</pubDate>
  512.      <dc:creator>Chiara Formica</dc:creator>
  513.      <dc:creator>Hester Happé</dc:creator>
  514.      <dc:creator>Kimberley Am Veraar</dc:creator>
  515.      <dc:creator>Andrea Vortkamp</dc:creator>
  516.      <dc:creator>Marion Scharpfenecker</dc:creator>
  517.      <dc:creator>Helen McNeill</dc:creator>
  518.      <dc:creator>Dorien Jm Peters</dc:creator>
  519.      <dc:date>2019-05-01</dc:date>
  520.      <dc:source>The Journal of pathology</dc:source>
  521.      <dc:title>Four-jointed knock-out delays renal failure in an ADPKD model with kidney injury</dc:title>
  522.      <dc:identifier>pmid:31038742</dc:identifier>
  523.      <dc:identifier>pmc:PMC6772084</dc:identifier>
  524.      <dc:identifier>doi:10.1002/path.5286</dc:identifier>
  525.    </item>
  526.    <item>
  527.      <title>Homozygous frameshift mutations in FAT1 cause a syndrome characterized by colobomatous-microphthalmia, ptosis, nephropathy and syndactyly</title>
  528.      <link>https://pubmed.ncbi.nlm.nih.gov/30862798/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  529.      <description>A failure in optic fissure fusion during development can lead to blinding malformations of the eye. Here, we report a syndrome characterized by facial dysmorphism, colobomatous microphthalmia, ptosis and syndactyly with or without nephropathy, associated with homozygous frameshift mutations in FAT1. We show that Fat1 knockout mice and zebrafish embryos homozygous for truncating fat1a mutations exhibit completely penetrant coloboma, recapitulating the most consistent developmental defect observed...</description>
  530.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Nat Commun. 2019 Mar 12;10(1):1180. doi: 10.1038/s41467-019-08547-w.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">A failure in optic fissure fusion during development can lead to blinding malformations of the eye. Here, we report a syndrome characterized by facial dysmorphism, colobomatous microphthalmia, ptosis and syndactyly with or without nephropathy, associated with homozygous frameshift mutations in FAT1. We show that Fat1 knockout mice and zebrafish embryos homozygous for truncating fat1a mutations exhibit completely penetrant coloboma, recapitulating the most consistent developmental defect observed in affected individuals. In human retinal pigment epithelium (RPE) cells, the primary site for the fusion of optic fissure margins, FAT1 is localized at earliest cell-cell junctions, consistent with a role in facilitating optic fissure fusion during vertebrate eye development. Our findings establish FAT1 as a gene with pleiotropic effects in human, in that frameshift mutations cause a severe multi-system disorder whereas recessive missense mutations had been previously associated with isolated glomerulotubular nephropathy.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/30862798/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">30862798</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC6414540/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC6414540</a> | DOI:<a href=https://doi.org/10.1038/s41467-019-08547-w>10.1038/s41467-019-08547-w</a></p></div>]]></content:encoded>
  531.      <guid isPermaLink="false">pubmed:30862798</guid>
  532.      <pubDate>Thu, 14 Mar 2019 06:00:00 -0400</pubDate>
  533.      <dc:creator>Najim Lahrouchi</dc:creator>
  534.      <dc:creator>Aman George</dc:creator>
  535.      <dc:creator>Ilham Ratbi</dc:creator>
  536.      <dc:creator>Ronen Schneider</dc:creator>
  537.      <dc:creator>Siham C Elalaoui</dc:creator>
  538.      <dc:creator>Shahida Moosa</dc:creator>
  539.      <dc:creator>Sanita Bharti</dc:creator>
  540.      <dc:creator>Ruchi Sharma</dc:creator>
  541.      <dc:creator>Mones Abu-Asab</dc:creator>
  542.      <dc:creator>Felix Onojafe</dc:creator>
  543.      <dc:creator>Najlae Adadi</dc:creator>
  544.      <dc:creator>Elisabeth M Lodder</dc:creator>
  545.      <dc:creator>Fatima-Zahra Laarabi</dc:creator>
  546.      <dc:creator>Yassine Lamsyah</dc:creator>
  547.      <dc:creator>Hamza Elorch</dc:creator>
  548.      <dc:creator>Imane Chebbar</dc:creator>
  549.      <dc:creator>Alex V Postma</dc:creator>
  550.      <dc:creator>Vassilios Lougaris</dc:creator>
  551.      <dc:creator>Alessandro Plebani</dc:creator>
  552.      <dc:creator>Janine Altmueller</dc:creator>
  553.      <dc:creator>Henriette Kyrieleis</dc:creator>
  554.      <dc:creator>Vardiella Meiner</dc:creator>
  555.      <dc:creator>Helen McNeill</dc:creator>
  556.      <dc:creator>Kapil Bharti</dc:creator>
  557.      <dc:creator>Stanislas Lyonnet</dc:creator>
  558.      <dc:creator>Bernd Wollnik</dc:creator>
  559.      <dc:creator>Alexandra Henrion-Caude</dc:creator>
  560.      <dc:creator>Amina Berraho</dc:creator>
  561.      <dc:creator>Friedhelm Hildebrandt</dc:creator>
  562.      <dc:creator>Connie R Bezzina</dc:creator>
  563.      <dc:creator>Brian P Brooks</dc:creator>
  564.      <dc:creator>Abdelaziz Sefiani</dc:creator>
  565.      <dc:date>2019-03-14</dc:date>
  566.      <dc:source>Nature communications</dc:source>
  567.      <dc:title>Homozygous frameshift mutations in FAT1 cause a syndrome characterized by colobomatous-microphthalmia, ptosis, nephropathy and syndactyly</dc:title>
  568.      <dc:identifier>pmid:30862798</dc:identifier>
  569.      <dc:identifier>pmc:PMC6414540</dc:identifier>
  570.      <dc:identifier>doi:10.1038/s41467-019-08547-w</dc:identifier>
  571.    </item>
  572.    <item>
  573.      <title>Fat regulates expression of four-jointed reporters in vivo through a 20 bp element independently of the Hippo pathway</title>
  574.      <link>https://pubmed.ncbi.nlm.nih.gov/30858024/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  575.      <description>Development of an organism requires accurate coordination between the growth of a tissue and orientation of cells within the tissue. The large cadherin Fat has been shown to play a role in both of these processes. Fat is involved in the establishment of planar cell polarity and regulates growth through the Hippo pathway, a developmental cascade that controls proliferation and apoptosis. Both Fat and the Hippo pathway are known to regulate transcription of four-jointed, although the nature of...</description>
  576.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Dev Biol. 2019 Jun 1;450(1):23-33. doi: 10.1016/j.ydbio.2019.03.004. Epub 2019 Mar 9.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Development of an organism requires accurate coordination between the growth of a tissue and orientation of cells within the tissue. The large cadherin Fat has been shown to play a role in both of these processes. Fat is involved in the establishment of planar cell polarity and regulates growth through the Hippo pathway, a developmental cascade that controls proliferation and apoptosis. Both Fat and the Hippo pathway are known to regulate transcription of four-jointed, although the nature of this regulation is unknown. In this study, we test whether Fat affects four-jointed transcription via or independently of Hippo pathway. Our analysis of the four-jointed regulatory region reveals a 1.2 kb element that functions as an enhancer for graded expression of Four-jointed in the eye imaginal disc. Within this enhancer element, we identify a 20 bp fragment that is critical for regulation by Fat but not by Hippo. Our findings suggest that Fat and the Hippo pathway control four-jointed expression independently of each other and none of the transcription factors known to function downstream of the Hippo pathway are required to regulate four-jointed expression through the 1.2 kb element.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/30858024/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">30858024</a> | DOI:<a href=https://doi.org/10.1016/j.ydbio.2019.03.004>10.1016/j.ydbio.2019.03.004</a></p></div>]]></content:encoded>
  577.      <guid isPermaLink="false">pubmed:30858024</guid>
  578.      <pubDate>Wed, 13 Mar 2019 06:00:00 -0400</pubDate>
  579.      <dc:creator>Natalia I Arbouzova</dc:creator>
  580.      <dc:creator>Alexander D Fulford</dc:creator>
  581.      <dc:creator>Hongtao Zhang</dc:creator>
  582.      <dc:creator>Helen McNeill</dc:creator>
  583.      <dc:date>2019-03-13</dc:date>
  584.      <dc:source>Developmental biology</dc:source>
  585.      <dc:title>Fat regulates expression of four-jointed reporters in vivo through a 20 bp element independently of the Hippo pathway</dc:title>
  586.      <dc:identifier>pmid:30858024</dc:identifier>
  587.      <dc:identifier>doi:10.1016/j.ydbio.2019.03.004</dc:identifier>
  588.    </item>
  589.    <item>
  590.      <title>FAT4 Fine-Tunes Kidney Development by Regulating RET Signaling</title>
  591.      <link>https://pubmed.ncbi.nlm.nih.gov/30853441/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  592.      <description>FAT4 mutations lead to several human diseases that disrupt the normal development of the kidney. However, the underlying mechanism remains elusive. In studying the duplex kidney phenotypes observed upon deletion of Fat4 in mice, we have uncovered an interaction between the atypical cadherin FAT4 and RET, a tyrosine kinase receptor essential for kidney development. Analysis of kidney development in Fat4^(-/-) kidneys revealed abnormal ureteric budding and excessive RET signaling. Removal of one...</description>
  593.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Dev Cell. 2019 Mar 25;48(6):780-792.e4. doi: 10.1016/j.devcel.2019.02.004. Epub 2019 Mar 7.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">FAT4 mutations lead to several human diseases that disrupt the normal development of the kidney. However, the underlying mechanism remains elusive. In studying the duplex kidney phenotypes observed upon deletion of Fat4 in mice, we have uncovered an interaction between the atypical cadherin FAT4 and RET, a tyrosine kinase receptor essential for kidney development. Analysis of kidney development in Fat4<sup>-/-</sup> kidneys revealed abnormal ureteric budding and excessive RET signaling. Removal of one copy of the RET ligand Gdnf rescues Fat4<sup>-/-</sup> kidney development, supporting the proposal that loss of Fat4 hyperactivates RET signaling. Conditional knockout analyses revealed a non-autonomous role for Fat4 in regulating RET signaling. Mechanistically, we found that FAT4 interacts with RET through extracellular cadherin repeats. Importantly, expression of FAT4 perturbs the assembly of the RET-GFRA1-GDNF complex, reducing RET signaling. Thus, FAT4 interacts with RET to fine-tune RET signaling, establishing a juxtacrine mechanism controlling kidney development.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/30853441/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">30853441</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC6766079/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC6766079</a> | DOI:<a href=https://doi.org/10.1016/j.devcel.2019.02.004>10.1016/j.devcel.2019.02.004</a></p></div>]]></content:encoded>
  594.      <guid isPermaLink="false">pubmed:30853441</guid>
  595.      <pubDate>Tue, 12 Mar 2019 06:00:00 -0400</pubDate>
  596.      <dc:creator>Hongtao Zhang</dc:creator>
  597.      <dc:creator>Mazdak Bagherie-Lachidan</dc:creator>
  598.      <dc:creator>Caroline Badouel</dc:creator>
  599.      <dc:creator>Leonie Enderle</dc:creator>
  600.      <dc:creator>Philippos Peidis</dc:creator>
  601.      <dc:creator>Rod Bremner</dc:creator>
  602.      <dc:creator>Satu Kuure</dc:creator>
  603.      <dc:creator>Sanjay Jain</dc:creator>
  604.      <dc:creator>Helen McNeill</dc:creator>
  605.      <dc:date>2019-03-12</dc:date>
  606.      <dc:source>Developmental cell</dc:source>
  607.      <dc:title>FAT4 Fine-Tunes Kidney Development by Regulating RET Signaling</dc:title>
  608.      <dc:identifier>pmid:30853441</dc:identifier>
  609.      <dc:identifier>pmc:PMC6766079</dc:identifier>
  610.      <dc:identifier>doi:10.1016/j.devcel.2019.02.004</dc:identifier>
  611.    </item>
  612.    <item>
  613.      <title>Mechanical stability of the cell nucleus - roles played by the cytoskeleton in nuclear deformation and strain recovery</title>
  614.      <link>https://pubmed.ncbi.nlm.nih.gov/29777038/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  615.      <description>Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformations increase the risk of disrupting the integrity of the nuclear envelope and causing DNA damage. The mechanical stability of the nucleus defines its capability to maintain nuclear shape by minimizing nuclear deformation and allowing strain to be minimized when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic...</description>
  616.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Cell Sci. 2018 Jul 4;131(13):jcs209627. doi: 10.1242/jcs.209627.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformations increase the risk of disrupting the integrity of the nuclear envelope and causing DNA damage. The mechanical stability of the nucleus defines its capability to maintain nuclear shape by minimizing nuclear deformation and allowing strain to be minimized when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/29777038/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">29777038</a> | DOI:<a href=https://doi.org/10.1242/jcs.209627>10.1242/jcs.209627</a></p></div>]]></content:encoded>
  617.      <guid isPermaLink="false">pubmed:29777038</guid>
  618.      <pubDate>Sun, 20 May 2018 06:00:00 -0400</pubDate>
  619.      <dc:creator>Xian Wang</dc:creator>
  620.      <dc:creator>Haijiao Liu</dc:creator>
  621.      <dc:creator>Min Zhu</dc:creator>
  622.      <dc:creator>Changhong Cao</dc:creator>
  623.      <dc:creator>Zhensong Xu</dc:creator>
  624.      <dc:creator>Yonit Tsatskis</dc:creator>
  625.      <dc:creator>Kimberly Lau</dc:creator>
  626.      <dc:creator>Chikin Kuok</dc:creator>
  627.      <dc:creator>Tobin Filleter</dc:creator>
  628.      <dc:creator>Helen McNeill</dc:creator>
  629.      <dc:creator>Craig A Simmons</dc:creator>
  630.      <dc:creator>Sevan Hopyan</dc:creator>
  631.      <dc:creator>Yu Sun</dc:creator>
  632.      <dc:date>2018-05-20</dc:date>
  633.      <dc:source>Journal of cell science</dc:source>
  634.      <dc:title>Mechanical stability of the cell nucleus - roles played by the cytoskeleton in nuclear deformation and strain recovery</dc:title>
  635.      <dc:identifier>pmid:29777038</dc:identifier>
  636.      <dc:identifier>doi:10.1242/jcs.209627</dc:identifier>
  637.    </item>
  638.    <item>
  639.      <title>Atypical Cadherin Dachsous1b Interacts with Ttc28 and Aurora B to Control Microtubule Dynamics in Embryonic Cleavages</title>
  640.      <link>https://pubmed.ncbi.nlm.nih.gov/29738714/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  641.      <description>Atypical cadherin Dachsous (Dchs) is a conserved regulator of planar cell polarity, morphogenesis, and tissue growth during animal development. Dchs functions in part by regulating microtubules by unknown molecular mechanisms. Here we show that maternal zygotic (MZ) dchs1b zebrafish mutants exhibit cleavage furrow progression defects and impaired midzone microtubule assembly associated with decreased microtubule turnover. Mechanistically, Dchs1b interacts via a conserved motif in its...</description>
  642.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Dev Cell. 2018 May 7;45(3):376-391.e5. doi: 10.1016/j.devcel.2018.04.009.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Atypical cadherin Dachsous (Dchs) is a conserved regulator of planar cell polarity, morphogenesis, and tissue growth during animal development. Dchs functions in part by regulating microtubules by unknown molecular mechanisms. Here we show that maternal zygotic (MZ) dchs1b zebrafish mutants exhibit cleavage furrow progression defects and impaired midzone microtubule assembly associated with decreased microtubule turnover. Mechanistically, Dchs1b interacts via a conserved motif in its intracellular domain with the tetratricopeptide motifs of Ttc28 and regulates its subcellular distribution. Excess Ttc28 impairs cleavages and decreases microtubule turnover, while ttc28 inactivation increases turnover. Moreover, ttc28 deficiency in dchs1b mutants suppresses the microtubule dynamics and midzone microtubule assembly defects. Dchs1b also binds to Aurora B, a known regulator of cleavages and microtubules. Embryonic cleavages in MZdchs1b mutants exhibit increased, and in MZttc28 mutants decreased, sensitivity to Aurora B inhibition. Thus, Dchs1b regulates microtubule dynamics and embryonic cleavages by interacting with Ttc28 and Aurora B.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/29738714/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">29738714</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC5983389/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC5983389</a> | DOI:<a href=https://doi.org/10.1016/j.devcel.2018.04.009>10.1016/j.devcel.2018.04.009</a></p></div>]]></content:encoded>
  643.      <guid isPermaLink="false">pubmed:29738714</guid>
  644.      <pubDate>Wed, 09 May 2018 06:00:00 -0400</pubDate>
  645.      <dc:creator>Jiakun Chen</dc:creator>
  646.      <dc:creator>Gina D Castelvecchi</dc:creator>
  647.      <dc:creator>Nanbing Li-Villarreal</dc:creator>
  648.      <dc:creator>Brian Raught</dc:creator>
  649.      <dc:creator>Andrzej M Krezel</dc:creator>
  650.      <dc:creator>Helen McNeill</dc:creator>
  651.      <dc:creator>Lilianna Solnica-Krezel</dc:creator>
  652.      <dc:date>2018-05-09</dc:date>
  653.      <dc:source>Developmental cell</dc:source>
  654.      <dc:title>Atypical Cadherin Dachsous1b Interacts with Ttc28 and Aurora B to Control Microtubule Dynamics in Embryonic Cleavages</dc:title>
  655.      <dc:identifier>pmid:29738714</dc:identifier>
  656.      <dc:identifier>pmc:PMC5983389</dc:identifier>
  657.      <dc:identifier>doi:10.1016/j.devcel.2018.04.009</dc:identifier>
  658.    </item>
  659.    <item>
  660.      <title>Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT)</title>
  661.      <link>https://pubmed.ncbi.nlm.nih.gov/29459093/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  662.      <description>Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen. Deletion of Sox11 in mice causes an extension of the domain expressing Gdnf within rostral regions of the...</description>
  663.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Kidney Int. 2018 May;93(5):1142-1153. doi: 10.1016/j.kint.2017.11.026. Epub 2018 Feb 17.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen. Deletion of Sox11 in mice causes an extension of the domain expressing Gdnf within rostral regions of the nephrogenic cord and results in duplex kidney formation. On the molecular level SOX11 directly binds and regulates a locus control region of the protocadherin B cluster. At later stages of kidney development, SOX11 becomes restricted to the intermediate segment of the developing nephron where it is required for the elongation of Henle's loop. Finally, mutation analysis in a cohort of patients suffering from CAKUT identified a series of rare SOX11 variants, one of which interferes with the transactivation capacity of the SOX11 protein. Taken together these data demonstrate a key role for SOX11 in normal kidney development and may suggest that variants in this gene predispose to CAKUT in humans.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/29459093/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">29459093</a> | DOI:<a href=https://doi.org/10.1016/j.kint.2017.11.026>10.1016/j.kint.2017.11.026</a></p></div>]]></content:encoded>
  664.      <guid isPermaLink="false">pubmed:29459093</guid>
  665.      <pubDate>Wed, 21 Feb 2018 06:00:00 -0500</pubDate>
  666.      <dc:creator>Yasmine Neirijnck</dc:creator>
  667.      <dc:creator>Antoine Reginensi</dc:creator>
  668.      <dc:creator>Kirsten Y Renkema</dc:creator>
  669.      <dc:creator>Filippo Massa</dc:creator>
  670.      <dc:creator>Vladimir M Kozlov</dc:creator>
  671.      <dc:creator>Haroun Dhib</dc:creator>
  672.      <dc:creator>Ernie M H F Bongers</dc:creator>
  673.      <dc:creator>Wout F Feitz</dc:creator>
  674.      <dc:creator>Albertien M van Eerde</dc:creator>
  675.      <dc:creator>Veronique Lefebvre</dc:creator>
  676.      <dc:creator>Nine V A M Knoers</dc:creator>
  677.      <dc:creator>Mansoureh Tabatabaei</dc:creator>
  678.      <dc:creator>Herbert Schulz</dc:creator>
  679.      <dc:creator>Helen McNeill</dc:creator>
  680.      <dc:creator>Franz Schaefer</dc:creator>
  681.      <dc:creator>Michael Wegner</dc:creator>
  682.      <dc:creator>Elisabeth Sock</dc:creator>
  683.      <dc:creator>Andreas Schedl</dc:creator>
  684.      <dc:date>2018-02-21</dc:date>
  685.      <dc:source>Kidney international</dc:source>
  686.      <dc:title>Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT)</dc:title>
  687.      <dc:identifier>pmid:29459093</dc:identifier>
  688.      <dc:identifier>doi:10.1016/j.kint.2017.11.026</dc:identifier>
  689.    </item>
  690.    <item>
  691.      <title>Reciprocal Spatiotemporally Controlled Apoptosis Regulates Wolffian Duct Cloaca Fusion</title>
  692.      <link>https://pubmed.ncbi.nlm.nih.gov/29326158/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  693.      <description>The epithelial Wolffian duct (WD) inserts into the cloaca (primitive bladder) before metanephric kidney development, thereby establishing the initial plumbing for eventual joining of the ureters and bladder. Defects in this process cause common anomalies in the spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). However, developmental, cellular, and molecular mechanisms of WD-cloaca fusion are poorly understood. Through systematic analysis of early WD tip development in...</description>
  694.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Am Soc Nephrol. 2018 Mar;29(3):775-783. doi: 10.1681/ASN.2017040380. Epub 2018 Jan 11.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The epithelial Wolffian duct (WD) inserts into the cloaca (primitive bladder) before metanephric kidney development, thereby establishing the initial plumbing for eventual joining of the ureters and bladder. Defects in this process cause common anomalies in the spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). However, developmental, cellular, and molecular mechanisms of WD-cloaca fusion are poorly understood. Through systematic analysis of early WD tip development in mice, we discovered that a novel process of spatiotemporally regulated apoptosis in WD and cloaca was necessary for WD-cloaca fusion. Aberrant RET tyrosine kinase signaling through tyrosine (Y) 1062, to which PI3K- or ERK-activating proteins dock, or Y1015, to which PLC<i>γ</i> docks, has been shown to cause CAKUT-like defects. Cloacal apoptosis did not occur in RetY1062F mutants, in which WDs did not reach the cloaca, or in RetY1015F mutants, in which WD tips reached the cloaca but did not fuse. Moreover, inhibition of ERK or apoptosis prevented WD-cloaca fusion in cultures, and WD-specific genetic deletion of YAP attenuated cloacal apoptosis and WD-cloacal fusion <i>in vivo</i> Thus, cloacal apoptosis requires direct contact and signals from the WD tip and is necessary for WD-cloacal fusion. These findings may explain the mechanisms of many CAKUT.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/29326158/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">29326158</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC5827592/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC5827592</a> | DOI:<a href=https://doi.org/10.1681/ASN.2017040380>10.1681/ASN.2017040380</a></p></div>]]></content:encoded>
  695.      <guid isPermaLink="false">pubmed:29326158</guid>
  696.      <pubDate>Sat, 13 Jan 2018 06:00:00 -0500</pubDate>
  697.      <dc:creator>Masato Hoshi</dc:creator>
  698.      <dc:creator>Antoine Reginensi</dc:creator>
  699.      <dc:creator>Matthew S Joens</dc:creator>
  700.      <dc:creator>James A J Fitzpatrick</dc:creator>
  701.      <dc:creator>Helen McNeill</dc:creator>
  702.      <dc:creator>Sanjay Jain</dc:creator>
  703.      <dc:date>2018-01-13</dc:date>
  704.      <dc:source>Journal of the American Society of Nephrology : JASN</dc:source>
  705.      <dc:title>Reciprocal Spatiotemporally Controlled Apoptosis Regulates Wolffian Duct Cloaca Fusion</dc:title>
  706.      <dc:identifier>pmid:29326158</dc:identifier>
  707.      <dc:identifier>pmc:PMC5827592</dc:identifier>
  708.      <dc:identifier>doi:10.1681/ASN.2017040380</dc:identifier>
  709.    </item>
  710.    <item>
  711.      <title>General Practitioner (GP) trainees' experience of a '1-h protected supervision model' given during psychiatry placements in the United Kingdom</title>
  712.      <link>https://pubmed.ncbi.nlm.nih.gov/29303045/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  713.      <description>Background A '1-hour protected supervision model' is well established for Psychiatry trainees. This model is also extended to GP trainees who are on placement in psychiatry.</description>
  714.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Educ Prim Care. 2018 May;29(3):174-177. doi: 10.1080/14739879.2017.1416959. Epub 2018 Jan 5.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Background A '1-hour protected supervision model' is well established for Psychiatry trainees. This model is also extended to GP trainees who are on placement in psychiatry.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">AIM: To explore the experiences of the '1-hour protected supervision model' for GP trainees in psychiatry placements in the UK. Methods Using a mixed methods approach, an anonymous online questionnaire was sent to GP trainees in the North West of England who had completed a placement in Psychiatry between February and August 2015. Results Discussing clinical cases whilst using the e-portfolio was the most useful learning event in this model. Patient care can potentially improve if a positive relationship develops between trainee/supervisor, which is impacted by the knowledge of this model at the start of the placement. Trainees found that clinical pressures were impacting on the occurrence of supervision. Conclusion The model works best when both GP trainees and their supervisors understand the model. The most frequently used and educationally beneficial aspect for GP trainees in psychiatry is the exploration of clinical cases using the learning portfolio as an educational tool. For effective delivery of this model of supervision, organisations must reflect on the balance between service delivery and allowing the supervisor and trainee adequate time for it to occur.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/29303045/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">29303045</a> | DOI:<a href=https://doi.org/10.1080/14739879.2017.1416959>10.1080/14739879.2017.1416959</a></p></div>]]></content:encoded>
  715.      <guid isPermaLink="false">pubmed:29303045</guid>
  716.      <pubDate>Sat, 06 Jan 2018 06:00:00 -0500</pubDate>
  717.      <dc:creator>Gareth Thomas</dc:creator>
  718.      <dc:creator>Helen McNeill</dc:creator>
  719.      <dc:date>2018-01-06</dc:date>
  720.      <dc:source>Education for primary care : an official publication of the Association of Course Organisers, National Association of GP Tutors, World Organisation of Family Doctors</dc:source>
  721.      <dc:title>General Practitioner (GP) trainees' experience of a '1-h protected supervision model' given during psychiatry placements in the United Kingdom</dc:title>
  722.      <dc:identifier>pmid:29303045</dc:identifier>
  723.      <dc:identifier>doi:10.1080/14739879.2017.1416959</dc:identifier>
  724.    </item>
  725.    <item>
  726.      <title>Big roles for Fat cadherins</title>
  727.      <link>https://pubmed.ncbi.nlm.nih.gov/29258012/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  728.      <description>To create an intricately patterned and reproducibly sized and shaped organ, many cellular processes must be tightly regulated. Cell elongation, migration, metabolism, proliferation rates, cell-cell adhesion, planar polarization and junctional contractions all must be coordinated in time and space. Remarkably, a pair of extremely large cell adhesion molecules called Fat (Ft) and Dachsous (Ds), acting largely as a ligand-receptor system, regulate, and likely coordinate, these many diverse...</description>
  729.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Curr Opin Cell Biol. 2018 Apr;51:73-80. doi: 10.1016/j.ceb.2017.11.006. Epub 2017 Dec 16.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">To create an intricately patterned and reproducibly sized and shaped organ, many cellular processes must be tightly regulated. Cell elongation, migration, metabolism, proliferation rates, cell-cell adhesion, planar polarization and junctional contractions all must be coordinated in time and space. Remarkably, a pair of extremely large cell adhesion molecules called Fat (Ft) and Dachsous (Ds), acting largely as a ligand-receptor system, regulate, and likely coordinate, these many diverse processes. Here we describe recent exciting progress on how the Ds-Ft pathway controls these diverse processes, and highlight a few of the many questions remaining as to how these enormous cell adhesion molecules regulate development.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/29258012/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">29258012</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC5949260/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC5949260</a> | DOI:<a href=https://doi.org/10.1016/j.ceb.2017.11.006>10.1016/j.ceb.2017.11.006</a></p></div>]]></content:encoded>
  730.      <guid isPermaLink="false">pubmed:29258012</guid>
  731.      <pubDate>Wed, 20 Dec 2017 06:00:00 -0500</pubDate>
  732.      <dc:creator>Seth Blair</dc:creator>
  733.      <dc:creator>Helen McNeill</dc:creator>
  734.      <dc:date>2017-12-20</dc:date>
  735.      <dc:source>Current opinion in cell biology</dc:source>
  736.      <dc:title>Big roles for Fat cadherins</dc:title>
  737.      <dc:identifier>pmid:29258012</dc:identifier>
  738.      <dc:identifier>pmc:PMC5949260</dc:identifier>
  739.      <dc:identifier>doi:10.1016/j.ceb.2017.11.006</dc:identifier>
  740.    </item>
  741.    <item>
  742.      <title>Editorial overview: Cell dynamics: Dynamic cell decision making</title>
  743.      <link>https://pubmed.ncbi.nlm.nih.gov/28803693/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  744.      <description>No abstract</description>
  745.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Curr Opin Cell Biol. 2017 Oct;48:iv-vi. doi: 10.1016/j.ceb.2017.07.003. Epub 2017 Aug 10.</p><p><b>NO ABSTRACT</b></p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/28803693/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">28803693</a> | DOI:<a href=https://doi.org/10.1016/j.ceb.2017.07.003>10.1016/j.ceb.2017.07.003</a></p></div>]]></content:encoded>
  746.      <guid isPermaLink="false">pubmed:28803693</guid>
  747.      <pubDate>Tue, 15 Aug 2017 06:00:00 -0400</pubDate>
  748.      <dc:creator>Eugenia Piddini</dc:creator>
  749.      <dc:creator>Helen McNeill</dc:creator>
  750.      <dc:date>2017-08-15</dc:date>
  751.      <dc:source>Current opinion in cell biology</dc:source>
  752.      <dc:title>Editorial overview: Cell dynamics: Dynamic cell decision making</dc:title>
  753.      <dc:identifier>pmid:28803693</dc:identifier>
  754.      <dc:identifier>doi:10.1016/j.ceb.2017.07.003</dc:identifier>
  755.    </item>
  756.    <item>
  757.      <title>Atrophin controls developmental signaling pathways via interactions with Trithorax-like</title>
  758.      <link>https://pubmed.ncbi.nlm.nih.gov/28327288/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  759.      <description>Mutations in human Atrophin1, a transcriptional corepressor, cause dentatorubral-pallidoluysian atrophy, a neurodegenerative disease. Drosophila Atrophin (Atro) mutants display many phenotypes, including neurodegeneration, segmentation, patterning and planar polarity defects. Despite Atro's critical role in development and disease, relatively little is known about Atro's binding partners and downstream targets. We present the first genomic analysis of Atro using ChIP-seq against endogenous Atro....</description>
  760.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Elife. 2017 Mar 22;6:e23084. doi: 10.7554/eLife.23084.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Mutations in human <i>Atrophin1</i>, a transcriptional corepressor, cause dentatorubral-pallidoluysian atrophy, a neurodegenerative disease. <i>Drosophila Atrophin</i> (<i>Atro</i>) mutants display many phenotypes, including neurodegeneration, segmentation, patterning and planar polarity defects. Despite Atro's critical role in development and disease, relatively little is known about Atro's binding partners and downstream targets. We present the first genomic analysis of Atro using ChIP-seq against endogenous Atro. ChIP-seq identified 1300 potential direct targets of Atro including <i>engrailed</i>, and components of the Dpp and Notch signaling pathways. We show that Atro regulates Dpp and Notch signaling in larval imaginal discs, at least partially via regulation of <i>thickveins</i> and <i>fringe</i>. In addition, bioinformatics analyses, sequential ChIP and coimmunoprecipitation experiments reveal that Atro interacts with the <i>Drosophila</i> GAGA Factor, Trithorax-like (Trl), and they bind to the same loci simultaneously. Phenotypic analyses of <i>Trl</i> and <i>Atro</i> clones suggest that Atro is required to modulate the transcription activation by Trl in larval imaginal discs. Taken together, these data indicate that Atro is a major Trl cofactor that functions to moderate developmental gene transcription.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/28327288/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">28327288</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC5409829/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC5409829</a> | DOI:<a href=https://doi.org/10.7554/eLife.23084>10.7554/eLife.23084</a></p></div>]]></content:encoded>
  761.      <guid isPermaLink="false">pubmed:28327288</guid>
  762.      <pubDate>Thu, 23 Mar 2017 06:00:00 -0400</pubDate>
  763.      <dc:creator>Kelvin Yeung</dc:creator>
  764.      <dc:creator>Ann Boija</dc:creator>
  765.      <dc:creator>Edvin Karlsson</dc:creator>
  766.      <dc:creator>Per-Henrik Holmqvist</dc:creator>
  767.      <dc:creator>Yonit Tsatskis</dc:creator>
  768.      <dc:creator>Ilaria Nisoli</dc:creator>
  769.      <dc:creator>Damian Yap</dc:creator>
  770.      <dc:creator>Alireza Lorzadeh</dc:creator>
  771.      <dc:creator>Michelle Moksa</dc:creator>
  772.      <dc:creator>Martin Hirst</dc:creator>
  773.      <dc:creator>Samuel Aparicio</dc:creator>
  774.      <dc:creator>Manolis Fanto</dc:creator>
  775.      <dc:creator>Per Stenberg</dc:creator>
  776.      <dc:creator>Mattias Mannervik</dc:creator>
  777.      <dc:creator>Helen McNeill</dc:creator>
  778.      <dc:date>2017-03-23</dc:date>
  779.      <dc:source>eLife</dc:source>
  780.      <dc:title>Atrophin controls developmental signaling pathways via interactions with Trithorax-like</dc:title>
  781.      <dc:identifier>pmid:28327288</dc:identifier>
  782.      <dc:identifier>pmc:PMC5409829</dc:identifier>
  783.      <dc:identifier>doi:10.7554/eLife.23084</dc:identifier>
  784.    </item>
  785.    <item>
  786.      <title>Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth</title>
  787.      <link>https://pubmed.ncbi.nlm.nih.gov/28239148/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  788.      <description>Although in flies the atypical cadherin Fat is an upstream regulator of Hippo signalling, the closest mammalian homologue, Fat4, has been shown to regulate tissue polarity rather than growth. Here we show in the mouse heart that Fat4 modulates Hippo signalling to restrict growth. Fat4 mutant myocardium is thicker, with increased cardiomyocyte size and proliferation, and this is mediated by an upregulation of the transcriptional activity of Yap1, an effector of the Hippo pathway. Fat4 is not...</description>
  789.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Nat Commun. 2017 Feb 27;8:14582. doi: 10.1038/ncomms14582.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Although in flies the atypical cadherin Fat is an upstream regulator of Hippo signalling, the closest mammalian homologue, Fat4, has been shown to regulate tissue polarity rather than growth. Here we show in the mouse heart that Fat4 modulates Hippo signalling to restrict growth. Fat4 mutant myocardium is thicker, with increased cardiomyocyte size and proliferation, and this is mediated by an upregulation of the transcriptional activity of Yap1, an effector of the Hippo pathway. Fat4 is not required for the canonical activation of Hippo kinases but it sequesters a partner of Yap1, Amotl1, out of the nucleus. The nuclear translocation of Amotl1 is accompanied by Yap1 to promote cardiomyocyte proliferation. We, therefore, identify Amotl1, which is not present in flies, as a mammalian intermediate for non-canonical Hippo signalling, downstream of Fat4. This work uncovers a mechanism for the restriction of heart growth at birth, a process which impedes the regenerative potential of the mammalian heart.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/28239148/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">28239148</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC5333361/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC5333361</a> | DOI:<a href=https://doi.org/10.1038/ncomms14582>10.1038/ncomms14582</a></p></div>]]></content:encoded>
  790.      <guid isPermaLink="false">pubmed:28239148</guid>
  791.      <pubDate>Tue, 28 Feb 2017 06:00:00 -0500</pubDate>
  792.      <dc:creator>Chiara V Ragni</dc:creator>
  793.      <dc:creator>Nicolas Diguet</dc:creator>
  794.      <dc:creator>Jean-François Le Garrec</dc:creator>
  795.      <dc:creator>Marta Novotova</dc:creator>
  796.      <dc:creator>Tatiana P Resende</dc:creator>
  797.      <dc:creator>Sorin Pop</dc:creator>
  798.      <dc:creator>Nicolas Charon</dc:creator>
  799.      <dc:creator>Laurent Guillemot</dc:creator>
  800.      <dc:creator>Lisa Kitasato</dc:creator>
  801.      <dc:creator>Caroline Badouel</dc:creator>
  802.      <dc:creator>Alexandre Dufour</dc:creator>
  803.      <dc:creator>Jean-Christophe Olivo-Marin</dc:creator>
  804.      <dc:creator>Alain Trouvé</dc:creator>
  805.      <dc:creator>Helen McNeill</dc:creator>
  806.      <dc:creator>Sigolène M Meilhac</dc:creator>
  807.      <dc:date>2017-02-28</dc:date>
  808.      <dc:source>Nature communications</dc:source>
  809.      <dc:title>Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth</dc:title>
  810.      <dc:identifier>pmid:28239148</dc:identifier>
  811.      <dc:identifier>pmc:PMC5333361</dc:identifier>
  812.      <dc:identifier>doi:10.1038/ncomms14582</dc:identifier>
  813.    </item>
  814.    <item>
  815.      <title>DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2</title>
  816.      <link>https://pubmed.ncbi.nlm.nih.gov/28087714/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  817.      <description>Disruption of apical-basal polarity is implicated in developmental disorders and cancer; however, the mechanisms connecting cell polarity proteins with intracellular signaling pathways are largely unknown. We determined previously that membrane-associated guanylate kinase (MAGUK) protein discs large homolog 5 (DLG5) functions in cell polarity and regulates cellular proliferation and differentiation via undefined mechanisms. We report here that DLG5 functions as an evolutionarily conserved...</description>
  818.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Genes Dev. 2016 Dec 15;30(24):2696-2709. doi: 10.1101/gad.284539.116.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Disruption of apical-basal polarity is implicated in developmental disorders and cancer; however, the mechanisms connecting cell polarity proteins with intracellular signaling pathways are largely unknown. We determined previously that membrane-associated guanylate kinase (MAGUK) protein discs large homolog 5 (DLG5) functions in cell polarity and regulates cellular proliferation and differentiation via undefined mechanisms. We report here that DLG5 functions as an evolutionarily conserved scaffold and negative regulator of Hippo signaling, which controls organ size through the modulation of cell proliferation and differentiation. Affinity purification/mass spectrometry revealed a critical role of DLG5 in the formation of protein assemblies containing core Hippo kinases mammalian ste20 homologs 1/2 (MST1/2) and Par-1 polarity proteins microtubule affinity-regulating kinases 1/2/3 (MARK1/2/3). Consistent with this finding, Hippo signaling is markedly hyperactive in mammalian Dlg5<sup>-/-</sup> tissues and cells in vivo and ex vivo and in Drosophila upon dlg5 knockdown. Conditional deletion of Mst1/2 fully rescued the phenotypes of brain-specific Dlg5 knockout mice. Dlg5 also interacts genetically with Hippo effectors Yap1/Taz Mechanistically, we show that DLG5 inhibits the association between MST1/2 and large tumor suppressor homologs 1/2 (LATS1/2), uses its scaffolding function to link MST1/2 with MARK3, and inhibits MST1/2 kinase activity. These data reveal a direct connection between cell polarity proteins and Hippo, which is essential for proper development of multicellular organisms.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/28087714/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">28087714</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC5238729/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC5238729</a> | DOI:<a href=https://doi.org/10.1101/gad.284539.116>10.1101/gad.284539.116</a></p></div>]]></content:encoded>
  819.      <guid isPermaLink="false">pubmed:28087714</guid>
  820.      <pubDate>Sun, 15 Jan 2017 06:00:00 -0500</pubDate>
  821.      <dc:creator>Julian Kwan</dc:creator>
  822.      <dc:creator>Anna Sczaniecka</dc:creator>
  823.      <dc:creator>Emad Heidary Arash</dc:creator>
  824.      <dc:creator>Liem Nguyen</dc:creator>
  825.      <dc:creator>Chia-Chun Chen</dc:creator>
  826.      <dc:creator>Srdjana Ratkovic</dc:creator>
  827.      <dc:creator>Olga Klezovitch</dc:creator>
  828.      <dc:creator>Liliana Attisano</dc:creator>
  829.      <dc:creator>Helen McNeill</dc:creator>
  830.      <dc:creator>Andrew Emili</dc:creator>
  831.      <dc:creator>Valeri Vasioukhin</dc:creator>
  832.      <dc:date>2017-01-15</dc:date>
  833.      <dc:source>Genes &amp; development</dc:source>
  834.      <dc:title>DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2</dc:title>
  835.      <dc:identifier>pmid:28087714</dc:identifier>
  836.      <dc:identifier>pmc:PMC5238729</dc:identifier>
  837.      <dc:identifier>doi:10.1101/gad.284539.116</dc:identifier>
  838.    </item>
  839.    <item>
  840.      <title>The Enright phenomenon. Stereoscopic distortion of perceived driving speed induced by monocular pupil dilation</title>
  841.      <link>https://pubmed.ncbi.nlm.nih.gov/27866954/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  842.      <description>CONCLUSIONS: Our results are the first to show a measurable change in driving behaviour following monocular pupil dilation and support predictions based on the Enright phenomenon.</description>
  843.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Optom. 2017 Oct-Dec;10(4):233-241. doi: 10.1016/j.optom.2016.08.001. Epub 2016 Nov 17.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">PURPOSE: The Enright phenomenon describes the distortion in speed perception experienced by an observer looking sideways from a moving vehicle when viewing with interocular differences in retinal image brightness, usually induced by neutral density filters. We investigated whether the Enright phenomenon could be induced with monocular pupil dilation using tropicamide.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: We tested 17 visually normal young adults on a closed road driving circuit. Participants were asked to travel at Goal Speeds of 40km/h and 60km/h while looking sideways from the vehicle with: (i) both eyes with undilated pupils; (ii) both eyes with dilated pupils; (iii) with the leading eye only dilated; and (iv) the trailing eye only dilated. For each condition we recorded actual driving speed.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: With the pupil of the leading eye dilated participants drove significantly faster (by an average of 3.8km/h) than with both eyes dilated (p=0.02); with the trailing eye dilated participants drove significantly slower (by an average of 3.2km/h) than with both eyes dilated (p&lt;0.001). The speed, with the leading eye dilated, was faster by an average of 7km/h than with the trailing eye dilated (p&lt;0.001). There was no significant difference between driving speeds when viewing with both eyes either dilated or undilated (p=0.322).</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSIONS: Our results are the first to show a measurable change in driving behaviour following monocular pupil dilation and support predictions based on the Enright phenomenon.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/27866954/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">27866954</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC5595259/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC5595259</a> | DOI:<a href=https://doi.org/10.1016/j.optom.2016.08.001>10.1016/j.optom.2016.08.001</a></p></div>]]></content:encoded>
  844.      <guid isPermaLink="false">pubmed:27866954</guid>
  845.      <pubDate>Tue, 22 Nov 2016 06:00:00 -0500</pubDate>
  846.      <dc:creator>Andrew Carkeet</dc:creator>
  847.      <dc:creator>Joanne M Wood</dc:creator>
  848.      <dc:creator>Kylie M McNeill</dc:creator>
  849.      <dc:creator>Hamish J McNeill</dc:creator>
  850.      <dc:creator>Joanna A James</dc:creator>
  851.      <dc:creator>Leigh S Holder</dc:creator>
  852.      <dc:date>2016-11-22</dc:date>
  853.      <dc:source>Journal of optometry</dc:source>
  854.      <dc:title>The Enright phenomenon. Stereoscopic distortion of perceived driving speed induced by monocular pupil dilation</dc:title>
  855.      <dc:identifier>pmid:27866954</dc:identifier>
  856.      <dc:identifier>pmc:PMC5595259</dc:identifier>
  857.      <dc:identifier>doi:10.1016/j.optom.2016.08.001</dc:identifier>
  858.    </item>
  859.    <item>
  860.      <title>Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor</title>
  861.      <link>https://pubmed.ncbi.nlm.nih.gov/27708106/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  862.      <description>Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells. Here, we identify Methuselah (Mth) as a secretin-incretin receptor subfamily member required...</description>
  863.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Science. 2016 Sep 30;353(6307):1553-1556. doi: 10.1126/science.aaf8430.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells. Here, we identify Methuselah (Mth) as a secretin-incretin receptor subfamily member required in the insulin-producing cells for proper nutrient coupling. We further show, using genetic and ex vivo organ culture experiments, that the Mth ligand Stunted (Sun) is a circulating insulinotropic peptide produced by fat cells. Therefore, Sun and Mth define a new cross-organ circuitry that modulates physiological insulin levels in response to nutrients.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/27708106/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">27708106</a> | DOI:<a href=https://doi.org/10.1126/science.aaf8430>10.1126/science.aaf8430</a></p></div>]]></content:encoded>
  864.      <guid isPermaLink="false">pubmed:27708106</guid>
  865.      <pubDate>Fri, 07 Oct 2016 06:00:00 -0400</pubDate>
  866.      <dc:creator>Renald Delanoue</dc:creator>
  867.      <dc:creator>Eleonora Meschi</dc:creator>
  868.      <dc:creator>Neha Agrawal</dc:creator>
  869.      <dc:creator>Alessandra Mauri</dc:creator>
  870.      <dc:creator>Yonit Tsatskis</dc:creator>
  871.      <dc:creator>Helen McNeill</dc:creator>
  872.      <dc:creator>Pierre Léopold</dc:creator>
  873.      <dc:date>2016-10-07</dc:date>
  874.      <dc:source>Science (New York, N.Y.)</dc:source>
  875.      <dc:title>Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor</dc:title>
  876.      <dc:identifier>pmid:27708106</dc:identifier>
  877.      <dc:identifier>doi:10.1126/science.aaf8430</dc:identifier>
  878.    </item>
  879.    <item>
  880.      <title>Lats1/2 Regulate Yap/Taz to Control Nephron Progenitor Epithelialization and Inhibit Myofibroblast Formation</title>
  881.      <link>https://pubmed.ncbi.nlm.nih.gov/27647853/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  882.      <description>In the kidney, formation of the functional filtration units, the nephrons, is essential for postnatal life. During development, mesenchymal progenitors tightly regulate the balance between self-renewal and differentiation to give rise to all nephron epithelia. Here, we investigated the functions of the Hippo pathway serine/threonine-protein kinases Lats1 and Lats2, which phosphorylate and inhibit the transcriptional coactivators Yap and Taz, in nephron progenitor cells. Genetic deletion of Lats1...</description>
  883.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Am Soc Nephrol. 2017 Mar;28(3):852-861. doi: 10.1681/ASN.2016060611. Epub 2016 Sep 19.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">In the kidney, formation of the functional filtration units, the nephrons, is essential for postnatal life. During development, mesenchymal progenitors tightly regulate the balance between self-renewal and differentiation to give rise to all nephron epithelia. Here, we investigated the functions of the Hippo pathway serine/threonine-protein kinases Lats1 and Lats2, which phosphorylate and inhibit the transcriptional coactivators Yap and Taz, in nephron progenitor cells. Genetic deletion of <i>Lats1</i> and <i>Lats2</i> in nephron progenitors of mice led to disruption of nephrogenesis, with an accumulation of spindle-shaped cells in both cortical and medullary regions of the kidney. Lineage-tracing experiments revealed that the cells that accumulated in the interstitium derived from nephron progenitor cells and expressed E-cadherin as well as vimentin, a myofibroblastic marker not usually detected after mesenchymal-to-epithelial transition. The accumulation of these interstitial cells associated with collagen deposition and ectopic expression of the myofibroblastic markers vimentin and <i>α</i>-smooth-muscle actin in developing kidneys. Although these myofibroblastic cells had high Yap and Taz accumulation in the nucleus concomitant with a loss of phosphorylated Yap, reduction of <i>Yap</i> and/or <i>Taz</i> expression levels completely rescued the <i>Lats1/2</i> phenotype. Taken together, our results demonstrate that Lats1/2 kinases restrict Yap/Taz activities to promote nephron progenitor cell differentiation in the mammalian kidney. Notably, our data also show that myofibroblastic cells can differentiate from nephron progenitors.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/27647853/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">27647853</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC5328169/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC5328169</a> | DOI:<a href=https://doi.org/10.1681/ASN.2016060611>10.1681/ASN.2016060611</a></p></div>]]></content:encoded>
  884.      <guid isPermaLink="false">pubmed:27647853</guid>
  885.      <pubDate>Wed, 21 Sep 2016 06:00:00 -0400</pubDate>
  886.      <dc:creator>Helen McNeill</dc:creator>
  887.      <dc:creator>Antoine Reginensi</dc:creator>
  888.      <dc:date>2016-09-21</dc:date>
  889.      <dc:source>Journal of the American Society of Nephrology : JASN</dc:source>
  890.      <dc:title>Lats1/2 Regulate Yap/Taz to Control Nephron Progenitor Epithelialization and Inhibit Myofibroblast Formation</dc:title>
  891.      <dc:identifier>pmid:27647853</dc:identifier>
  892.      <dc:identifier>pmc:PMC5328169</dc:identifier>
  893.      <dc:identifier>doi:10.1681/ASN.2016060611</dc:identifier>
  894.    </item>
  895.    <item>
  896.      <title>A critical role for NF2 and the Hippo pathway in branching morphogenesis</title>
  897.      <link>https://pubmed.ncbi.nlm.nih.gov/27480037/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  898.      <description>Branching morphogenesis is a complex biological process common to the development of most epithelial organs. Here we demonstrate that NF2, LATS1/2 and YAP play a critical role in branching morphogenesis in the mouse kidney. Removal of Nf2 or Lats1/2 from the ureteric bud (UB) lineage causes loss of branching morphogenesis that is rescued by loss of one copy of Yap and Taz, and phenocopied by YAP overexpression. Mosaic analysis demonstrates that cells with high YAP expression have reduced...</description>
  899.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Nat Commun. 2016 Aug 2;7:12309. doi: 10.1038/ncomms12309.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Branching morphogenesis is a complex biological process common to the development of most epithelial organs. Here we demonstrate that NF2, LATS1/2 and YAP play a critical role in branching morphogenesis in the mouse kidney. Removal of Nf2 or Lats1/2 from the ureteric bud (UB) lineage causes loss of branching morphogenesis that is rescued by loss of one copy of Yap and Taz, and phenocopied by YAP overexpression. Mosaic analysis demonstrates that cells with high YAP expression have reduced contribution to UB tips, similar to Ret(-/-) cells, and that YAP suppresses RET signalling and tip identity. Conversely, Yap/Taz UB-deletion leads to cyst-like branching and expansion of UB tip markers, suggesting a shift towards tip cell identity. Based on these data we propose that NF2 and the Hippo pathway locally repress YAP/TAZ activity in the UB to promote subsequent splitting of the tip to allow branching morphogenesis.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/27480037/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">27480037</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC4974664/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC4974664</a> | DOI:<a href=https://doi.org/10.1038/ncomms12309>10.1038/ncomms12309</a></p></div>]]></content:encoded>
  900.      <guid isPermaLink="false">pubmed:27480037</guid>
  901.      <pubDate>Wed, 03 Aug 2016 06:00:00 -0400</pubDate>
  902.      <dc:creator>Antoine Reginensi</dc:creator>
  903.      <dc:creator>Leonie Enderle</dc:creator>
  904.      <dc:creator>Alex Gregorieff</dc:creator>
  905.      <dc:creator>Randy L Johnson</dc:creator>
  906.      <dc:creator>Jeffrey L Wrana</dc:creator>
  907.      <dc:creator>Helen McNeill</dc:creator>
  908.      <dc:date>2016-08-03</dc:date>
  909.      <dc:source>Nature communications</dc:source>
  910.      <dc:title>A critical role for NF2 and the Hippo pathway in branching morphogenesis</dc:title>
  911.      <dc:identifier>pmid:27480037</dc:identifier>
  912.      <dc:identifier>pmc:PMC4974664</dc:identifier>
  913.      <dc:identifier>doi:10.1038/ncomms12309</dc:identifier>
  914.    </item>
  915.    <item>
  916.      <title>The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila</title>
  917.      <link>https://pubmed.ncbi.nlm.nih.gov/27015411/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  918.      <description>The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291),...</description>
  919.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">PLoS One. 2016 Mar 25;11(3):e0152259. doi: 10.1371/journal.pone.0152259. eCollection 2016.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it's functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila. </p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/27015411/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">27015411</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC4807833/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC4807833</a> | DOI:<a href=https://doi.org/10.1371/journal.pone.0152259>10.1371/journal.pone.0152259</a></p></div>]]></content:encoded>
  920.      <guid isPermaLink="false">pubmed:27015411</guid>
  921.      <pubDate>Sat, 26 Mar 2016 06:00:00 -0400</pubDate>
  922.      <dc:creator>Ying-Ju Chang</dc:creator>
  923.      <dc:creator>Lily Zhou</dc:creator>
  924.      <dc:creator>Richard Binari</dc:creator>
  925.      <dc:creator>Armen Manoukian</dc:creator>
  926.      <dc:creator>Tak Mak</dc:creator>
  927.      <dc:creator>Helen McNeill</dc:creator>
  928.      <dc:creator>Vuk Stambolic</dc:creator>
  929.      <dc:date>2016-03-26</dc:date>
  930.      <dc:source>PloS one</dc:source>
  931.      <dc:title>The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila</dc:title>
  932.      <dc:identifier>pmid:27015411</dc:identifier>
  933.      <dc:identifier>pmc:PMC4807833</dc:identifier>
  934.      <dc:identifier>doi:10.1371/journal.pone.0152259</dc:identifier>
  935.    </item>
  936.    <item>
  937.      <title>Regulation of cell polarity determinants by the Retinoblastoma tumor suppressor protein</title>
  938.      <link>https://pubmed.ncbi.nlm.nih.gov/26971715/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  939.      <description>In addition to their canonical roles in the cell cycle, RB family proteins regulate numerous developmental pathways, although the mechanisms remain obscure. We found that Drosophila Rbf1 associates with genes encoding components of the highly conserved apical-basal and planar cell polarity pathways, suggesting a possible regulatory role. Here, we show that depletion of Rbf1 in Drosophila tissues is indeed associated with polarity defects in the wing and eye. Key polarity genes aPKC, par6, vang,...</description>
  940.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Sci Rep. 2016 Mar 14;6:22879. doi: 10.1038/srep22879.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">In addition to their canonical roles in the cell cycle, RB family proteins regulate numerous developmental pathways, although the mechanisms remain obscure. We found that Drosophila Rbf1 associates with genes encoding components of the highly conserved apical-basal and planar cell polarity pathways, suggesting a possible regulatory role. Here, we show that depletion of Rbf1 in Drosophila tissues is indeed associated with polarity defects in the wing and eye. Key polarity genes aPKC, par6, vang, pk, and fmi are upregulated, and an aPKC mutation suppresses the Rbf1-induced phenotypes. RB control of cell polarity may be an evolutionarily conserved function, with important implications in cancer metastasis. </p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/26971715/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">26971715</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC4789731/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC4789731</a> | DOI:<a href=https://doi.org/10.1038/srep22879>10.1038/srep22879</a></p></div>]]></content:encoded>
  941.      <guid isPermaLink="false">pubmed:26971715</guid>
  942.      <pubDate>Tue, 15 Mar 2016 06:00:00 -0400</pubDate>
  943.      <dc:creator>Sandhya Payankaulam</dc:creator>
  944.      <dc:creator>Kelvin Yeung</dc:creator>
  945.      <dc:creator>Helen McNeill</dc:creator>
  946.      <dc:creator>R William Henry</dc:creator>
  947.      <dc:creator>David N Arnosti</dc:creator>
  948.      <dc:date>2016-03-15</dc:date>
  949.      <dc:source>Scientific reports</dc:source>
  950.      <dc:title>Regulation of cell polarity determinants by the Retinoblastoma tumor suppressor protein</dc:title>
  951.      <dc:identifier>pmid:26971715</dc:identifier>
  952.      <dc:identifier>pmc:PMC4789731</dc:identifier>
  953.      <dc:identifier>doi:10.1038/srep22879</dc:identifier>
  954.    </item>
  955.    <item>
  956.      <title>FAT1 mutations cause a glomerulotubular nephropathy</title>
  957.      <link>https://pubmed.ncbi.nlm.nih.gov/26905694/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  958.      <description>Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice...</description>
  959.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Nat Commun. 2016 Feb 24;7:10822. doi: 10.1038/ncomms10822.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function. </p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/26905694/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">26905694</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC4770090/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC4770090</a> | DOI:<a href=https://doi.org/10.1038/ncomms10822>10.1038/ncomms10822</a></p></div>]]></content:encoded>
  960.      <guid isPermaLink="false">pubmed:26905694</guid>
  961.      <pubDate>Thu, 25 Feb 2016 06:00:00 -0500</pubDate>
  962.      <dc:creator>Heon Yung Gee</dc:creator>
  963.      <dc:creator>Carolin E Sadowski</dc:creator>
  964.      <dc:creator>Pardeep K Aggarwal</dc:creator>
  965.      <dc:creator>Jonathan D Porath</dc:creator>
  966.      <dc:creator>Toma A Yakulov</dc:creator>
  967.      <dc:creator>Markus Schueler</dc:creator>
  968.      <dc:creator>Svjetlana Lovric</dc:creator>
  969.      <dc:creator>Shazia Ashraf</dc:creator>
  970.      <dc:creator>Daniela A Braun</dc:creator>
  971.      <dc:creator>Jan Halbritter</dc:creator>
  972.      <dc:creator>Humphrey Fang</dc:creator>
  973.      <dc:creator>Rannar Airik</dc:creator>
  974.      <dc:creator>Virginia Vega-Warner</dc:creator>
  975.      <dc:creator>Kyeong Jee Cho</dc:creator>
  976.      <dc:creator>Timothy A Chan</dc:creator>
  977.      <dc:creator>Luc G T Morris</dc:creator>
  978.      <dc:creator>Charles ffrench-Constant</dc:creator>
  979.      <dc:creator>Nicholas Allen</dc:creator>
  980.      <dc:creator>Helen McNeill</dc:creator>
  981.      <dc:creator>Rainer Büscher</dc:creator>
  982.      <dc:creator>Henriette Kyrieleis</dc:creator>
  983.      <dc:creator>Michael Wallot</dc:creator>
  984.      <dc:creator>Ariana Gaspert</dc:creator>
  985.      <dc:creator>Thomas Kistler</dc:creator>
  986.      <dc:creator>David V Milford</dc:creator>
  987.      <dc:creator>Moin A Saleem</dc:creator>
  988.      <dc:creator>Wee Teik Keng</dc:creator>
  989.      <dc:creator>Stephen I Alexander</dc:creator>
  990.      <dc:creator>Rudolph P Valentini</dc:creator>
  991.      <dc:creator>Christoph Licht</dc:creator>
  992.      <dc:creator>Jun C Teh</dc:creator>
  993.      <dc:creator>Radovan Bogdanovic</dc:creator>
  994.      <dc:creator>Ania Koziell</dc:creator>
  995.      <dc:creator>Agnieszka Bierzynska</dc:creator>
  996.      <dc:creator>Neveen A Soliman</dc:creator>
  997.      <dc:creator>Edgar A Otto</dc:creator>
  998.      <dc:creator>Richard P Lifton</dc:creator>
  999.      <dc:creator>Lawrence B Holzman</dc:creator>
  1000.      <dc:creator>Nicholas E S Sibinga</dc:creator>
  1001.      <dc:creator>Gerd Walz</dc:creator>
  1002.      <dc:creator>Alda Tufro</dc:creator>
  1003.      <dc:creator>Friedhelm Hildebrandt</dc:creator>
  1004.      <dc:date>2016-02-25</dc:date>
  1005.      <dc:source>Nature communications</dc:source>
  1006.      <dc:title>FAT1 mutations cause a glomerulotubular nephropathy</dc:title>
  1007.      <dc:identifier>pmid:26905694</dc:identifier>
  1008.      <dc:identifier>pmc:PMC4770090</dc:identifier>
  1009.      <dc:identifier>doi:10.1038/ncomms10822</dc:identifier>
  1010.    </item>
  1011.    <item>
  1012.      <title>SAPCD2 Controls Spindle Orientation and Asymmetric Divisions by Negatively Regulating the Gαi-LGN-NuMA Ternary Complex</title>
  1013.      <link>https://pubmed.ncbi.nlm.nih.gov/26766442/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  1014.      <description>Control of cell-division orientation is integral to epithelial morphogenesis and asymmetric cell division. Proper spatiotemporal localization of the evolutionarily conserved Gαi-LGN-NuMA protein complex is critical for mitotic spindle orientation, but how this is achieved remains unclear. Here we identify Suppressor APC domain containing 2 (SAPCD2) as a previously unreported LGN-interacting protein. We show that SAPCD2 is essential to instruct planar mitotic spindle orientation in both...</description>
  1015.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Dev Cell. 2016 Jan 11;36(1):50-62. doi: 10.1016/j.devcel.2015.12.016.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Control of cell-division orientation is integral to epithelial morphogenesis and asymmetric cell division. Proper spatiotemporal localization of the evolutionarily conserved Gαi-LGN-NuMA protein complex is critical for mitotic spindle orientation, but how this is achieved remains unclear. Here we identify Suppressor APC domain containing 2 (SAPCD2) as a previously unreported LGN-interacting protein. We show that SAPCD2 is essential to instruct planar mitotic spindle orientation in both epithelial cell cultures and mouse retinal progenitor cells in vivo. Loss of SAPCD2 randomizes spindle orientation, which in turn disrupts cyst morphogenesis in three-dimensional cultures, and triples the number of terminal asymmetric cell divisions in the developing retina. Mechanistically, we show that SAPCD2 negatively regulates the localization of LGN at the cell cortex, likely by competing with NuMA for its binding. These results uncover SAPCD2 as a key regulator of the ternary complex controlling spindle orientation during morphogenesis and asymmetric cell divisions.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/26766442/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">26766442</a> | DOI:<a href=https://doi.org/10.1016/j.devcel.2015.12.016>10.1016/j.devcel.2015.12.016</a></p></div>]]></content:encoded>
  1016.      <guid isPermaLink="false">pubmed:26766442</guid>
  1017.      <pubDate>Fri, 15 Jan 2016 06:00:00 -0500</pubDate>
  1018.      <dc:creator>Catherine W N Chiu</dc:creator>
  1019.      <dc:creator>Carine Monat</dc:creator>
  1020.      <dc:creator>Mélanie Robitaille</dc:creator>
  1021.      <dc:creator>Marine Lacomme</dc:creator>
  1022.      <dc:creator>Avais M Daulat</dc:creator>
  1023.      <dc:creator>Graham Macleod</dc:creator>
  1024.      <dc:creator>Helen McNeill</dc:creator>
  1025.      <dc:creator>Michel Cayouette</dc:creator>
  1026.      <dc:creator>Stéphane Angers</dc:creator>
  1027.      <dc:date>2016-01-15</dc:date>
  1028.      <dc:source>Developmental cell</dc:source>
  1029.      <dc:title>SAPCD2 Controls Spindle Orientation and Asymmetric Divisions by Negatively Regulating the Gαi-LGN-NuMA Ternary Complex</dc:title>
  1030.      <dc:identifier>pmid:26766442</dc:identifier>
  1031.      <dc:identifier>doi:10.1016/j.devcel.2015.12.016</dc:identifier>
  1032.    </item>
  1033.    <item>
  1034.      <title>Yap and Taz are required for Ret-dependent urinary tract morphogenesis</title>
  1035.      <link>https://pubmed.ncbi.nlm.nih.gov/26243870/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  1036.      <description>Despite the high occurrence of congenital abnormalities of the lower urinary tract in humans, the molecular, cellular and morphological aspects of their development are still poorly understood. Here, we use a conditional knockout approach to inactivate within the nephric duct (ND) lineage the two effectors of the Hippo pathway, Yap and Taz. Deletion of Yap leads to hydronephrotic kidneys with blind-ending megaureters at birth. In Yap mutants, the ND successfully migrates towards, and contacts,...</description>
  1037.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Development. 2015 Aug 1;142(15):2696-703. doi: 10.1242/dev.122044.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Despite the high occurrence of congenital abnormalities of the lower urinary tract in humans, the molecular, cellular and morphological aspects of their development are still poorly understood. Here, we use a conditional knockout approach to inactivate within the nephric duct (ND) lineage the two effectors of the Hippo pathway, Yap and Taz. Deletion of Yap leads to hydronephrotic kidneys with blind-ending megaureters at birth. In Yap mutants, the ND successfully migrates towards, and contacts, the cloaca. However, close analysis reveals that the tip of the Yap(-/-) ND forms an aberrant connection with the cloaca and does not properly insert into the cloaca, leading to later detachment of the ND from the cloaca. Taz deletion from the ND does not cause any defect, but analysis of Yap(-/-);Taz(-/-) NDs indicates that both genes play partially redundant roles in ureterovesical junction formation. Aspects of the Yap(-/-) phenotype resemble hypersensitivity to RET signaling, including excess budding of the ND, increased phospho-ERK and increased expression of Crlf1, Sprouty1, Etv4 and Etv5. Importantly, the Yap(ND) (-/-) ND phenotype can be largely rescued by reducing Ret gene dosage. Taken together, these results suggest that disrupting Yap/Taz activities enhances Ret pathway activity and contributes to pathogenesis of lower urinary tract defects in human infants. </p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/26243870/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">26243870</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC4529030/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC4529030</a> | DOI:<a href=https://doi.org/10.1242/dev.122044>10.1242/dev.122044</a></p></div>]]></content:encoded>
  1038.      <guid isPermaLink="false">pubmed:26243870</guid>
  1039.      <pubDate>Thu, 06 Aug 2015 06:00:00 -0400</pubDate>
  1040.      <dc:creator>Antoine Reginensi</dc:creator>
  1041.      <dc:creator>Masato Hoshi</dc:creator>
  1042.      <dc:creator>Sami Kamel Boualia</dc:creator>
  1043.      <dc:creator>Maxime Bouchard</dc:creator>
  1044.      <dc:creator>Sanjay Jain</dc:creator>
  1045.      <dc:creator>Helen McNeill</dc:creator>
  1046.      <dc:date>2015-08-06</dc:date>
  1047.      <dc:source>Development (Cambridge, England)</dc:source>
  1048.      <dc:title>Yap and Taz are required for Ret-dependent urinary tract morphogenesis</dc:title>
  1049.      <dc:identifier>pmid:26243870</dc:identifier>
  1050.      <dc:identifier>pmc:PMC4529030</dc:identifier>
  1051.      <dc:identifier>doi:10.1242/dev.122044</dc:identifier>
  1052.    </item>
  1053.    <item>
  1054.      <title>Fat1 interacts with Fat4 to regulate neural tube closure, neural progenitor proliferation and apical constriction during mouse brain development</title>
  1055.      <link>https://pubmed.ncbi.nlm.nih.gov/26209645/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  1056.      <description>Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in...</description>
  1057.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Development. 2015 Aug 15;142(16):2781-91. doi: 10.1242/dev.123539. Epub 2015 Jul 24.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction. </p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/26209645/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">26209645</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC4550967/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC4550967</a> | DOI:<a href=https://doi.org/10.1242/dev.123539>10.1242/dev.123539</a></p></div>]]></content:encoded>
  1058.      <guid isPermaLink="false">pubmed:26209645</guid>
  1059.      <pubDate>Sun, 26 Jul 2015 06:00:00 -0400</pubDate>
  1060.      <dc:creator>Caroline Badouel</dc:creator>
  1061.      <dc:creator>Mark A Zander</dc:creator>
  1062.      <dc:creator>Nicole Liscio</dc:creator>
  1063.      <dc:creator>Mazdak Bagherie-Lachidan</dc:creator>
  1064.      <dc:creator>Richelle Sopko</dc:creator>
  1065.      <dc:creator>Etienne Coyaud</dc:creator>
  1066.      <dc:creator>Brian Raught</dc:creator>
  1067.      <dc:creator>Freda D Miller</dc:creator>
  1068.      <dc:creator>Helen McNeill</dc:creator>
  1069.      <dc:date>2015-07-26</dc:date>
  1070.      <dc:source>Development (Cambridge, England)</dc:source>
  1071.      <dc:title>Fat1 interacts with Fat4 to regulate neural tube closure, neural progenitor proliferation and apical constriction during mouse brain development</dc:title>
  1072.      <dc:identifier>pmid:26209645</dc:identifier>
  1073.      <dc:identifier>pmc:PMC4550967</dc:identifier>
  1074.      <dc:identifier>doi:10.1242/dev.123539</dc:identifier>
  1075.    </item>
  1076.    <item>
  1077.      <title>Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool</title>
  1078.      <link>https://pubmed.ncbi.nlm.nih.gov/26116661/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  1079.      <description>Regulation of the balance between progenitor self-renewal and differentiation is crucial to development. In the mammalian kidney, reciprocal signalling between three lineages (stromal, mesenchymal and ureteric) ensures correct nephron progenitor self-renewal and differentiation. Loss of either the atypical cadherin FAT4 or its ligand Dachsous 1 (DCHS1) results in expansion of the mesenchymal nephron progenitor pool, called the condensing mesenchyme (CM). This has been proposed to be due to...</description>
  1080.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Development. 2015 Aug 1;142(15):2564-73. doi: 10.1242/dev.122648. Epub 2015 Jun 26.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Regulation of the balance between progenitor self-renewal and differentiation is crucial to development. In the mammalian kidney, reciprocal signalling between three lineages (stromal, mesenchymal and ureteric) ensures correct nephron progenitor self-renewal and differentiation. Loss of either the atypical cadherin FAT4 or its ligand Dachsous 1 (DCHS1) results in expansion of the mesenchymal nephron progenitor pool, called the condensing mesenchyme (CM). This has been proposed to be due to misregulation of the Hippo kinase pathway transcriptional co-activator YAP. Here, we use tissue-specific deletions to prove that FAT4 acts non-autonomously in the renal stroma to control nephron progenitors. We show that loss of Yap from the CM in Fat4-null mice does not reduce the expanded CM, indicating that FAT4 regulates the CM independently of YAP. Analysis of Six2(-/-);Fat4(-/-) double mutants demonstrates that excess progenitors in Fat4 mutants are dependent on Six2, a crucial regulator of nephron progenitor self-renewal. Electron microscopy reveals that cell organisation is disrupted in Fat4 mutants. Gene expression analysis demonstrates that the expression of Notch and FGF pathway components are altered in Fat4 mutants. Finally, we show that Dchs1, and its paralogue Dchs2, function in a partially redundant fashion to regulate the number of nephron progenitors. Our data support a model in which FAT4 in the stroma binds to DCHS1/2 in the mouse CM to restrict progenitor self-renewal. </p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/26116661/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">26116661</a> | DOI:<a href=https://doi.org/10.1242/dev.122648>10.1242/dev.122648</a></p></div>]]></content:encoded>
  1081.      <guid isPermaLink="false">pubmed:26116661</guid>
  1082.      <pubDate>Sun, 28 Jun 2015 06:00:00 -0400</pubDate>
  1083.      <dc:creator>Mazdak Bagherie-Lachidan</dc:creator>
  1084.      <dc:creator>Antoine Reginensi</dc:creator>
  1085.      <dc:creator>Qun Pan</dc:creator>
  1086.      <dc:creator>Hitisha P Zaveri</dc:creator>
  1087.      <dc:creator>Daryl A Scott</dc:creator>
  1088.      <dc:creator>Benjamin J Blencowe</dc:creator>
  1089.      <dc:creator>Françoise Helmbacher</dc:creator>
  1090.      <dc:creator>Helen McNeill</dc:creator>
  1091.      <dc:date>2015-06-28</dc:date>
  1092.      <dc:source>Development (Cambridge, England)</dc:source>
  1093.      <dc:title>Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool</dc:title>
  1094.      <dc:identifier>pmid:26116661</dc:identifier>
  1095.      <dc:identifier>doi:10.1242/dev.122648</dc:identifier>
  1096.    </item>
  1097.    <item>
  1098.      <title>Atypical Cadherin Fat1 Is Required for Lens Epithelial Cell Polarity and Proliferation but Not for Fiber Differentiation</title>
  1099.      <link>https://pubmed.ncbi.nlm.nih.gov/26114487/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  1100.      <description>CONCLUSIONS: These observations indicate that Fat1 is essential for lens epithelial cell polarity and proliferation but not for terminal differentiation.</description>
  1101.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Invest Ophthalmol Vis Sci. 2015 Jun;56(6):4099-107. doi: 10.1167/iovs.15-17008.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">PURPOSE: The Fat family of atypical cadherins, originally identified in Drosophila, play diverse roles during embryogenesis and adult tissue maintenance. Among four mammalian members, Fat1 is essential for kidney and muscle organization, and is also essential for eye development; Fat1 knockout causes partial penetrant microphthalmia or anophthalmia. To account for the partial penetrance of the Fat1 phenotype, involvement of Fat4 in eye development was assessed. Lens phenotypes in Fat1 and 4 knockouts were also examined.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: Fat1 and Fat4 mRNA expression was examined by in situ hybridization. Knockout phenotypes of Fat1 and Fat4 were analyzed by hematoxylin and eosin (H&amp;E) and immunofluorescent staining.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: We found Fat4 knockout did not affect eye induction or enhance severity of Fat1 eye defects. Although Fat1 and Fat4 mRNAs are similarly expressed in the lens epithelial cells, only Fat1 knockout caused a fully penetrant lens epithelial cell defect, which was apparent at embryonic day 14.5 (E14.5). The columnar structure of the lens epithelial cells was disrupted and in some regions cell aggregates were formed. In these multilayered regions, apical cell junctions were fragmented and the apical-basal polarity was lost. EdU incorporation assay also showed enhanced proliferation in the lens epithelial cells. Interestingly, these defects were found mainly in the central zone of the epithelial layer. The lens epithelial cells of the germinative zone maintained their normal morphology and fiber differentiation occurred normally at the equator.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSIONS: These observations indicate that Fat1 is essential for lens epithelial cell polarity and proliferation but not for terminal differentiation.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/26114487/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">26114487</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC4484397/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC4484397</a> | DOI:<a href=https://doi.org/10.1167/iovs.15-17008>10.1167/iovs.15-17008</a></p></div>]]></content:encoded>
  1102.      <guid isPermaLink="false">pubmed:26114487</guid>
  1103.      <pubDate>Sat, 27 Jun 2015 06:00:00 -0400</pubDate>
  1104.      <dc:creator>Yuki Sugiyama</dc:creator>
  1105.      <dc:creator>Elizabeth J Shelley</dc:creator>
  1106.      <dc:creator>Caroline Badouel</dc:creator>
  1107.      <dc:creator>Helen McNeill</dc:creator>
  1108.      <dc:creator>John W McAvoy</dc:creator>
  1109.      <dc:date>2015-06-27</dc:date>
  1110.      <dc:source>Investigative ophthalmology &amp; visual science</dc:source>
  1111.      <dc:title>Atypical Cadherin Fat1 Is Required for Lens Epithelial Cell Polarity and Proliferation but Not for Fiber Differentiation</dc:title>
  1112.      <dc:identifier>pmid:26114487</dc:identifier>
  1113.      <dc:identifier>pmc:PMC4484397</dc:identifier>
  1114.      <dc:identifier>doi:10.1167/iovs.15-17008</dc:identifier>
  1115.    </item>
  1116.    <item>
  1117.      <title>Podocyte-Specific Deletion of Yes-Associated Protein Causes FSGS and Progressive Renal Failure</title>
  1118.      <link>https://pubmed.ncbi.nlm.nih.gov/26015453/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  1119.      <description>FSGS is the most common primary glomerular disease underlying ESRD in the United States and is increasing in incidence globally. FSGS results from podocyte injury, yet the mechanistic details of disease pathogenesis remain unclear. This has resulted in an unmet clinical need for cell-specific therapy in the treatment of FSGS and other proteinuric kidney diseases. We previously identified Yes-associated protein (YAP) as a prosurvival signaling molecule, the in vitro silencing of which increases...</description>
  1120.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Am Soc Nephrol. 2016 Jan;27(1):216-26. doi: 10.1681/ASN.2014090916. Epub 2015 May 26.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">FSGS is the most common primary glomerular disease underlying ESRD in the United States and is increasing in incidence globally. FSGS results from podocyte injury, yet the mechanistic details of disease pathogenesis remain unclear. This has resulted in an unmet clinical need for cell-specific therapy in the treatment of FSGS and other proteinuric kidney diseases. We previously identified Yes-associated protein (YAP) as a prosurvival signaling molecule, the in vitro silencing of which increases podocyte susceptibility to apoptotic stimulus. YAP is a potent oncogene that is a prominent target for chemotherapeutic drug development. In this study, we tested the hypothesis that podocyte-specific deletion of Yap leads to proteinuric kidney disease through increased podocyte apoptosis. Yap was selectively silenced in podocytes using Cre-mediated recombination controlled by the podocin promoter. Yap silencing in podocytes resulted in podocyte apoptosis, podocyte depletion, proteinuria, and an increase in serum creatinine. Histologically, features characteristic of FSGS, including mesangial sclerosis, podocyte foot process effacement, tubular atrophy, interstitial fibrosis, and casts, were observed. In human primary FSGS, we noted reduced glomerular expression of YAP. Taken together, these results suggest a role for YAP as a physiologic antagonist of podocyte apoptosis, the signaling of which is essential for maintaining the integrity of the glomerular filtration barrier. These data suggest potential nephrotoxicity with strategies directed toward inhibition of YAP function. Further studies should evaluate the role of YAP in proteinuric glomerular disease pathogenesis and its potential utility as a therapeutic target. </p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/26015453/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">26015453</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC4696566/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">PMC4696566</a> | DOI:<a href=https://doi.org/10.1681/ASN.2014090916>10.1681/ASN.2014090916</a></p></div>]]></content:encoded>
  1121.      <guid isPermaLink="false">pubmed:26015453</guid>
  1122.      <pubDate>Thu, 28 May 2015 06:00:00 -0400</pubDate>
  1123.      <dc:creator>Monica Schwartzman</dc:creator>
  1124.      <dc:creator>Antoine Reginensi</dc:creator>
  1125.      <dc:creator>Jenny S Wong</dc:creator>
  1126.      <dc:creator>John M Basgen</dc:creator>
  1127.      <dc:creator>Kristin Meliambro</dc:creator>
  1128.      <dc:creator>Susanne B Nicholas</dc:creator>
  1129.      <dc:creator>Vivette D'Agati</dc:creator>
  1130.      <dc:creator>Helen McNeill</dc:creator>
  1131.      <dc:creator>Kirk N Campbell</dc:creator>
  1132.      <dc:date>2015-05-28</dc:date>
  1133.      <dc:source>Journal of the American Society of Nephrology : JASN</dc:source>
  1134.      <dc:title>Podocyte-Specific Deletion of Yes-Associated Protein Causes FSGS and Progressive Renal Failure</dc:title>
  1135.      <dc:identifier>pmid:26015453</dc:identifier>
  1136.      <dc:identifier>pmc:PMC4696566</dc:identifier>
  1137.      <dc:identifier>doi:10.1681/ASN.2014090916</dc:identifier>
  1138.    </item>
  1139.    <item>
  1140.      <title>The atypical cadherin fat directly regulates mitochondrial function and metabolic state</title>
  1141.      <link>https://pubmed.ncbi.nlm.nih.gov/25215488/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&amp;fc=None&amp;ff=20240503110554&amp;v=2.18.0.post9+e462414</link>
  1142.      <description>Fat (Ft) cadherins are enormous cell adhesion molecules that function at the cell surface to regulate the tumor-suppressive Hippo signaling pathway and planar cell polarity (PCP) tissue organization. Mutations in Ft cadherins are found in a variety of tumors, and it is presumed that this is due to defects in either Hippo signaling or PCP. Here, we show Drosophila Ft functions in mitochondria to directly regulate mitochondrial electron transport chain integrity and promote oxidative...</description>
  1143.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Cell. 2014 Sep 11;158(6):1293-1308. doi: 10.1016/j.cell.2014.07.036.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Fat (Ft) cadherins are enormous cell adhesion molecules that function at the cell surface to regulate the tumor-suppressive Hippo signaling pathway and planar cell polarity (PCP) tissue organization. Mutations in Ft cadherins are found in a variety of tumors, and it is presumed that this is due to defects in either Hippo signaling or PCP. Here, we show Drosophila Ft functions in mitochondria to directly regulate mitochondrial electron transport chain integrity and promote oxidative phosphorylation. Proteolytic cleavage releases a soluble 68 kDa fragment (Ft(mito)) that is imported into mitochondria. Ft(mito) binds directly to NADH dehydrogenase ubiquinone flavoprotein 2 (Ndufv2), a core component of complex I, stabilizing the holoenzyme. Loss of Ft leads to loss of complex I activity, increases in reactive oxygen species, and a switch to aerobic glycolysis. Defects in mitochondrial activity in ft mutants are independent of Hippo and PCP signaling and are reminiscent of the Warburg effect. </p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/25215488/?utm_source=Feedvalidator&utm_medium=rss&utm_content=1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ&ff=20240503110554&v=2.18.0.post9+e462414">25215488</a> | DOI:<a href=https://doi.org/10.1016/j.cell.2014.07.036>10.1016/j.cell.2014.07.036</a></p></div>]]></content:encoded>
  1144.      <guid isPermaLink="false">pubmed:25215488</guid>
  1145.      <pubDate>Sat, 13 Sep 2014 06:00:00 -0400</pubDate>
  1146.      <dc:creator>Anson Sing</dc:creator>
  1147.      <dc:creator>Yonit Tsatskis</dc:creator>
  1148.      <dc:creator>Lacramioara Fabian</dc:creator>
  1149.      <dc:creator>Ian Hester</dc:creator>
  1150.      <dc:creator>Robyn Rosenfeld</dc:creator>
  1151.      <dc:creator>Mauro Serricchio</dc:creator>
  1152.      <dc:creator>Norman Yau</dc:creator>
  1153.      <dc:creator>Maïlis Bietenhader</dc:creator>
  1154.      <dc:creator>Riya Shanbhag</dc:creator>
  1155.      <dc:creator>Andrea Jurisicova</dc:creator>
  1156.      <dc:creator>Julie A Brill</dc:creator>
  1157.      <dc:creator>G Angus McQuibban</dc:creator>
  1158.      <dc:creator>Helen McNeill</dc:creator>
  1159.      <dc:date>2014-09-13</dc:date>
  1160.      <dc:source>Cell</dc:source>
  1161.      <dc:title>The atypical cadherin fat directly regulates mitochondrial function and metabolic state</dc:title>
  1162.      <dc:identifier>pmid:25215488</dc:identifier>
  1163.      <dc:identifier>doi:10.1016/j.cell.2014.07.036</dc:identifier>
  1164.    </item>
  1165.  </channel>
  1166. </rss>
  1167.  

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//www.ncbi.nlm.nih.gov/entrez/eutils/erss.cgi%3Frss_guid%3D1NAkULqPpWyWesuPloPD3mq-yxegmNETw3KPKHEFF4ipODBgIQ

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda