This feed does not validate.
<br />
<b>Notice</b>: Function _load_textdomain_just_in_time was called <strong>in ...
In addition, interoperability with the widest range of feed readers could be improved by implementing the following recommendation.
help]
[<br />
<b>Notice</b>: Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>affiliates-manager</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
<br />
<b>Notice</b>: Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>it-l10n-ithemes-security-pro</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
<br />
<b>Notice</b>: Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>it-l10n-ithemes-security-pro</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
<br />
<b>Notice</b>: Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>woocommerce-gateway-paypal-express-checkout</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
<!DOCTYPE html><html lang="en-US" class="lt-ie10 lt-ie9 no-js" prefix="og: https://ogp.me/ns#" lang="en-us">
<![endif]--><!--[if IE 9]><html lang="en-US" class="lt-ie10 no-js" prefix="og: https://ogp.me/ns#" lang="en-us">
<![endif]--><!--[if gt IE 9]><!--><html lang="en-US" class="no-js" prefix="og: https://ogp.me/ns#" lang="en-us">
<!--<![endif]--><head><meta charset="utf-8"><link rel="preconnect" href="https://fonts.gstatic.com/" crossorigin /><script src="data:text/javascript;base64,V2ViRm9udENvbmZpZz17Z29vZ2xlOntmYW1pbGllczpbIkxpYnJlIEZyYW5rbGluOjMwMCwzMDBpLDQwMCw0MDBpLDYwMCw2MDBpLDgwMCw4MDBpOmxhdGluLGxhdGluLWV4dCJdfX07aWYodHlwZW9mIFdlYkZvbnQ9PT0ib2JqZWN0IiYmdHlwZW9mIFdlYkZvbnQubG9hZD09PSJmdW5jdGlvbiIpe1dlYkZvbnQubG9hZChXZWJGb250Q29uZmlnKX0=" defer></script><script data-optimized="1" src="https://www.ssla.co.uk/wp-content/plugins/litespeed-cache/assets/js/webfontloader.min.js" defer></script><link data-optimized="2" rel="stylesheet" href="https://www.ssla.co.uk/wp-content/litespeed/css/5a6793ecf7db821bc387411782f5131a.css?ver=34820" /><meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"><meta name="viewport" content="width=device-width,initial-scale=1"><meta name="msapplication-tap-highlight" content="no"><meta name="generator" content="Webnode 2"><meta name="apple-mobile-web-app-capable" content="yes"><meta name="apple-mobile-web-app-status-bar-style" content="black"><meta name="format-detection" content="telephone=no"><meta name="google-site-verification" content="PMYbq1w5vSmZYbanaTzAGAULVY13Mn9rWvoNe6oeb1A" /><meta property="og:url" content="https://www.ssla.co.uk/"><meta property="og:title" content="ssla-co-uk"><meta property="og:type" content="article"><meta property="og:description" content="High performance data acquisition"><meta property="og:site_name" content="ssla-co-uk"><meta property="og:image" content="https://ssla.co.uk/_files/200000001-807d78177b/700/default.png"><meta property="og:article:published_time" content="2018-06-19T00:00:00+0200"><link rel="canonical" href="https://www.ssla.co.uk/"><link rel="icon" href="https://www.ssla.co.uk/wp-content/themes/ssla/favicon.png" type="image/png" sizes="16x16">
<script src="data:text/javascript;base64,KGZ1bmN0aW9uKGkscyxvLGcscixhLG0pe2kuR29vZ2xlQW5hbHl0aWNzT2JqZWN0PXI7aVtyXT1pW3JdfHxmdW5jdGlvbigpeyhpW3JdLnE9aVtyXS5xfHxbXSkucHVzaChhcmd1bWVudHMpfSxpW3JdLmw9MSpuZXcgRGF0ZSgpO2E9cy5jcmVhdGVFbGVtZW50KG8pLG09cy5nZXRFbGVtZW50c0J5VGFnTmFtZShvKVswXTthLmFzeW5jPTE7YS5zcmM9ZzttLnBhcmVudE5vZGUuaW5zZXJ0QmVmb3JlKGEsbSl9KSh3aW5kb3csZG9jdW1lbnQsJ3NjcmlwdCcsJy8vd3d3Lmdvb2dsZS1hbmFseXRpY3MuY29tL2FuYWx5dGljcy5qcycsJ2dhJyk7Z2EoJ2NyZWF0ZScsJ1VBLTc5NzcwNS02JywnYXV0bycseyJuYW1lIjoid25kX2hlYWRlciJ9KTtnYSgnd25kX2hlYWRlci5zZXQnLCdkaW1lbnNpb24xJywnVzInKTtnYSgnd25kX2hlYWRlci5zZXQnLCdhbm9ueW1pemVJcCcsITApO2dhKCd3bmRfaGVhZGVyLnNlbmQnLCdwYWdldmlldycp" defer></script> <script src="https://www.googletagmanager.com/gtag/js?id=UA-122251477-1" defer data-deferred="1"></script> <script src="data:text/javascript;base64,d2luZG93LmRhdGFMYXllcj13aW5kb3cuZGF0YUxheWVyfHxbXTtmdW5jdGlvbiBndGFnKCl7ZGF0YUxheWVyLnB1c2goYXJndW1lbnRzKX0KZ3RhZygnanMnLG5ldyBEYXRlKCkpO2d0YWcoJ2NvbmZpZycsJ1VBLTEyMjI1MTQ3Ny0xJyk=" defer></script> <meta name='robots' content='index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1' /><title>What is deep learning? what are its benefits | ssla.co.uk</title><meta name="description" content="Find the right deep learning for your project. We provide evaluation hardware software for ARM, RISC-V and x86 ISA boards ?" /><link rel="canonical" href="https://www.ssla.co.uk/deep-learning/" /><meta property="og:locale" content="en_US" /><meta property="og:type" content="article" /><meta property="og:title" content="What is deep learning? what are its benefits | ssla.co.uk" /><meta property="og:description" content="Find the right deep learning for your project. We provide evaluation hardware software for ARM, RISC-V and x86 ISA boards ?" /><meta property="og:url" content="https://www.ssla.co.uk/deep-learning/" /><meta property="og:site_name" content="ssla.co.uk" /><meta property="article:publisher" content="http://www.facebook.com/ssla.rein.design" /><meta property="article:modified_time" content="2020-08-17T11:35:16+00:00" /><meta property="og:image" content="https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-basics-300x200.jpg" /><meta name="twitter:card" content="summary_large_image" /><meta name="twitter:site" content="@ssla_embedded" /><meta name="twitter:label1" content="Est. reading time" /><meta name="twitter:data1" content="6 minutes" /> <script type="application/ld+json" class="yoast-schema-graph">{"@context":"https://schema.org","@graph":[{"@type":"WebPage","@id":"https://www.ssla.co.uk/deep-learning/","url":"https://www.ssla.co.uk/deep-learning/","name":"What is deep learning? what are its benefits | ssla.co.uk","isPartOf":{"@id":"https://www.ssla.co.uk/#website"},"primaryImageOfPage":{"@id":"https://www.ssla.co.uk/deep-learning/#primaryimage"},"image":{"@id":"https://www.ssla.co.uk/deep-learning/#primaryimage"},"thumbnailUrl":"https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-basics-300x200.jpg","datePublished":"2020-07-28T17:20:22+00:00","dateModified":"2020-08-17T11:35:16+00:00","description":"Find the right deep learning for your project. We provide evaluation hardware software for ARM, RISC-V and x86 ISA boards ?","breadcrumb":{"@id":"https://www.ssla.co.uk/deep-learning/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https://www.ssla.co.uk/deep-learning/"]}]},{"@type":"ImageObject","inLanguage":"en-US","@id":"https://www.ssla.co.uk/deep-learning/#primaryimage","url":"https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-basics.jpg","contentUrl":"https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-basics.jpg","width":510,"height":340,"caption":"deep learning basics"},{"@type":"BreadcrumbList","@id":"https://www.ssla.co.uk/deep-learning/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https://www.ssla.co.uk/"},{"@type":"ListItem","position":2,"name":"deep learning"}]},{"@type":"WebSite","@id":"https://www.ssla.co.uk/#website","url":"https://www.ssla.co.uk/","name":"ssla.co.uk","description":"Embedded Linux hardware and software solution","publisher":{"@id":"https://www.ssla.co.uk/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https://www.ssla.co.uk/?s={search_term_string}"},"query-input":{"@type":"PropertyValueSpecification","valueRequired":true,"valueName":"search_term_string"}}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https://www.ssla.co.uk/#organization","name":"www.ssla.co.uk","url":"https://www.ssla.co.uk/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https://www.ssla.co.uk/#/schema/logo/image/","url":"https://www.ssla.co.uk/wp-content/uploads/2019/01/ssla_logo.gif","contentUrl":"https://www.ssla.co.uk/wp-content/uploads/2019/01/ssla_logo.gif","width":306,"height":72,"caption":"www.ssla.co.uk"},"image":{"@id":"https://www.ssla.co.uk/#/schema/logo/image/"},"sameAs":["http://www.facebook.com/ssla.rein.design","https://x.com/ssla_embedded","https://www.linkedin.com/company/ssla-co-uk/","https://www.pinterest.at/scadadevice/","https://www.youtube.com/watch?v=k9OrY2iSQ68&amp;amp;t=2s"]}]}</script> <link rel='dns-prefetch' href='//stats.wp.com' /><link rel='dns-prefetch' href='//fonts.googleapis.com' /><link rel='dns-prefetch' href='//www.youtube.com' /><link href='https://fonts.gstatic.com' crossorigin rel='preconnect' /><link rel="alternate" type="application/rss+xml" title="ssla.co.uk » Feed" href="https://www.ssla.co.uk/feed/" /><link rel="alternate" type="application/rss+xml" title="ssla.co.uk » Comments Feed" href="https://www.ssla.co.uk/comments/feed/" /><!--[if lt IE 9]><link rel='stylesheet' id='twentyseventeen-ie8-css' href='https://www.ssla.co.uk/wp-content/themes/ssla/assets/css/ie8.css' type='text/css' media='all' />
<![endif]--> <script type="text/javascript" src="https://www.ssla.co.uk/wp-includes/js/jquery/jquery.min.js" id="jquery-core-js"></script> <!--[if lt IE 9]> <script type="text/javascript" src="https://www.ssla.co.uk/wp-content/themes/ssla/assets/js/html5.js" id="html5-js"></script> <![endif]--> <script type="text/javascript" src="https://stats.wp.com/s-202519.js" id="woocommerce-analytics-js" defer="defer" data-wp-strategy="defer"></script> <link rel="https://api.w.org/" href="https://www.ssla.co.uk/wp-json/" /><link rel="alternate" title="JSON" type="application/json" href="https://www.ssla.co.uk/wp-json/wp/v2/pages/7059" /><meta name="generator" content="WordPress 6.8.1" /><meta name="generator" content="WooCommerce 9.8.4" /><link rel='shortlink' href='https://www.ssla.co.uk/?p=7059' /><link rel="alternate" title="oEmbed (JSON)" type="application/json+oembed" href="https://www.ssla.co.uk/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.ssla.co.uk%2Fdeep-learning%2F" /><link rel="alternate" title="oEmbed (XML)" type="text/xml+oembed" href="https://www.ssla.co.uk/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.ssla.co.uk%2Fdeep-learning%2F&format=xml" /> <script src="https://www.googletagmanager.com/gtag/js?id=AW-472720427" defer data-deferred="1"></script> <script src="data:text/javascript;base64,d2luZG93LmRhdGFMYXllcj13aW5kb3cuZGF0YUxheWVyfHxbXTtmdW5jdGlvbiBndGFnKCl7ZGF0YUxheWVyLnB1c2goYXJndW1lbnRzKX0KZ3RhZygnanMnLG5ldyBEYXRlKCkpO2d0YWcoJ2NvbmZpZycsJ0FXLTQ3MjcyMDQyNycp" defer></script> <script src="https://www.googletagmanager.com/gtag/js?id=AW-800223711" defer data-deferred="1"></script> <script src="data:text/javascript;base64,d2luZG93LmRhdGFMYXllcj13aW5kb3cuZGF0YUxheWVyfHxbXTtmdW5jdGlvbiBndGFnKCl7ZGF0YUxheWVyLnB1c2goYXJndW1lbnRzKX0KZ3RhZygnanMnLG5ldyBEYXRlKCkpO2d0YWcoJ2NvbmZpZycsJ0FXLTgwMDIyMzcxMScp" defer></script> <noscript><style>.woocommerce-product-gallery{ opacity: 1 !important; }</style></noscript><meta name="generator" content="Powered by WPBakery Page Builder - drag and drop page builder for WordPress."/>
<!--[if lte IE 9]><link rel="stylesheet" type="text/css" href="https://www.ssla.co.uk/wp-content/plugins/js_composer/assets/css/vc_lte_ie9.min.css" media="screen"><![endif]-->
<noscript><style type="text/css">.wpb_animate_when_almost_visible { opacity: 1; }</style></noscript>
<script src="data:text/javascript;base64,KGZ1bmN0aW9uKHcsZCxzLGwsaSl7d1tsXT13W2xdfHxbXTt3W2xdLnB1c2goeydndG0uc3RhcnQnOm5ldyBEYXRlKCkuZ2V0VGltZSgpLGV2ZW50OidndG0uanMnfSk7dmFyIGY9ZC5nZXRFbGVtZW50c0J5VGFnTmFtZShzKVswXSxqPWQuY3JlYXRlRWxlbWVudChzKSxkbD1sIT0nZGF0YUxheWVyJz8nJmw9JytsOicnO2ouYXN5bmM9ITA7ai5zcmM9J2h0dHBzOi8vd3d3Lmdvb2dsZXRhZ21hbmFnZXIuY29tL2d0bS5qcz9pZD0nK2krZGw7Zi5wYXJlbnROb2RlLmluc2VydEJlZm9yZShqLGYpfSkod2luZG93LGRvY3VtZW50LCdzY3JpcHQnLCdkYXRhTGF5ZXInLCdHVE0tUDczSzdTUycp" defer></script> </head><body class="wp-singular page-template-default page page-id-7059 wp-theme-ssla theme-ssla woocommerce-no-js has-header-image page-one-column colors-light wpb-js-composer js-comp-ver-5.5.2 vc_responsive"><div id="page" class="wnd-page color-none"><div id="wrapper"><header id="header"><div class="container"><div class="row"><div id="layout-section" class="section header header-01 claim-section cf design-03 wsection-black"><div class="section-fixed"><div class="section-inner"><div class="nav-line initial-state cf"><div class="logo logo-default brandon-grotesque wnd-logo-with-text wnd-image-vector"><div class="logo-content">
<a href="https://www.ssla.co.uk"><div class="embed-content"><div class="embed-content-cell">
<embed id="wnd_LogoBlock_87881_img" type="image/svg+xml" data-src="https://d1di2lzuh97fh2.cloudfront.net/files/3x/3x1/3x1agp.svg?ph=15d144db8f"></div></div><div class="text-content-outer">
<span class="text-content">SSLA</span></div>
</a></div></div><nav id="menu" role="navigation" aria-label="Top Menu"><div class="menu-main-container"><ul id="top-menu" class="level-1"><li id="menu-item-1970" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-1970"><a href="https://www.ssla.co.uk/">Home</a></li><li id="menu-item-42" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-42"><a href="https://www.ssla.co.uk/about-us/">About Us</a></li><li id="menu-item-263" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-263"><a href="https://www.ssla.co.uk/knowledgebase/">Knowledgebase</a></li><li id="menu-item-40" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-40"><a href="https://www.ssla.co.uk/download/">Download</a></li><li id="menu-item-490" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-490"><a href="https://www.ssla.co.uk/buy/">Store</a></li><li id="menu-item-583" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-583"><a href="https://www.ssla.co.uk/faq/">FAQ</a></li><li id="menu-item-619" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-619"><a href="https://www.ssla.co.uk/careers/">Careers</a></li><li id="menu-item-39" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-39"><a href="https://www.ssla.co.uk/contact-us/">Contact Us</a></li></ul></div></nav> <script type="application/javascript">var el=document.getElementById("menu");"undefined"!=typeof el&&(el.style.display="none")</script> <div id="menu-mobile" class="hidden">
<a href="#" id="menu-submit"><span></span>Menu</a></div></div></div></div></div></div></div></header><main id="main" role="main"><div class="section-wrapper cf"><div class="section-wrapper-content cf"><section class="section default-01 design-01 wsection-white"><div class="section-bg"><div class="section-bg-layer"></div><div class="section-bg-layer section-bg-overlay"></div></div><div class="section-inner"><div class="content cf wnd-no-cols"><div><div class="text cf design-01"><div class="container"><div class="vc_row vc_row-fluid boxed"><div class="wpb_column vc_column_container vc_col-sm-12"><div class="vc_column-inner "><div class="wpb_wrapper"><div class="wpb_text_column wpb_content_element " ><div class="wpb_wrapper"><h1 style="text-align: center;"><span style="color: #ff0000;">Deep Learning</span></h1><h3 style="text-align: left;"><span style="color: #000000;">What is deep learning?</span></h3><p><b>Deep Learning</b><span style="font-weight: 400;"> is a subsection of <a href="https://www.ssla.co.uk/buy/">machine</a> learning connected with <a href="https://www.ssla.co.uk/about-us">algorithms</a> motivated by the function & structure of the brain called </span><span style="font-weight: 400;">artificial neural networks</span><span style="font-weight: 400;">.</span></p><p><span style="font-weight: 400;"><img data-lazyloaded="1" src="" fetchpriority="high" decoding="async" class="size-medium wp-image-7562 aligncenter" data-src="https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-basics-300x200.jpg" alt="deep learning basics" width="300" height="200" data-srcset="https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-basics-300x200.jpg 300w, https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-basics.jpg 510w" data-sizes="(max-width: 300px) 100vw, 300px" /><noscript><img fetchpriority="high" decoding="async" class="size-medium wp-image-7562 aligncenter" src="https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-basics-300x200.jpg" alt="deep learning basics" width="300" height="200" srcset="https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-basics-300x200.jpg 300w, https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-basics.jpg 510w" sizes="(max-width: 300px) 100vw, 300px" /></noscript></span></p><p><span style="font-weight: 400;">As the world is progressing massively in the technological field and this era is based with nothing but automation, the scientist thought of mechanisms to teach the computer the way a human brain does. The human brain uses neurons to compute any raw data provided to it, which then gets converted into usable information. The same set of processes is mimicked to be performed by the machines, to learn and get trained to act as a human brain – basically learn stuff and perform accordingly. In this regard, deep learning (DL) has played a giant role in getting this theory into practice. DL is a field of science which implicitly makes the system learn and improve with performance and experience. It creates models which may be capable of various tasks such as image recognition, text prediction or video classification; the way it performs tasks is the same as the human brain’s neurons work and identifies things.</span></p><p><span style="font-weight: 400;">The field may be associated with various automations by text classification, image identification, detecting objects and making decisions based on previously trained data. The training here is done in the absence of any human intervention, and can be performed on both unsupervised and unstructured data. The technique uses Artificial intelligence (AI) core ideas and neural networks as the basic components.</span></p><h3 style="text-align: left;"><span style="color: #000000;">Deep learning and Neural Networks.</span></h3><p><span style="font-weight: 400;">The core asset behind making a machine mimic the human working neurons is by creating a Xerox of them, in the form of fully connected dense neural networks. These networks are designed in a specific way to work just as the biological human neural network works. These networks best work with certain use cases such as pattern recognition, anomaly detection, time series prediction and signal <a href="https://www.ssla.co.uk/">processing</a>. Basically, these networks are trained to predict future inputs after a set of training data has been trained, making it possible for the network to use machine learning for tasks such as object identification. </span></p><p><span style="font-weight: 400;"><a href="https://www.ssla.co.uk"><img data-lazyloaded="1" src="" decoding="async" class="wp-image-7563 size-medium aligncenter" data-src="https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-267x300.png" alt="deep learning" width="267" height="300" data-srcset="https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-267x300.png 267w, https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning.png 465w" data-sizes="(max-width: 267px) 100vw, 267px" /><noscript><img decoding="async" class="wp-image-7563 size-medium aligncenter" src="https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-267x300.png" alt="deep learning" width="267" height="300" srcset="https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning-267x300.png 267w, https://www.ssla.co.uk/wp-content/uploads/2020/08/deep-learning.png 465w" sizes="(max-width: 267px) 100vw, 267px" /></noscript></a></span></p><p><span style="font-weight: 400;">The human brain has a network of thousands of millions of nodes interconnected with each other to process data and act as a single combined neural network. In deep learning, as the number of features and attribute scale rises, the nets get deeper and possess a much higher number of hidden layers; thus can be called as a feed forward neural network (data flow direction is one way). There are numerous kinds of neural networks; such as Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Artificial Neural Network (ANN). All these networks can be used separately or combined for much higher accuracy rates. These types of models are extremely beneficial for critical fields such as medicine and disease prediction. Deep <a href="https://www.ssla.co.uk/referral/">learning</a> has played a humongous role in the past in the medical field, and is yet to prosper with the high rates of accuracy and automation the deep learning models have been providing. Some ways the DL has been helping the medical field is as follows:</span></p><ol><li style="font-weight: 400;"><span style="font-weight: 400;">Deep Neural Network (DNN)</span></li></ol><p><span style="font-weight: 400;">The type of model which uses neural networks, as well as many layers to compute any problem. Many hidden layers are incorporated in this model, where each layer satisfies one attribute. Two types of signals are used here, input and output along with activation function, bias and perception model. It is basically a multiple perceptron model. The model is usually bidirectional, which satisfies both forward and backward pass. DLL has played a giant role in the medical field alone, including the identification of the infectious fever, medical recommender systems, assisting in medical image analysis, medical diagnosis, treating regimes on medical registry data and facial and DNA recognition etc.</span></p><ol><li style="font-weight: 400;"><span style="font-weight: 400;">Convolutional Neural Network (CNN)</span></li></ol><p><span style="font-weight: 400;">CNN is a type of neural network which detects text recognition, and mainly does the operation of classification. It may be used where a model flats out a 2d array into 1d, or where text classification is required from a paragraph mainly where context can’t be neglected and has to be carried forward for the prediction of the next work in any sequence. The ConvNet is a perfect model to capture the Temporal and Spatial dependencies, using numerous relative filters. This model depends on the shifting of the stride, the kernel, which parses to complete the width of the text entered. The benefits the model has given in medicine are vast, including where data is required using collaborative filtering, medical image analysis, facial expression intensity estimation.</span></p><ol><li style="font-weight: 400;"><span style="font-weight: 400;">Recurrent Neural Network (RNN)</span></li></ol><p><span style="font-weight: 400;">This type of neural network is the most beneficial where Freud Forward doesn’t come handy. For situations where classification and transformation is done, mainly where sequential data is the input. This model can be represented as a series of data points. The areas in medicine which have shown positive responses are the models where collaborative filtering is used in accordance to it, medical event detection, classifying relations amongst medical data, and critical events such as predicting life expectancy of a patient.</span></p><h3 style="text-align: left;"><span style="color: #000000;">Neural Network Working Model</span></h3><p><span style="font-weight: 400;">Incorporating a new way of identification by creating deep models which is generated from training data descriptions. The idea is reliant upon the nature of all problems that persist in the world. Each problem in the world can be labeled as a problem of training and prediction. In this project, the proposed model would intake a data set, train out all the identifiable meaningful units, and build a freed forward neural network with dense layers. Furthermore enhancing the accuracy, a step would be carried out which takes all the inputs and multiplies it with all the weights, and adds a bias for better accuracy. Activation functions are then applied to the models to enhance the accuracy even further and improve the learning rate. </span></p><p><span style="font-weight: 400;">The type of model above explained is a perceptron model which uses input weights, neurons, perceptron, activation function and a bias. Initially, the value of weights is set to random numbers and is adjusted accordingly. As it’s a deep neural network, it contains multiple layers. The first bottom layer is the one which will be fed with the input data (input layer), and the further layers will be hidden ones (one layer for each feature) which will be processed and computed using activation functions and the data outputs at the output layer, completely altered. Training uses both forward and back propagation with the weights constantly adjusted until the training data is ready for prediction or identification.</span></p><p><span style="font-weight: 400;">This model brings various implementations of the said system and technology to limelight and proposes to take an unsupervised data and statistically measured leap into the realm of bridging the gap between communication of a human brain and a computer system, by practically giving the system a metaphysical <a href="https://en.wikipedia.org/wiki/Deep_learning">neural</a> networked brain.</span></p></div></div><div class="vc_btn3-container red-button vc_btn3-inline" >
<a class="vc_general vc_btn3 vc_btn3-size-md vc_btn3-shape-rounded vc_btn3-style-modern vc_btn3-color-danger" href="https://www.ssla.co.uk/contact/" title="">Contact Us</a></div></div></div></div></div></div><div class="container"><div class="vc_row vc_row-fluid boxed"><div class="wpb_column vc_column_container vc_col-sm-12"><div class="vc_column-inner "><div class="wpb_wrapper"></div></div></div></div></div></div></div></div></div></section></div></div></main><div id="contact_footer"><div><h2>Refer our IoT solution and Earn with us</h2><p>Contact us and one of our specialist will call you back</p>
<a href="http://www.ssla.co.uk/referral/" class="button1r">Refer us</a>
<a href="https://www.ssla.co.uk/buy/" class="button3r">IoT Store</a>
<a href="https://www.ssla.co.uk/affiliate-home/affiliate-register/" class="button4r">Affiliate Program</a></div></div><footer id="footer" role="contentinfo"><div class="section-wrapper cf"><div class="section-wrapper-content cf"><div wn-border="top" wn-border-element="footer-line" class="section footer-01 design-01 wsection-gray"><div class="section-bg"><div class="section-bg-layer"></div><div class="section-bg-layer section-bg-overlay"></div></div><div class="section-inner"><div class="footer-line"><div class="footer-texts"><div class="copyright cf"><ul class="socials-footer"><li>
<a href="https://www.facebook.com/ssla.co.uk/" target="_blank"><i class="fa fa-facebook" aria-hidden="true"></i></a></li><li>
<a href="https://www.youtube.com/watch?v=k9OrY2iSQ68&t=2s" target="_blank"><i class="fa fa-youtube-play" aria-hidden="true"></i></a></li><li>
<a href="https://www.linkedin.com/company/ssla-co-uk" target="_blank"><i class="fa fa-linkedin" aria-hidden="true"></i></a></li><li>
<a href="https://twitter.com/ssla_embedded" target="_blank"><i class="fa fa-twitter" aria-hidden="true"></i></a></li><li>
<a href="https://www.quora.com/profile/Nicholas-Lenig" target="_blank"><i class="fa fa-quora" aria-hidden="true"></i></a></li><li>
<a href="https://www.reddit.com/user/nickolas_kd" target="_blank"><i class="fa fa-reddit" aria-hidden="true"></i></a></li></ul><span class="inline-text">
<span>
SSLA, VAT 172825594, Unit 24 Wilford Industrial Estate,Ruddington Lane Nottingham, UK, +447438823590 </span>
<span>
Sierra Software GmbH, Technologieservice für Hard-
und Software Unternehmen,Vorarlberg, Austria, +436765386877 </span>
</span></div><div class="system-footer cf"><div class="sf"></div></div></div><div class="lang-select cf"></div></div></div></div></div></div></footer></div></div><div id="fe_footer"><p style="text-align: center; margin: 0px; padding-top: 20px; color: white;">
© 2013 SSLA, An Engineering solutions company | All rights reserved | sales@ssla.co.uk | <a class="cookielink" href="https://www.ssla.co.uk/cookie-policy/">Cookie Policy</a></p></div> <script type="application/javascript">!function () {
if (0 == document.getElementsByClassName("wnd-cms").length) for (var e = document.getElementsByClassName("column-content"), t = 0; t < e.length; t++) {
var s = e[t].querySelector("div"), n = s.getElementsByClassName("text-content");
void 0 != n[0] && s.firstChild == s.lastChild && "" === n[0].innerText && (e[t].classList ? e[t].classList.add("column-empty") : (e[t].classList ? e[t].classList.contains("column-empty") : new RegExp("\\bcolumn-empty\\b").test(e[t].className)) && (e[t].className += " column-empty"))
}
}()</script> <script type="speculationrules">{"prefetch":[{"source":"document","where":{"and":[{"href_matches":"\/*"},{"not":{"href_matches":["\/wp-*.php","\/wp-admin\/*","\/wp-content\/uploads\/*","\/wp-content\/*","\/wp-content\/plugins\/*","\/wp-content\/themes\/ssla\/*","\/*\\?(.+)"]}},{"not":{"selector_matches":"a[rel~=\"nofollow\"]"}},{"not":{"selector_matches":".no-prefetch, .no-prefetch a"}}]},"eagerness":"conservative"}]}</script> <button type="button" aria-controls="rmp-container-8664" aria-label="Menu Trigger" id="rmp_menu_trigger-8664" class="rmp_menu_trigger rmp-menu-trigger-boring">
<span class="rmp-trigger-box">
<span class="responsive-menu-pro-inner"></span>
</span>
</button><div id="rmp-container-8664" class="rmp-container rmp-container rmp-slide-left"><div id="rmp-menu-title-8664" class="rmp-menu-title">
<span class="rmp-menu-title-link">
<span></span> </span></div><div id="rmp-menu-wrap-8664" class="rmp-menu-wrap"><ul id="rmp-menu-8664" class="rmp-menu" role="menubar" aria-label="Default Menu"><li id="rmp-menu-item-1970" class=" menu-item menu-item-type-post_type menu-item-object-page menu-item-home rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/" class="rmp-menu-item-link" role="menuitem" >Home</a></li><li id="rmp-menu-item-42" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/about-us/" class="rmp-menu-item-link" role="menuitem" >About Us</a></li><li id="rmp-menu-item-263" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/knowledgebase/" class="rmp-menu-item-link" role="menuitem" >Knowledgebase</a></li><li id="rmp-menu-item-40" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/download/" class="rmp-menu-item-link" role="menuitem" >Download</a></li><li id="rmp-menu-item-490" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/buy/" class="rmp-menu-item-link" role="menuitem" >Store</a></li><li id="rmp-menu-item-583" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/faq/" class="rmp-menu-item-link" role="menuitem" >FAQ</a></li><li id="rmp-menu-item-619" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/careers/" class="rmp-menu-item-link" role="menuitem" >Careers</a></li><li id="rmp-menu-item-39" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/contact-us/" class="rmp-menu-item-link" role="menuitem" >Contact Us</a></li></ul></div><div id="rmp-search-box-8664" class="rmp-search-box"><form action="https://www.ssla.co.uk/" class="rmp-search-form" role="search">
<input type="search" name="s" title="Search" placeholder="Search" class="rmp-search-box"></form></div><div id="rmp-menu-additional-content-8664" class="rmp-menu-additional-content"></div></div> <script type="text/javascript" src="https://www.ssla.co.uk/wp-content/plugins/litespeed-cache/assets/js/instant_click.min.js" id="litespeed-cache-js"></script> <svg style="position: absolute; width: 0; height: 0; overflow: hidden;" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>
<symbol id="icon-behance" viewBox="0 0 37 32">
<path class="path1" d="M33 6.054h-9.125v2.214h9.125v-2.214zM28.5 13.661q-1.607 0-2.607 0.938t-1.107 2.545h7.286q-0.321-3.482-3.571-3.482zM28.786 24.107q1.125 0 2.179-0.571t1.357-1.554h3.946q-1.786 5.482-7.625 5.482-3.821 0-6.080-2.357t-2.259-6.196q0-3.714 2.33-6.17t6.009-2.455q2.464 0 4.295 1.214t2.732 3.196 0.902 4.429q0 0.304-0.036 0.839h-11.75q0 1.982 1.027 3.063t2.973 1.080zM4.946 23.214h5.286q3.661 0 3.661-2.982 0-3.214-3.554-3.214h-5.393v6.196zM4.946 13.625h5.018q1.393 0 2.205-0.652t0.813-2.027q0-2.571-3.393-2.571h-4.643v5.25zM0 4.536h10.607q1.554 0 2.768 0.25t2.259 0.848 1.607 1.723 0.563 2.75q0 3.232-3.071 4.696 2.036 0.571 3.071 2.054t1.036 3.643q0 1.339-0.438 2.438t-1.179 1.848-1.759 1.268-2.161 0.75-2.393 0.232h-10.911v-22.5z"></path>
</symbol>
<symbol id="icon-deviantart" viewBox="0 0 18 32">
<path class="path1" d="M18.286 5.411l-5.411 10.393 0.429 0.554h4.982v7.411h-9.054l-0.786 0.536-2.536 4.875-0.536 0.536h-5.375v-5.411l5.411-10.411-0.429-0.536h-4.982v-7.411h9.054l0.786-0.536 2.536-4.875 0.536-0.536h5.375v5.411z"></path>
</symbol>
<symbol id="icon-medium" viewBox="0 0 32 32">
<path class="path1" d="M10.661 7.518v20.946q0 0.446-0.223 0.759t-0.652 0.313q-0.304 0-0.589-0.143l-8.304-4.161q-0.375-0.179-0.634-0.598t-0.259-0.83v-20.357q0-0.357 0.179-0.607t0.518-0.25q0.25 0 0.786 0.268l9.125 4.571q0.054 0.054 0.054 0.089zM11.804 9.321l9.536 15.464-9.536-4.75v-10.714zM32 9.643v18.821q0 0.446-0.25 0.723t-0.679 0.277-0.839-0.232l-7.875-3.929zM31.946 7.5q0 0.054-4.58 7.491t-5.366 8.705l-6.964-11.321 5.786-9.411q0.304-0.5 0.929-0.5 0.25 0 0.464 0.107l9.661 4.821q0.071 0.036 0.071 0.107z"></path>
</symbol>
<symbol id="icon-slideshare" viewBox="0 0 32 32">
<path class="path1" d="M15.589 13.214q0 1.482-1.134 2.545t-2.723 1.063-2.723-1.063-1.134-2.545q0-1.5 1.134-2.554t2.723-1.054 2.723 1.054 1.134 2.554zM24.554 13.214q0 1.482-1.125 2.545t-2.732 1.063q-1.589 0-2.723-1.063t-1.134-2.545q0-1.5 1.134-2.554t2.723-1.054q1.607 0 2.732 1.054t1.125 2.554zM28.571 16.429v-11.911q0-1.554-0.571-2.205t-1.982-0.652h-19.857q-1.482 0-2.009 0.607t-0.527 2.25v12.018q0.768 0.411 1.58 0.714t1.446 0.5 1.446 0.33 1.268 0.196 1.25 0.071 1.045 0.009 1.009-0.036 0.795-0.036q1.214-0.018 1.696 0.482 0.107 0.107 0.179 0.161 0.464 0.446 1.089 0.911 0.125-1.625 2.107-1.554 0.089 0 0.652 0.027t0.768 0.036 0.813 0.018 0.946-0.018 0.973-0.080 1.089-0.152 1.107-0.241 1.196-0.348 1.205-0.482 1.286-0.616zM31.482 16.339q-2.161 2.661-6.643 4.5 1.5 5.089-0.411 8.304-1.179 2.018-3.268 2.643-1.857 0.571-3.25-0.268-1.536-0.911-1.464-2.929l-0.018-5.821v-0.018q-0.143-0.036-0.438-0.107t-0.42-0.089l-0.018 6.036q0.071 2.036-1.482 2.929-1.411 0.839-3.268 0.268-2.089-0.643-3.25-2.679-1.875-3.214-0.393-8.268-4.482-1.839-6.643-4.5-0.446-0.661-0.071-1.125t1.071 0.018q0.054 0.036 0.196 0.125t0.196 0.143v-12.393q0-1.286 0.839-2.196t2.036-0.911h22.446q1.196 0 2.036 0.911t0.839 2.196v12.393l0.375-0.268q0.696-0.482 1.071-0.018t-0.071 1.125z"></path>
</symbol>
<symbol id="icon-snapchat-ghost" viewBox="0 0 30 32">
<path class="path1" d="M15.143 2.286q2.393-0.018 4.295 1.223t2.92 3.438q0.482 1.036 0.482 3.196 0 0.839-0.161 3.411 0.25 0.125 0.5 0.125 0.321 0 0.911-0.241t0.911-0.241q0.518 0 1 0.321t0.482 0.821q0 0.571-0.563 0.964t-1.232 0.563-1.232 0.518-0.563 0.848q0 0.268 0.214 0.768 0.661 1.464 1.83 2.679t2.58 1.804q0.5 0.214 1.429 0.411 0.5 0.107 0.5 0.625 0 1.25-3.911 1.839-0.125 0.196-0.196 0.696t-0.25 0.83-0.589 0.33q-0.357 0-1.107-0.116t-1.143-0.116q-0.661 0-1.107 0.089-0.571 0.089-1.125 0.402t-1.036 0.679-1.036 0.723-1.357 0.598-1.768 0.241q-0.929 0-1.723-0.241t-1.339-0.598-1.027-0.723-1.036-0.679-1.107-0.402q-0.464-0.089-1.125-0.089-0.429 0-1.17 0.134t-1.045 0.134q-0.446 0-0.625-0.33t-0.25-0.848-0.196-0.714q-3.911-0.589-3.911-1.839 0-0.518 0.5-0.625 0.929-0.196 1.429-0.411 1.393-0.571 2.58-1.804t1.83-2.679q0.214-0.5 0.214-0.768 0-0.5-0.563-0.848t-1.241-0.527-1.241-0.563-0.563-0.938q0-0.482 0.464-0.813t0.982-0.33q0.268 0 0.857 0.232t0.946 0.232q0.321 0 0.571-0.125-0.161-2.536-0.161-3.393 0-2.179 0.482-3.214 1.143-2.446 3.071-3.536t4.714-1.125z"></path>
</symbol>
<symbol id="icon-yelp" viewBox="0 0 27 32">
<path class="path1" d="M13.804 23.554v2.268q-0.018 5.214-0.107 5.446-0.214 0.571-0.911 0.714-0.964 0.161-3.241-0.679t-2.902-1.589q-0.232-0.268-0.304-0.643-0.018-0.214 0.071-0.464 0.071-0.179 0.607-0.839t3.232-3.857q0.018 0 1.071-1.25 0.268-0.339 0.705-0.438t0.884 0.063q0.429 0.179 0.67 0.518t0.223 0.75zM11.143 19.071q-0.054 0.982-0.929 1.25l-2.143 0.696q-4.911 1.571-5.214 1.571-0.625-0.036-0.964-0.643-0.214-0.446-0.304-1.339-0.143-1.357 0.018-2.973t0.536-2.223 1-0.571q0.232 0 3.607 1.375 1.25 0.518 2.054 0.839l1.5 0.607q0.411 0.161 0.634 0.545t0.205 0.866zM25.893 24.375q-0.125 0.964-1.634 2.875t-2.42 2.268q-0.661 0.25-1.125-0.125-0.25-0.179-3.286-5.125l-0.839-1.375q-0.25-0.375-0.205-0.821t0.348-0.821q0.625-0.768 1.482-0.464 0.018 0.018 2.125 0.714 3.625 1.179 4.321 1.42t0.839 0.366q0.5 0.393 0.393 1.089zM13.893 13.089q0.089 1.821-0.964 2.179-1.036 0.304-2.036-1.268l-6.75-10.679q-0.143-0.625 0.339-1.107 0.732-0.768 3.705-1.598t4.009-0.563q0.714 0.179 0.875 0.804 0.054 0.321 0.393 5.455t0.429 6.777zM25.714 15.018q0.054 0.696-0.464 1.054-0.268 0.179-5.875 1.536-1.196 0.268-1.625 0.411l0.018-0.036q-0.411 0.107-0.821-0.071t-0.661-0.571q-0.536-0.839 0-1.554 0.018-0.018 1.339-1.821 2.232-3.054 2.679-3.643t0.607-0.696q0.5-0.339 1.161-0.036 0.857 0.411 2.196 2.384t1.446 2.991v0.054z"></path>
</symbol>
<symbol id="icon-vine" viewBox="0 0 27 32">
<path class="path1" d="M26.732 14.768v3.536q-1.804 0.411-3.536 0.411-1.161 2.429-2.955 4.839t-3.241 3.848-2.286 1.902q-1.429 0.804-2.893-0.054-0.5-0.304-1.080-0.777t-1.518-1.491-1.83-2.295-1.92-3.286-1.884-4.357-1.634-5.616-1.259-6.964h5.054q0.464 3.893 1.25 7.116t1.866 5.661 2.17 4.205 2.5 3.482q3.018-3.018 5.125-7.25-2.536-1.286-3.982-3.929t-1.446-5.946q0-3.429 1.857-5.616t5.071-2.188q3.179 0 4.875 1.884t1.696 5.313q0 2.839-1.036 5.107-0.125 0.018-0.348 0.054t-0.821 0.036-1.125-0.107-1.107-0.455-0.902-0.92q0.554-1.839 0.554-3.286 0-1.554-0.518-2.357t-1.411-0.804q-0.946 0-1.518 0.884t-0.571 2.509q0 3.321 1.875 5.241t4.768 1.92q1.107 0 2.161-0.25z"></path>
</symbol>
<symbol id="icon-vk" viewBox="0 0 35 32">
<path class="path1" d="M34.232 9.286q0.411 1.143-2.679 5.25-0.429 0.571-1.161 1.518-1.393 1.786-1.607 2.339-0.304 0.732 0.25 1.446 0.304 0.375 1.446 1.464h0.018l0.071 0.071q2.518 2.339 3.411 3.946 0.054 0.089 0.116 0.223t0.125 0.473-0.009 0.607-0.446 0.491-1.054 0.223l-4.571 0.071q-0.429 0.089-1-0.089t-0.929-0.393l-0.357-0.214q-0.536-0.375-1.25-1.143t-1.223-1.384-1.089-1.036-1.009-0.277q-0.054 0.018-0.143 0.063t-0.304 0.259-0.384 0.527-0.304 0.929-0.116 1.384q0 0.268-0.063 0.491t-0.134 0.33l-0.071 0.089q-0.321 0.339-0.946 0.393h-2.054q-1.268 0.071-2.607-0.295t-2.348-0.946-1.839-1.179-1.259-1.027l-0.446-0.429q-0.179-0.179-0.491-0.536t-1.277-1.625-1.893-2.696-2.188-3.768-2.33-4.857q-0.107-0.286-0.107-0.482t0.054-0.286l0.071-0.107q0.268-0.339 1.018-0.339l4.893-0.036q0.214 0.036 0.411 0.116t0.286 0.152l0.089 0.054q0.286 0.196 0.429 0.571 0.357 0.893 0.821 1.848t0.732 1.455l0.286 0.518q0.518 1.071 1 1.857t0.866 1.223 0.741 0.688 0.607 0.25 0.482-0.089q0.036-0.018 0.089-0.089t0.214-0.393 0.241-0.839 0.17-1.446 0-2.232q-0.036-0.714-0.161-1.304t-0.25-0.821l-0.107-0.214q-0.446-0.607-1.518-0.768-0.232-0.036 0.089-0.429 0.304-0.339 0.679-0.536 0.946-0.464 4.268-0.429 1.464 0.018 2.411 0.232 0.357 0.089 0.598 0.241t0.366 0.429 0.188 0.571 0.063 0.813-0.018 0.982-0.045 1.259-0.027 1.473q0 0.196-0.018 0.75t-0.009 0.857 0.063 0.723 0.205 0.696 0.402 0.438q0.143 0.036 0.304 0.071t0.464-0.196 0.679-0.616 0.929-1.196 1.214-1.92q1.071-1.857 1.911-4.018 0.071-0.179 0.179-0.313t0.196-0.188l0.071-0.054 0.089-0.045t0.232-0.054 0.357-0.009l5.143-0.036q0.696-0.089 1.143 0.045t0.554 0.295z"></path>
</symbol>
<symbol id="icon-search" viewBox="0 0 30 32">
<path class="path1" d="M20.571 14.857q0-3.304-2.348-5.652t-5.652-2.348-5.652 2.348-2.348 5.652 2.348 5.652 5.652 2.348 5.652-2.348 2.348-5.652zM29.714 29.714q0 0.929-0.679 1.607t-1.607 0.679q-0.964 0-1.607-0.679l-6.125-6.107q-3.196 2.214-7.125 2.214-2.554 0-4.884-0.991t-4.018-2.679-2.679-4.018-0.991-4.884 0.991-4.884 2.679-4.018 4.018-2.679 4.884-0.991 4.884 0.991 4.018 2.679 2.679 4.018 0.991 4.884q0 3.929-2.214 7.125l6.125 6.125q0.661 0.661 0.661 1.607z"></path>
</symbol>
<symbol id="icon-envelope-o" viewBox="0 0 32 32">
<path class="path1" d="M29.714 26.857v-13.714q-0.571 0.643-1.232 1.179-4.786 3.679-7.607 6.036-0.911 0.768-1.482 1.196t-1.545 0.866-1.83 0.438h-0.036q-0.857 0-1.83-0.438t-1.545-0.866-1.482-1.196q-2.821-2.357-7.607-6.036-0.661-0.536-1.232-1.179v13.714q0 0.232 0.17 0.402t0.402 0.17h26.286q0.232 0 0.402-0.17t0.17-0.402zM29.714 8.089v-0.438t-0.009-0.232-0.054-0.223-0.098-0.161-0.161-0.134-0.25-0.045h-26.286q-0.232 0-0.402 0.17t-0.17 0.402q0 3 2.625 5.071 3.446 2.714 7.161 5.661 0.107 0.089 0.625 0.527t0.821 0.67 0.795 0.563 0.902 0.491 0.768 0.161h0.036q0.357 0 0.768-0.161t0.902-0.491 0.795-0.563 0.821-0.67 0.625-0.527q3.714-2.946 7.161-5.661 0.964-0.768 1.795-2.063t0.83-2.348zM32 7.429v19.429q0 1.179-0.839 2.018t-2.018 0.839h-26.286q-1.179 0-2.018-0.839t-0.839-2.018v-19.429q0-1.179 0.839-2.018t2.018-0.839h26.286q1.179 0 2.018 0.839t0.839 2.018z"></path>
</symbol>
<symbol id="icon-close" viewBox="0 0 25 32">
<path class="path1" d="M23.179 23.607q0 0.714-0.5 1.214l-2.429 2.429q-0.5 0.5-1.214 0.5t-1.214-0.5l-5.25-5.25-5.25 5.25q-0.5 0.5-1.214 0.5t-1.214-0.5l-2.429-2.429q-0.5-0.5-0.5-1.214t0.5-1.214l5.25-5.25-5.25-5.25q-0.5-0.5-0.5-1.214t0.5-1.214l2.429-2.429q0.5-0.5 1.214-0.5t1.214 0.5l5.25 5.25 5.25-5.25q0.5-0.5 1.214-0.5t1.214 0.5l2.429 2.429q0.5 0.5 0.5 1.214t-0.5 1.214l-5.25 5.25 5.25 5.25q0.5 0.5 0.5 1.214z"></path>
</symbol>
<symbol id="icon-angle-down" viewBox="0 0 21 32">
<path class="path1" d="M19.196 13.143q0 0.232-0.179 0.411l-8.321 8.321q-0.179 0.179-0.411 0.179t-0.411-0.179l-8.321-8.321q-0.179-0.179-0.179-0.411t0.179-0.411l0.893-0.893q0.179-0.179 0.411-0.179t0.411 0.179l7.018 7.018 7.018-7.018q0.179-0.179 0.411-0.179t0.411 0.179l0.893 0.893q0.179 0.179 0.179 0.411z"></path>
</symbol>
<symbol id="icon-folder-open" viewBox="0 0 34 32">
<path class="path1" d="M33.554 17q0 0.554-0.554 1.179l-6 7.071q-0.768 0.911-2.152 1.545t-2.563 0.634h-19.429q-0.607 0-1.080-0.232t-0.473-0.768q0-0.554 0.554-1.179l6-7.071q0.768-0.911 2.152-1.545t2.563-0.634h19.429q0.607 0 1.080 0.232t0.473 0.768zM27.429 10.857v2.857h-14.857q-1.679 0-3.518 0.848t-2.929 2.134l-6.107 7.179q0-0.071-0.009-0.223t-0.009-0.223v-17.143q0-1.643 1.179-2.821t2.821-1.179h5.714q1.643 0 2.821 1.179t1.179 2.821v0.571h9.714q1.643 0 2.821 1.179t1.179 2.821z"></path>
</symbol>
<symbol id="icon-twitter" viewBox="0 0 30 32">
<path class="path1" d="M28.929 7.286q-1.196 1.75-2.893 2.982 0.018 0.25 0.018 0.75 0 2.321-0.679 4.634t-2.063 4.437-3.295 3.759-4.607 2.607-5.768 0.973q-4.839 0-8.857-2.589 0.625 0.071 1.393 0.071 4.018 0 7.161-2.464-1.875-0.036-3.357-1.152t-2.036-2.848q0.589 0.089 1.089 0.089 0.768 0 1.518-0.196-2-0.411-3.313-1.991t-1.313-3.67v-0.071q1.214 0.679 2.607 0.732-1.179-0.786-1.875-2.054t-0.696-2.75q0-1.571 0.786-2.911 2.161 2.661 5.259 4.259t6.634 1.777q-0.143-0.679-0.143-1.321 0-2.393 1.688-4.080t4.080-1.688q2.5 0 4.214 1.821 1.946-0.375 3.661-1.393-0.661 2.054-2.536 3.179 1.661-0.179 3.321-0.893z"></path>
</symbol>
<symbol id="icon-facebook" viewBox="0 0 19 32">
<path class="path1" d="M17.125 0.214v4.714h-2.804q-1.536 0-2.071 0.643t-0.536 1.929v3.375h5.232l-0.696 5.286h-4.536v13.554h-5.464v-13.554h-4.554v-5.286h4.554v-3.893q0-3.321 1.857-5.152t4.946-1.83q2.625 0 4.071 0.214z"></path>
</symbol>
<symbol id="icon-github" viewBox="0 0 27 32">
<path class="path1" d="M13.714 2.286q3.732 0 6.884 1.839t4.991 4.991 1.839 6.884q0 4.482-2.616 8.063t-6.759 4.955q-0.482 0.089-0.714-0.125t-0.232-0.536q0-0.054 0.009-1.366t0.009-2.402q0-1.732-0.929-2.536 1.018-0.107 1.83-0.321t1.679-0.696 1.446-1.188 0.946-1.875 0.366-2.688q0-2.125-1.411-3.679 0.661-1.625-0.143-3.643-0.5-0.161-1.446 0.196t-1.643 0.786l-0.679 0.429q-1.661-0.464-3.429-0.464t-3.429 0.464q-0.286-0.196-0.759-0.482t-1.491-0.688-1.518-0.241q-0.804 2.018-0.143 3.643-1.411 1.554-1.411 3.679 0 1.518 0.366 2.679t0.938 1.875 1.438 1.196 1.679 0.696 1.83 0.321q-0.696 0.643-0.875 1.839-0.375 0.179-0.804 0.268t-1.018 0.089-1.17-0.384-0.991-1.116q-0.339-0.571-0.866-0.929t-0.884-0.429l-0.357-0.054q-0.375 0-0.518 0.080t-0.089 0.205 0.161 0.25 0.232 0.214l0.125 0.089q0.393 0.179 0.777 0.679t0.563 0.911l0.179 0.411q0.232 0.679 0.786 1.098t1.196 0.536 1.241 0.125 0.991-0.063l0.411-0.071q0 0.679 0.009 1.58t0.009 0.973q0 0.321-0.232 0.536t-0.714 0.125q-4.143-1.375-6.759-4.955t-2.616-8.063q0-3.732 1.839-6.884t4.991-4.991 6.884-1.839zM5.196 21.982q0.054-0.125-0.125-0.214-0.179-0.054-0.232 0.036-0.054 0.125 0.125 0.214 0.161 0.107 0.232-0.036zM5.75 22.589q0.125-0.089-0.036-0.286-0.179-0.161-0.286-0.054-0.125 0.089 0.036 0.286 0.179 0.179 0.286 0.054zM6.286 23.393q0.161-0.125 0-0.339-0.143-0.232-0.304-0.107-0.161 0.089 0 0.321t0.304 0.125zM7.036 24.143q0.143-0.143-0.071-0.339-0.214-0.214-0.357-0.054-0.161 0.143 0.071 0.339 0.214 0.214 0.357 0.054zM8.054 24.589q0.054-0.196-0.232-0.286-0.268-0.071-0.339 0.125t0.232 0.268q0.268 0.107 0.339-0.107zM9.179 24.679q0-0.232-0.304-0.196-0.286 0-0.286 0.196 0 0.232 0.304 0.196 0.286 0 0.286-0.196zM10.214 24.5q-0.036-0.196-0.321-0.161-0.286 0.054-0.25 0.268t0.321 0.143 0.25-0.25z"></path>
</symbol>
<symbol id="icon-bars" viewBox="0 0 27 32">
<path class="path1" d="M27.429 24v2.286q0 0.464-0.339 0.804t-0.804 0.339h-25.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h25.143q0.464 0 0.804 0.339t0.339 0.804zM27.429 14.857v2.286q0 0.464-0.339 0.804t-0.804 0.339h-25.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h25.143q0.464 0 0.804 0.339t0.339 0.804zM27.429 5.714v2.286q0 0.464-0.339 0.804t-0.804 0.339h-25.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h25.143q0.464 0 0.804 0.339t0.339 0.804z"></path>
</symbol>
<symbol id="icon-google-plus" viewBox="0 0 41 32">
<path class="path1" d="M25.661 16.304q0 3.714-1.554 6.616t-4.429 4.536-6.589 1.634q-2.661 0-5.089-1.036t-4.179-2.786-2.786-4.179-1.036-5.089 1.036-5.089 2.786-4.179 4.179-2.786 5.089-1.036q5.107 0 8.768 3.429l-3.554 3.411q-2.089-2.018-5.214-2.018-2.196 0-4.063 1.107t-2.955 3.009-1.089 4.152 1.089 4.152 2.955 3.009 4.063 1.107q1.482 0 2.723-0.411t2.045-1.027 1.402-1.402 0.875-1.482 0.384-1.321h-7.429v-4.5h12.357q0.214 1.125 0.214 2.179zM41.143 14.125v3.75h-3.732v3.732h-3.75v-3.732h-3.732v-3.75h3.732v-3.732h3.75v3.732h3.732z"></path>
</symbol>
<symbol id="icon-linkedin" viewBox="0 0 27 32">
<path class="path1" d="M6.232 11.161v17.696h-5.893v-17.696h5.893zM6.607 5.696q0.018 1.304-0.902 2.179t-2.42 0.875h-0.036q-1.464 0-2.357-0.875t-0.893-2.179q0-1.321 0.92-2.188t2.402-0.866 2.375 0.866 0.911 2.188zM27.429 18.714v10.143h-5.875v-9.464q0-1.875-0.723-2.938t-2.259-1.063q-1.125 0-1.884 0.616t-1.134 1.527q-0.196 0.536-0.196 1.446v9.875h-5.875q0.036-7.125 0.036-11.554t-0.018-5.286l-0.018-0.857h5.875v2.571h-0.036q0.357-0.571 0.732-1t1.009-0.929 1.554-0.777 2.045-0.277q3.054 0 4.911 2.027t1.857 5.938z"></path>
</symbol>
<symbol id="icon-quote-right" viewBox="0 0 30 32">
<path class="path1" d="M13.714 5.714v12.571q0 1.857-0.723 3.545t-1.955 2.92-2.92 1.955-3.545 0.723h-1.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h1.143q1.893 0 3.232-1.339t1.339-3.232v-0.571q0-0.714-0.5-1.214t-1.214-0.5h-4q-1.429 0-2.429-1t-1-2.429v-6.857q0-1.429 1-2.429t2.429-1h6.857q1.429 0 2.429 1t1 2.429zM29.714 5.714v12.571q0 1.857-0.723 3.545t-1.955 2.92-2.92 1.955-3.545 0.723h-1.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h1.143q1.893 0 3.232-1.339t1.339-3.232v-0.571q0-0.714-0.5-1.214t-1.214-0.5h-4q-1.429 0-2.429-1t-1-2.429v-6.857q0-1.429 1-2.429t2.429-1h6.857q1.429 0 2.429 1t1 2.429z"></path>
</symbol>
<symbol id="icon-mail-reply" viewBox="0 0 32 32">
<path class="path1" d="M32 20q0 2.964-2.268 8.054-0.054 0.125-0.188 0.429t-0.241 0.536-0.232 0.393q-0.214 0.304-0.5 0.304-0.268 0-0.42-0.179t-0.152-0.446q0-0.161 0.045-0.473t0.045-0.42q0.089-1.214 0.089-2.196 0-1.804-0.313-3.232t-0.866-2.473-1.429-1.804-1.884-1.241-2.375-0.759-2.75-0.384-3.134-0.107h-4v4.571q0 0.464-0.339 0.804t-0.804 0.339-0.804-0.339l-9.143-9.143q-0.339-0.339-0.339-0.804t0.339-0.804l9.143-9.143q0.339-0.339 0.804-0.339t0.804 0.339 0.339 0.804v4.571h4q12.732 0 15.625 7.196 0.946 2.393 0.946 5.946z"></path>
</symbol>
<symbol id="icon-youtube" viewBox="0 0 27 32">
<path class="path1" d="M17.339 22.214v3.768q0 1.196-0.696 1.196-0.411 0-0.804-0.393v-5.375q0.393-0.393 0.804-0.393 0.696 0 0.696 1.196zM23.375 22.232v0.821h-1.607v-0.821q0-1.214 0.804-1.214t0.804 1.214zM6.125 18.339h1.911v-1.679h-5.571v1.679h1.875v10.161h1.786v-10.161zM11.268 28.5h1.589v-8.821h-1.589v6.75q-0.536 0.75-1.018 0.75-0.321 0-0.375-0.375-0.018-0.054-0.018-0.625v-6.5h-1.589v6.982q0 0.875 0.143 1.304 0.214 0.661 1.036 0.661 0.857 0 1.821-1.089v0.964zM18.929 25.857v-3.518q0-1.304-0.161-1.768-0.304-1-1.268-1-0.893 0-1.661 0.964v-3.875h-1.589v11.839h1.589v-0.857q0.804 0.982 1.661 0.982 0.964 0 1.268-0.982 0.161-0.482 0.161-1.786zM24.964 25.679v-0.232h-1.625q0 0.911-0.036 1.089-0.125 0.643-0.714 0.643-0.821 0-0.821-1.232v-1.554h3.196v-1.839q0-1.411-0.482-2.071-0.696-0.911-1.893-0.911-1.214 0-1.911 0.911-0.5 0.661-0.5 2.071v3.089q0 1.411 0.518 2.071 0.696 0.911 1.929 0.911 1.286 0 1.929-0.946 0.321-0.482 0.375-0.964 0.036-0.161 0.036-1.036zM14.107 9.375v-3.75q0-1.232-0.768-1.232t-0.768 1.232v3.75q0 1.25 0.768 1.25t0.768-1.25zM26.946 22.786q0 4.179-0.464 6.25-0.25 1.054-1.036 1.768t-1.821 0.821q-3.286 0.375-9.911 0.375t-9.911-0.375q-1.036-0.107-1.83-0.821t-1.027-1.768q-0.464-2-0.464-6.25 0-4.179 0.464-6.25 0.25-1.054 1.036-1.768t1.839-0.839q3.268-0.357 9.893-0.357t9.911 0.357q1.036 0.125 1.83 0.839t1.027 1.768q0.464 2 0.464 6.25zM9.125 0h1.821l-2.161 7.125v4.839h-1.786v-4.839q-0.25-1.321-1.089-3.786-0.661-1.839-1.161-3.339h1.893l1.268 4.696zM15.732 5.946v3.125q0 1.446-0.5 2.107-0.661 0.911-1.893 0.911-1.196 0-1.875-0.911-0.5-0.679-0.5-2.107v-3.125q0-1.429 0.5-2.089 0.679-0.911 1.875-0.911 1.232 0 1.893 0.911 0.5 0.661 0.5 2.089zM21.714 3.054v8.911h-1.625v-0.982q-0.946 1.107-1.839 1.107-0.821 0-1.054-0.661-0.143-0.429-0.143-1.339v-7.036h1.625v6.554q0 0.589 0.018 0.625 0.054 0.393 0.375 0.393 0.482 0 1.018-0.768v-6.804h1.625z"></path>
</symbol>
<symbol id="icon-dropbox" viewBox="0 0 32 32">
<path class="path1" d="M7.179 12.625l8.821 5.446-6.107 5.089-8.75-5.696zM24.786 22.536v1.929l-8.75 5.232v0.018l-0.018-0.018-0.018 0.018v-0.018l-8.732-5.232v-1.929l2.625 1.714 6.107-5.071v-0.036l0.018 0.018 0.018-0.018v0.036l6.125 5.071zM9.893 2.107l6.107 5.089-8.821 5.429-6.036-4.821zM24.821 12.625l6.036 4.839-8.732 5.696-6.125-5.089zM22.125 2.107l8.732 5.696-6.036 4.821-8.821-5.429z"></path>
</symbol>
<symbol id="icon-instagram" viewBox="0 0 27 32">
<path class="path1" d="M18.286 16q0-1.893-1.339-3.232t-3.232-1.339-3.232 1.339-1.339 3.232 1.339 3.232 3.232 1.339 3.232-1.339 1.339-3.232zM20.75 16q0 2.929-2.054 4.982t-4.982 2.054-4.982-2.054-2.054-4.982 2.054-4.982 4.982-2.054 4.982 2.054 2.054 4.982zM22.679 8.679q0 0.679-0.482 1.161t-1.161 0.482-1.161-0.482-0.482-1.161 0.482-1.161 1.161-0.482 1.161 0.482 0.482 1.161zM13.714 4.75q-0.125 0-1.366-0.009t-1.884 0-1.723 0.054-1.839 0.179-1.277 0.33q-0.893 0.357-1.571 1.036t-1.036 1.571q-0.196 0.518-0.33 1.277t-0.179 1.839-0.054 1.723 0 1.884 0.009 1.366-0.009 1.366 0 1.884 0.054 1.723 0.179 1.839 0.33 1.277q0.357 0.893 1.036 1.571t1.571 1.036q0.518 0.196 1.277 0.33t1.839 0.179 1.723 0.054 1.884 0 1.366-0.009 1.366 0.009 1.884 0 1.723-0.054 1.839-0.179 1.277-0.33q0.893-0.357 1.571-1.036t1.036-1.571q0.196-0.518 0.33-1.277t0.179-1.839 0.054-1.723 0-1.884-0.009-1.366 0.009-1.366 0-1.884-0.054-1.723-0.179-1.839-0.33-1.277q-0.357-0.893-1.036-1.571t-1.571-1.036q-0.518-0.196-1.277-0.33t-1.839-0.179-1.723-0.054-1.884 0-1.366 0.009zM27.429 16q0 4.089-0.089 5.661-0.179 3.714-2.214 5.75t-5.75 2.214q-1.571 0.089-5.661 0.089t-5.661-0.089q-3.714-0.179-5.75-2.214t-2.214-5.75q-0.089-1.571-0.089-5.661t0.089-5.661q0.179-3.714 2.214-5.75t5.75-2.214q1.571-0.089 5.661-0.089t5.661 0.089q3.714 0.179 5.75 2.214t2.214 5.75q0.089 1.571 0.089 5.661z"></path>
</symbol>
<symbol id="icon-flickr" viewBox="0 0 27 32">
<path class="path1" d="M22.286 2.286q2.125 0 3.634 1.509t1.509 3.634v17.143q0 2.125-1.509 3.634t-3.634 1.509h-17.143q-2.125 0-3.634-1.509t-1.509-3.634v-17.143q0-2.125 1.509-3.634t3.634-1.509h17.143zM12.464 16q0-1.571-1.107-2.679t-2.679-1.107-2.679 1.107-1.107 2.679 1.107 2.679 2.679 1.107 2.679-1.107 1.107-2.679zM22.536 16q0-1.571-1.107-2.679t-2.679-1.107-2.679 1.107-1.107 2.679 1.107 2.679 2.679 1.107 2.679-1.107 1.107-2.679z"></path>
</symbol>
<symbol id="icon-tumblr" viewBox="0 0 19 32">
<path class="path1" d="M16.857 23.732l1.429 4.232q-0.411 0.625-1.982 1.179t-3.161 0.571q-1.857 0.036-3.402-0.464t-2.545-1.321-1.696-1.893-0.991-2.143-0.295-2.107v-9.714h-3v-3.839q1.286-0.464 2.304-1.241t1.625-1.607 1.036-1.821 0.607-1.768 0.268-1.58q0.018-0.089 0.080-0.152t0.134-0.063h4.357v7.571h5.946v4.5h-5.964v9.25q0 0.536 0.116 1t0.402 0.938 0.884 0.741 1.455 0.25q1.393-0.036 2.393-0.518z"></path>
</symbol>
<symbol id="icon-dockerhub" viewBox="0 0 24 28">
<path class="path1" d="M1.597 10.257h2.911v2.83H1.597v-2.83zm3.573 0h2.91v2.83H5.17v-2.83zm0-3.627h2.91v2.829H5.17V6.63zm3.57 3.627h2.912v2.83H8.74v-2.83zm0-3.627h2.912v2.829H8.74V6.63zm3.573 3.627h2.911v2.83h-2.911v-2.83zm0-3.627h2.911v2.829h-2.911V6.63zm3.572 3.627h2.911v2.83h-2.911v-2.83zM12.313 3h2.911v2.83h-2.911V3zm-6.65 14.173c-.449 0-.812.354-.812.788 0 .435.364.788.812.788.447 0 .811-.353.811-.788 0-.434-.363-.788-.811-.788"></path>
<path class="path2" d="M28.172 11.721c-.978-.549-2.278-.624-3.388-.306-.136-1.146-.91-2.149-1.83-2.869l-.366-.286-.307.345c-.618.692-.8 1.845-.718 2.73.063.651.273 1.312.685 1.834-.313.183-.668.328-.985.434-.646.212-1.347.33-2.028.33H.083l-.042.429c-.137 1.432.065 2.866.674 4.173l.262.519.03.048c1.8 2.973 4.963 4.225 8.41 4.225 6.672 0 12.174-2.896 14.702-9.015 1.689.085 3.417-.4 4.243-1.968l.211-.4-.401-.223zM5.664 19.458c-.85 0-1.542-.671-1.542-1.497 0-.825.691-1.498 1.541-1.498.849 0 1.54.672 1.54 1.497s-.69 1.498-1.539 1.498z"></path>
</symbol>
<symbol id="icon-dribbble" viewBox="0 0 27 32">
<path class="path1" d="M18.286 26.786q-0.75-4.304-2.5-8.893h-0.036l-0.036 0.018q-0.286 0.107-0.768 0.295t-1.804 0.875-2.446 1.464-2.339 2.045-1.839 2.643l-0.268-0.196q3.286 2.679 7.464 2.679 2.357 0 4.571-0.929zM14.982 15.946q-0.375-0.875-0.946-1.982-5.554 1.661-12.018 1.661-0.018 0.125-0.018 0.375 0 2.214 0.786 4.223t2.214 3.598q0.893-1.589 2.205-2.973t2.545-2.223 2.33-1.446 1.777-0.857l0.661-0.232q0.071-0.018 0.232-0.063t0.232-0.080zM13.071 12.161q-2.143-3.804-4.357-6.75-2.464 1.161-4.179 3.321t-2.286 4.857q5.393 0 10.821-1.429zM25.286 17.857q-3.75-1.071-7.304-0.518 1.554 4.268 2.286 8.375 1.982-1.339 3.304-3.384t1.714-4.473zM10.911 4.625q-0.018 0-0.036 0.018 0.018-0.018 0.036-0.018zM21.446 7.214q-3.304-2.929-7.732-2.929-1.357 0-2.768 0.339 2.339 3.036 4.393 6.821 1.232-0.464 2.321-1.080t1.723-1.098 1.17-1.018 0.67-0.723zM25.429 15.875q-0.054-4.143-2.661-7.321l-0.018 0.018q-0.161 0.214-0.339 0.438t-0.777 0.795-1.268 1.080-1.786 1.161-2.348 1.152q0.446 0.946 0.786 1.696 0.036 0.107 0.116 0.313t0.134 0.295q0.643-0.089 1.33-0.125t1.313-0.036 1.232 0.027 1.143 0.071 1.009 0.098 0.857 0.116 0.652 0.107 0.446 0.080zM27.429 16q0 3.732-1.839 6.884t-4.991 4.991-6.884 1.839-6.884-1.839-4.991-4.991-1.839-6.884 1.839-6.884 4.991-4.991 6.884-1.839 6.884 1.839 4.991 4.991 1.839 6.884z"></path>
</symbol>
<symbol id="icon-skype" viewBox="0 0 27 32">
<path class="path1" d="M20.946 18.982q0-0.893-0.348-1.634t-0.866-1.223-1.304-0.875-1.473-0.607-1.563-0.411l-1.857-0.429q-0.536-0.125-0.786-0.188t-0.625-0.205-0.536-0.286-0.295-0.375-0.134-0.536q0-1.375 2.571-1.375 0.768 0 1.375 0.214t0.964 0.509 0.679 0.598 0.714 0.518 0.857 0.214q0.839 0 1.348-0.571t0.509-1.375q0-0.982-1-1.777t-2.536-1.205-3.25-0.411q-1.214 0-2.357 0.277t-2.134 0.839-1.589 1.554-0.598 2.295q0 1.089 0.339 1.902t1 1.348 1.429 0.866 1.839 0.58l2.607 0.643q1.607 0.393 2 0.643 0.571 0.357 0.571 1.071 0 0.696-0.714 1.152t-1.875 0.455q-0.911 0-1.634-0.286t-1.161-0.688-0.813-0.804-0.821-0.688-0.964-0.286q-0.893 0-1.348 0.536t-0.455 1.339q0 1.643 2.179 2.813t5.196 1.17q1.304 0 2.5-0.33t2.188-0.955 1.58-1.67 0.589-2.348zM27.429 22.857q0 2.839-2.009 4.848t-4.848 2.009q-2.321 0-4.179-1.429-1.375 0.286-2.679 0.286-2.554 0-4.884-0.991t-4.018-2.679-2.679-4.018-0.991-4.884q0-1.304 0.286-2.679-1.429-1.857-1.429-4.179 0-2.839 2.009-4.848t4.848-2.009q2.321 0 4.179 1.429 1.375-0.286 2.679-0.286 2.554 0 4.884 0.991t4.018 2.679 2.679 4.018 0.991 4.884q0 1.304-0.286 2.679 1.429 1.857 1.429 4.179z"></path>
</symbol>
<symbol id="icon-foursquare" viewBox="0 0 23 32">
<path class="path1" d="M17.857 7.75l0.661-3.464q0.089-0.411-0.161-0.714t-0.625-0.304h-12.714q-0.411 0-0.688 0.304t-0.277 0.661v19.661q0 0.125 0.107 0.018l5.196-6.286q0.411-0.464 0.679-0.598t0.857-0.134h4.268q0.393 0 0.661-0.259t0.321-0.527q0.429-2.321 0.661-3.411 0.071-0.375-0.205-0.714t-0.652-0.339h-5.25q-0.518 0-0.857-0.339t-0.339-0.857v-0.75q0-0.518 0.339-0.848t0.857-0.33h6.179q0.321 0 0.625-0.241t0.357-0.527zM21.911 3.786q-0.268 1.304-0.955 4.759t-1.241 6.25-0.625 3.098q-0.107 0.393-0.161 0.58t-0.25 0.58-0.438 0.589-0.688 0.375-1.036 0.179h-4.839q-0.232 0-0.393 0.179-0.143 0.161-7.607 8.821-0.393 0.446-1.045 0.509t-0.866-0.098q-0.982-0.393-0.982-1.75v-25.179q0-0.982 0.679-1.83t2.143-0.848h15.857q1.696 0 2.268 0.946t0.179 2.839zM21.911 3.786l-2.821 14.107q0.071-0.304 0.625-3.098t1.241-6.25 0.955-4.759z"></path>
</symbol>
<symbol id="icon-wordpress" viewBox="0 0 32 32">
<path class="path1" d="M2.268 16q0-2.911 1.196-5.589l6.554 17.946q-3.5-1.696-5.625-5.018t-2.125-7.339zM25.268 15.304q0 0.339-0.045 0.688t-0.179 0.884-0.205 0.786-0.313 1.054-0.313 1.036l-1.357 4.571-4.964-14.75q0.821-0.054 1.571-0.143 0.339-0.036 0.464-0.33t-0.045-0.554-0.509-0.241l-3.661 0.179q-1.339-0.018-3.607-0.179-0.214-0.018-0.366 0.089t-0.205 0.268-0.027 0.33 0.161 0.295 0.348 0.143l1.429 0.143 2.143 5.857-3 9-5-14.857q0.821-0.054 1.571-0.143 0.339-0.036 0.464-0.33t-0.045-0.554-0.509-0.241l-3.661 0.179q-0.125 0-0.411-0.009t-0.464-0.009q1.875-2.857 4.902-4.527t6.563-1.67q2.625 0 5.009 0.946t4.259 2.661h-0.179q-0.982 0-1.643 0.723t-0.661 1.705q0 0.214 0.036 0.429t0.071 0.384 0.143 0.411 0.161 0.375 0.214 0.402 0.223 0.375 0.259 0.429 0.25 0.411q1.125 1.911 1.125 3.786zM16.232 17.196l4.232 11.554q0.018 0.107 0.089 0.196-2.25 0.786-4.554 0.786-2 0-3.875-0.571zM28.036 9.411q1.696 3.107 1.696 6.589 0 3.732-1.857 6.884t-4.982 4.973l4.196-12.107q1.054-3.018 1.054-4.929 0-0.75-0.107-1.411zM16 0q3.25 0 6.214 1.268t5.107 3.411 3.411 5.107 1.268 6.214-1.268 6.214-3.411 5.107-5.107 3.411-6.214 1.268-6.214-1.268-5.107-3.411-3.411-5.107-1.268-6.214 1.268-6.214 3.411-5.107 5.107-3.411 6.214-1.268zM16 31.268q3.089 0 5.92-1.214t4.875-3.259 3.259-4.875 1.214-5.92-1.214-5.92-3.259-4.875-4.875-3.259-5.92-1.214-5.92 1.214-4.875 3.259-3.259 4.875-1.214 5.92 1.214 5.92 3.259 4.875 4.875 3.259 5.92 1.214z"></path>
</symbol>
<symbol id="icon-stumbleupon" viewBox="0 0 34 32">
<path class="path1" d="M18.964 12.714v-2.107q0-0.75-0.536-1.286t-1.286-0.536-1.286 0.536-0.536 1.286v10.929q0 3.125-2.25 5.339t-5.411 2.214q-3.179 0-5.42-2.241t-2.241-5.42v-4.75h5.857v4.679q0 0.768 0.536 1.295t1.286 0.527 1.286-0.527 0.536-1.295v-11.071q0-3.054 2.259-5.214t5.384-2.161q3.143 0 5.393 2.179t2.25 5.25v2.429l-3.482 1.036zM28.429 16.679h5.857v4.75q0 3.179-2.241 5.42t-5.42 2.241q-3.161 0-5.411-2.223t-2.25-5.366v-4.786l2.339 1.089 3.482-1.036v4.821q0 0.75 0.536 1.277t1.286 0.527 1.286-0.527 0.536-1.277v-4.911z"></path>
</symbol>
<symbol id="icon-digg" viewBox="0 0 37 32">
<path class="path1" d="M5.857 5.036h3.643v17.554h-9.5v-12.446h5.857v-5.107zM5.857 19.661v-6.589h-2.196v6.589h2.196zM10.964 10.143v12.446h3.661v-12.446h-3.661zM10.964 5.036v3.643h3.661v-3.643h-3.661zM16.089 10.143h9.518v16.821h-9.518v-2.911h5.857v-1.464h-5.857v-12.446zM21.946 19.661v-6.589h-2.196v6.589h2.196zM27.071 10.143h9.5v16.821h-9.5v-2.911h5.839v-1.464h-5.839v-12.446zM32.911 19.661v-6.589h-2.196v6.589h2.196z"></path>
</symbol>
<symbol id="icon-spotify" viewBox="0 0 27 32">
<path class="path1" d="M20.125 21.607q0-0.571-0.536-0.911-3.446-2.054-7.982-2.054-2.375 0-5.125 0.607-0.75 0.161-0.75 0.929 0 0.357 0.241 0.616t0.634 0.259q0.089 0 0.661-0.143 2.357-0.482 4.339-0.482 4.036 0 7.089 1.839 0.339 0.196 0.589 0.196 0.339 0 0.589-0.241t0.25-0.616zM21.839 17.768q0-0.714-0.625-1.089-4.232-2.518-9.786-2.518-2.732 0-5.411 0.75-0.857 0.232-0.857 1.143 0 0.446 0.313 0.759t0.759 0.313q0.125 0 0.661-0.143 2.179-0.589 4.482-0.589 4.982 0 8.714 2.214 0.429 0.232 0.679 0.232 0.446 0 0.759-0.313t0.313-0.759zM23.768 13.339q0-0.839-0.714-1.25-2.25-1.304-5.232-1.973t-6.125-0.67q-3.643 0-6.5 0.839-0.411 0.125-0.688 0.455t-0.277 0.866q0 0.554 0.366 0.929t0.92 0.375q0.196 0 0.714-0.143 2.375-0.661 5.482-0.661 2.839 0 5.527 0.607t4.527 1.696q0.375 0.214 0.714 0.214 0.518 0 0.902-0.366t0.384-0.92zM27.429 16q0 3.732-1.839 6.884t-4.991 4.991-6.884 1.839-6.884-1.839-4.991-4.991-1.839-6.884 1.839-6.884 4.991-4.991 6.884-1.839 6.884 1.839 4.991 4.991 1.839 6.884z"></path>
</symbol>
<symbol id="icon-soundcloud" viewBox="0 0 41 32">
<path class="path1" d="M14 24.5l0.286-4.304-0.286-9.339q-0.018-0.179-0.134-0.304t-0.295-0.125q-0.161 0-0.286 0.125t-0.125 0.304l-0.25 9.339 0.25 4.304q0.018 0.179 0.134 0.295t0.277 0.116q0.393 0 0.429-0.411zM19.286 23.982l0.196-3.768-0.214-10.464q0-0.286-0.232-0.429-0.143-0.089-0.286-0.089t-0.286 0.089q-0.232 0.143-0.232 0.429l-0.018 0.107-0.179 10.339q0 0.018 0.196 4.214v0.018q0 0.179 0.107 0.304 0.161 0.196 0.411 0.196 0.196 0 0.357-0.161 0.161-0.125 0.161-0.357zM0.625 17.911l0.357 2.286-0.357 2.25q-0.036 0.161-0.161 0.161t-0.161-0.161l-0.304-2.25 0.304-2.286q0.036-0.161 0.161-0.161t0.161 0.161zM2.161 16.5l0.464 3.696-0.464 3.625q-0.036 0.161-0.179 0.161-0.161 0-0.161-0.179l-0.411-3.607 0.411-3.696q0-0.161 0.161-0.161 0.143 0 0.179 0.161zM3.804 15.821l0.446 4.375-0.446 4.232q0 0.196-0.196 0.196-0.179 0-0.214-0.196l-0.375-4.232 0.375-4.375q0.036-0.214 0.214-0.214 0.196 0 0.196 0.214zM5.482 15.696l0.411 4.5-0.411 4.357q-0.036 0.232-0.25 0.232-0.232 0-0.232-0.232l-0.375-4.357 0.375-4.5q0-0.232 0.232-0.232 0.214 0 0.25 0.232zM7.161 16.018l0.375 4.179-0.375 4.393q-0.036 0.286-0.286 0.286-0.107 0-0.188-0.080t-0.080-0.205l-0.357-4.393 0.357-4.179q0-0.107 0.080-0.188t0.188-0.080q0.25 0 0.286 0.268zM8.839 13.411l0.375 6.786-0.375 4.393q0 0.125-0.089 0.223t-0.214 0.098q-0.286 0-0.321-0.321l-0.321-4.393 0.321-6.786q0.036-0.321 0.321-0.321 0.125 0 0.214 0.098t0.089 0.223zM10.518 11.875l0.339 8.357-0.339 4.357q0 0.143-0.098 0.241t-0.241 0.098q-0.321 0-0.357-0.339l-0.286-4.357 0.286-8.357q0.036-0.339 0.357-0.339 0.143 0 0.241 0.098t0.098 0.241zM12.268 11.161l0.321 9.036-0.321 4.321q-0.036 0.375-0.393 0.375-0.339 0-0.375-0.375l-0.286-4.321 0.286-9.036q0-0.161 0.116-0.277t0.259-0.116q0.161 0 0.268 0.116t0.125 0.277zM19.268 24.411v0 0zM15.732 11.089l0.268 9.107-0.268 4.268q0 0.179-0.134 0.313t-0.313 0.134-0.304-0.125-0.143-0.321l-0.25-4.268 0.25-9.107q0-0.196 0.134-0.321t0.313-0.125 0.313 0.125 0.134 0.321zM17.5 11.429l0.25 8.786-0.25 4.214q0 0.196-0.143 0.339t-0.339 0.143-0.339-0.143-0.161-0.339l-0.214-4.214 0.214-8.786q0.018-0.214 0.161-0.357t0.339-0.143 0.33 0.143 0.152 0.357zM21.286 20.214l-0.25 4.125q0 0.232-0.161 0.393t-0.393 0.161-0.393-0.161-0.179-0.393l-0.107-2.036-0.107-2.089 0.214-11.357v-0.054q0.036-0.268 0.214-0.429 0.161-0.125 0.357-0.125 0.143 0 0.268 0.089 0.25 0.143 0.286 0.464zM41.143 19.875q0 2.089-1.482 3.563t-3.571 1.473h-14.036q-0.232-0.036-0.393-0.196t-0.161-0.393v-16.054q0-0.411 0.5-0.589 1.518-0.607 3.232-0.607 3.482 0 6.036 2.348t2.857 5.777q0.946-0.393 1.964-0.393 2.089 0 3.571 1.482t1.482 3.589z"></path>
</symbol>
<symbol id="icon-codepen" viewBox="0 0 32 32">
<path class="path1" d="M3.857 20.875l10.768 7.179v-6.411l-5.964-3.982zM2.75 18.304l3.446-2.304-3.446-2.304v4.607zM17.375 28.054l10.768-7.179-4.804-3.214-5.964 3.982v6.411zM16 19.25l4.857-3.25-4.857-3.25-4.857 3.25zM8.661 14.339l5.964-3.982v-6.411l-10.768 7.179zM25.804 16l3.446 2.304v-4.607zM23.339 14.339l4.804-3.214-10.768-7.179v6.411zM32 11.125v9.75q0 0.732-0.607 1.143l-14.625 9.75q-0.375 0.232-0.768 0.232t-0.768-0.232l-14.625-9.75q-0.607-0.411-0.607-1.143v-9.75q0-0.732 0.607-1.143l14.625-9.75q0.375-0.232 0.768-0.232t0.768 0.232l14.625 9.75q0.607 0.411 0.607 1.143z"></path>
</symbol>
<symbol id="icon-twitch" viewBox="0 0 32 32">
<path class="path1" d="M16 7.75v7.75h-2.589v-7.75h2.589zM23.107 7.75v7.75h-2.589v-7.75h2.589zM23.107 21.321l4.518-4.536v-14.196h-21.321v18.732h5.821v3.875l3.875-3.875h7.107zM30.214 0v18.089l-7.75 7.75h-5.821l-3.875 3.875h-3.875v-3.875h-7.107v-20.679l1.946-5.161h26.482z"></path>
</symbol>
<symbol id="icon-meanpath" viewBox="0 0 27 32">
<path class="path1" d="M23.411 15.036v2.036q0 0.429-0.241 0.679t-0.67 0.25h-3.607q-0.429 0-0.679-0.25t-0.25-0.679v-2.036q0-0.429 0.25-0.679t0.679-0.25h3.607q0.429 0 0.67 0.25t0.241 0.679zM14.661 19.143v-4.464q0-0.946-0.58-1.527t-1.527-0.58h-2.375q-1.214 0-1.714 0.929-0.5-0.929-1.714-0.929h-2.321q-0.946 0-1.527 0.58t-0.58 1.527v4.464q0 0.393 0.375 0.393h0.982q0.393 0 0.393-0.393v-4.107q0-0.429 0.241-0.679t0.688-0.25h1.679q0.429 0 0.679 0.25t0.25 0.679v4.107q0 0.393 0.375 0.393h0.964q0.393 0 0.393-0.393v-4.107q0-0.429 0.25-0.679t0.679-0.25h1.732q0.429 0 0.67 0.25t0.241 0.679v4.107q0 0.393 0.393 0.393h0.982q0.375 0 0.375-0.393zM25.179 17.429v-2.75q0-0.946-0.589-1.527t-1.536-0.58h-4.714q-0.946 0-1.536 0.58t-0.589 1.527v7.321q0 0.375 0.393 0.375h0.982q0.375 0 0.375-0.375v-3.214q0.554 0.75 1.679 0.75h3.411q0.946 0 1.536-0.58t0.589-1.527zM27.429 6.429v19.143q0 1.714-1.214 2.929t-2.929 1.214h-19.143q-1.714 0-2.929-1.214t-1.214-2.929v-19.143q0-1.714 1.214-2.929t2.929-1.214h19.143q1.714 0 2.929 1.214t1.214 2.929z"></path>
</symbol>
<symbol id="icon-pinterest-p" viewBox="0 0 23 32">
<path class="path1" d="M0 10.661q0-1.929 0.67-3.634t1.848-2.973 2.714-2.196 3.304-1.393 3.607-0.464q2.821 0 5.25 1.188t3.946 3.455 1.518 5.125q0 1.714-0.339 3.357t-1.071 3.161-1.786 2.67-2.589 1.839-3.375 0.688q-1.214 0-2.411-0.571t-1.714-1.571q-0.179 0.696-0.5 2.009t-0.42 1.696-0.366 1.268-0.464 1.268-0.571 1.116-0.821 1.384-1.107 1.545l-0.25 0.089-0.161-0.179q-0.268-2.804-0.268-3.357 0-1.643 0.384-3.688t1.188-5.134 0.929-3.625q-0.571-1.161-0.571-3.018 0-1.482 0.929-2.786t2.357-1.304q1.089 0 1.696 0.723t0.607 1.83q0 1.179-0.786 3.411t-0.786 3.339q0 1.125 0.804 1.866t1.946 0.741q0.982 0 1.821-0.446t1.402-1.214 1-1.696 0.679-1.973 0.357-1.982 0.116-1.777q0-3.089-1.955-4.813t-5.098-1.723q-3.571 0-5.964 2.313t-2.393 5.866q0 0.786 0.223 1.518t0.482 1.161 0.482 0.813 0.223 0.545q0 0.5-0.268 1.304t-0.661 0.804q-0.036 0-0.304-0.054-0.911-0.268-1.616-1t-1.089-1.688-0.58-1.929-0.196-1.902z"></path>
</symbol>
<symbol id="icon-periscope" viewBox="0 0 24 28">
<path class="path1" d="M12.285,1C6.696,1,2.277,5.643,2.277,11.243c0,5.851,7.77,14.578,10.007,14.578c1.959,0,9.729-8.728,9.729-14.578 C22.015,5.643,17.596,1,12.285,1z M12.317,16.551c-3.473,0-6.152-2.611-6.152-5.664c0-1.292,0.39-2.472,1.065-3.438 c0.206,1.084,1.18,1.906,2.352,1.906c1.322,0,2.393-1.043,2.393-2.333c0-0.832-0.447-1.561-1.119-1.975 c0.467-0.105,0.955-0.161,1.46-0.161c3.133,0,5.81,2.611,5.81,5.998C18.126,13.94,15.449,16.551,12.317,16.551z"></path>
</symbol>
<symbol id="icon-get-pocket" viewBox="0 0 31 32">
<path class="path1" d="M27.946 2.286q1.161 0 1.964 0.813t0.804 1.973v9.268q0 3.143-1.214 6t-3.259 4.911-4.893 3.259-5.973 1.205q-3.143 0-5.991-1.205t-4.902-3.259-3.268-4.911-1.214-6v-9.268q0-1.143 0.821-1.964t1.964-0.821h25.161zM15.375 21.286q0.839 0 1.464-0.589l7.214-6.929q0.661-0.625 0.661-1.518 0-0.875-0.616-1.491t-1.491-0.616q-0.839 0-1.464 0.589l-5.768 5.536-5.768-5.536q-0.625-0.589-1.446-0.589-0.875 0-1.491 0.616t-0.616 1.491q0 0.911 0.643 1.518l7.232 6.929q0.589 0.589 1.446 0.589z"></path>
</symbol>
<symbol id="icon-vimeo" viewBox="0 0 32 32">
<path class="path1" d="M30.518 9.25q-0.179 4.214-5.929 11.625-5.946 7.696-10.036 7.696-2.536 0-4.286-4.696-0.786-2.857-2.357-8.607-1.286-4.679-2.804-4.679-0.321 0-2.268 1.357l-1.375-1.75q0.429-0.375 1.929-1.723t2.321-2.063q2.786-2.464 4.304-2.607 1.696-0.161 2.732 0.991t1.446 3.634q0.786 5.125 1.179 6.661 0.982 4.446 2.143 4.446 0.911 0 2.75-2.875 1.804-2.875 1.946-4.393 0.232-2.482-1.946-2.482-1.018 0-2.161 0.464 2.143-7.018 8.196-6.821 4.482 0.143 4.214 5.821z"></path>
</symbol>
<symbol id="icon-reddit-alien" viewBox="0 0 32 32">
<path class="path1" d="M32 15.107q0 1.036-0.527 1.884t-1.42 1.295q0.214 0.821 0.214 1.714 0 2.768-1.902 5.125t-5.188 3.723-7.143 1.366-7.134-1.366-5.179-3.723-1.902-5.125q0-0.839 0.196-1.679-0.911-0.446-1.464-1.313t-0.554-1.902q0-1.464 1.036-2.509t2.518-1.045q1.518 0 2.589 1.125 3.893-2.714 9.196-2.893l2.071-9.304q0.054-0.232 0.268-0.375t0.464-0.089l6.589 1.446q0.321-0.661 0.964-1.063t1.411-0.402q1.107 0 1.893 0.777t0.786 1.884-0.786 1.893-1.893 0.786-1.884-0.777-0.777-1.884l-5.964-1.321-1.857 8.429q5.357 0.161 9.268 2.857 1.036-1.089 2.554-1.089 1.482 0 2.518 1.045t1.036 2.509zM7.464 18.661q0 1.107 0.777 1.893t1.884 0.786 1.893-0.786 0.786-1.893-0.786-1.884-1.893-0.777q-1.089 0-1.875 0.786t-0.786 1.875zM21.929 25q0.196-0.196 0.196-0.464t-0.196-0.464q-0.179-0.179-0.446-0.179t-0.464 0.179q-0.732 0.75-2.161 1.107t-2.857 0.357-2.857-0.357-2.161-1.107q-0.196-0.179-0.464-0.179t-0.446 0.179q-0.196 0.179-0.196 0.455t0.196 0.473q0.768 0.768 2.116 1.214t2.188 0.527 1.625 0.080 1.625-0.080 2.188-0.527 2.116-1.214zM21.875 21.339q1.107 0 1.884-0.786t0.777-1.893q0-1.089-0.786-1.875t-1.875-0.786q-1.107 0-1.893 0.777t-0.786 1.884 0.786 1.893 1.893 0.786z"></path>
</symbol>
<symbol id="icon-hashtag" viewBox="0 0 32 32">
<path class="path1" d="M17.696 18.286l1.143-4.571h-4.536l-1.143 4.571h4.536zM31.411 9.286l-1 4q-0.125 0.429-0.554 0.429h-5.839l-1.143 4.571h5.554q0.268 0 0.446 0.214 0.179 0.25 0.107 0.5l-1 4q-0.089 0.429-0.554 0.429h-5.839l-1.446 5.857q-0.125 0.429-0.554 0.429h-4q-0.286 0-0.464-0.214-0.161-0.214-0.107-0.5l1.393-5.571h-4.536l-1.446 5.857q-0.125 0.429-0.554 0.429h-4.018q-0.268 0-0.446-0.214-0.161-0.214-0.107-0.5l1.393-5.571h-5.554q-0.268 0-0.446-0.214-0.161-0.214-0.107-0.5l1-4q0.125-0.429 0.554-0.429h5.839l1.143-4.571h-5.554q-0.268 0-0.446-0.214-0.179-0.25-0.107-0.5l1-4q0.089-0.429 0.554-0.429h5.839l1.446-5.857q0.125-0.429 0.571-0.429h4q0.268 0 0.446 0.214 0.161 0.214 0.107 0.5l-1.393 5.571h4.536l1.446-5.857q0.125-0.429 0.571-0.429h4q0.268 0 0.446 0.214 0.161 0.214 0.107 0.5l-1.393 5.571h5.554q0.268 0 0.446 0.214 0.161 0.214 0.107 0.5z"></path>
</symbol>
<symbol id="icon-chain" viewBox="0 0 30 32">
<path class="path1" d="M26 21.714q0-0.714-0.5-1.214l-3.714-3.714q-0.5-0.5-1.214-0.5-0.75 0-1.286 0.571 0.054 0.054 0.339 0.33t0.384 0.384 0.268 0.339 0.232 0.455 0.063 0.491q0 0.714-0.5 1.214t-1.214 0.5q-0.268 0-0.491-0.063t-0.455-0.232-0.339-0.268-0.384-0.384-0.33-0.339q-0.589 0.554-0.589 1.304 0 0.714 0.5 1.214l3.679 3.696q0.482 0.482 1.214 0.482 0.714 0 1.214-0.464l2.625-2.607q0.5-0.5 0.5-1.196zM13.446 9.125q0-0.714-0.5-1.214l-3.679-3.696q-0.5-0.5-1.214-0.5-0.696 0-1.214 0.482l-2.625 2.607q-0.5 0.5-0.5 1.196 0 0.714 0.5 1.214l3.714 3.714q0.482 0.482 1.214 0.482 0.75 0 1.286-0.554-0.054-0.054-0.339-0.33t-0.384-0.384-0.268-0.339-0.232-0.455-0.063-0.491q0-0.714 0.5-1.214t1.214-0.5q0.268 0 0.491 0.063t0.455 0.232 0.339 0.268 0.384 0.384 0.33 0.339q0.589-0.554 0.589-1.304zM29.429 21.714q0 2.143-1.518 3.625l-2.625 2.607q-1.482 1.482-3.625 1.482-2.161 0-3.643-1.518l-3.679-3.696q-1.482-1.482-1.482-3.625 0-2.196 1.571-3.732l-1.571-1.571q-1.536 1.571-3.714 1.571-2.143 0-3.643-1.5l-3.714-3.714q-1.5-1.5-1.5-3.643t1.518-3.625l2.625-2.607q1.482-1.482 3.625-1.482 2.161 0 3.643 1.518l3.679 3.696q1.482 1.482 1.482 3.625 0 2.196-1.571 3.732l1.571 1.571q1.536-1.571 3.714-1.571 2.143 0 3.643 1.5l3.714 3.714q1.5 1.5 1.5 3.643z"></path>
</symbol>
<symbol id="icon-thumb-tack" viewBox="0 0 21 32">
<path class="path1" d="M8.571 15.429v-8q0-0.25-0.161-0.411t-0.411-0.161-0.411 0.161-0.161 0.411v8q0 0.25 0.161 0.411t0.411 0.161 0.411-0.161 0.161-0.411zM20.571 21.714q0 0.464-0.339 0.804t-0.804 0.339h-7.661l-0.911 8.625q-0.036 0.214-0.188 0.366t-0.366 0.152h-0.018q-0.482 0-0.571-0.482l-1.357-8.661h-7.214q-0.464 0-0.804-0.339t-0.339-0.804q0-2.196 1.402-3.955t3.17-1.759v-9.143q-0.929 0-1.607-0.679t-0.679-1.607 0.679-1.607 1.607-0.679h11.429q0.929 0 1.607 0.679t0.679 1.607-0.679 1.607-1.607 0.679v9.143q1.768 0 3.17 1.759t1.402 3.955z"></path>
</symbol>
<symbol id="icon-arrow-left" viewBox="0 0 43 32">
<path class="path1" d="M42.311 14.044c-0.178-0.178-0.533-0.356-0.711-0.356h-33.778l10.311-10.489c0.178-0.178 0.356-0.533 0.356-0.711 0-0.356-0.178-0.533-0.356-0.711l-1.6-1.422c-0.356-0.178-0.533-0.356-0.889-0.356s-0.533 0.178-0.711 0.356l-14.578 14.933c-0.178 0.178-0.356 0.533-0.356 0.711s0.178 0.533 0.356 0.711l14.756 14.933c0 0.178 0.356 0.356 0.533 0.356s0.533-0.178 0.711-0.356l1.6-1.6c0.178-0.178 0.356-0.533 0.356-0.711s-0.178-0.533-0.356-0.711l-10.311-10.489h33.778c0.178 0 0.533-0.178 0.711-0.356 0.356-0.178 0.533-0.356 0.533-0.711v-2.133c0-0.356-0.178-0.711-0.356-0.889z"></path>
</symbol>
<symbol id="icon-arrow-right" viewBox="0 0 43 32">
<path class="path1" d="M0.356 17.956c0.178 0.178 0.533 0.356 0.711 0.356h33.778l-10.311 10.489c-0.178 0.178-0.356 0.533-0.356 0.711 0 0.356 0.178 0.533 0.356 0.711l1.6 1.6c0.178 0.178 0.533 0.356 0.711 0.356s0.533-0.178 0.711-0.356l14.756-14.933c0.178-0.356 0.356-0.711 0.356-0.889s-0.178-0.533-0.356-0.711l-14.756-14.933c0-0.178-0.356-0.356-0.533-0.356s-0.533 0.178-0.711 0.356l-1.6 1.6c-0.178 0.178-0.356 0.533-0.356 0.711s0.178 0.533 0.356 0.711l10.311 10.489h-33.778c-0.178 0-0.533 0.178-0.711 0.356-0.356 0.178-0.533 0.356-0.533 0.711v2.311c0 0.178 0.178 0.533 0.356 0.711z"></path>
</symbol>
<symbol id="icon-play" viewBox="0 0 22 28">
<path d="M21.625 14.484l-20.75 11.531c-0.484 0.266-0.875 0.031-0.875-0.516v-23c0-0.547 0.391-0.781 0.875-0.516l20.75 11.531c0.484 0.266 0.484 0.703 0 0.969z"></path>
</symbol>
<symbol id="icon-pause" viewBox="0 0 24 28">
<path d="M24 3v22c0 0.547-0.453 1-1 1h-8c-0.547 0-1-0.453-1-1v-22c0-0.547 0.453-1 1-1h8c0.547 0 1 0.453 1 1zM10 3v22c0 0.547-0.453 1-1 1h-8c-0.547 0-1-0.453-1-1v-22c0-0.547 0.453-1 1-1h8c0.547 0 1 0.453 1 1z"></path>
</symbol>
</defs>
</svg> <script data-no-optimize="1">!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?module.exports=e():"function"==typeof define&&define.amd?define(e):(t="undefined"!=typeof globalThis?globalThis:t||self).LazyLoad=e()}(this,function(){"use strict";function e(){return(e=Object.assign||function(t){for(var e=1;e<arguments.length;e++){var n,a=arguments[e];for(n in a)Object.prototype.hasOwnProperty.call(a,n)&&(t[n]=a[n])}return t}).apply(this,arguments)}function i(t){return e({},it,t)}function o(t,e){var n,a="LazyLoad::Initialized",i=new t(e);try{n=new CustomEvent(a,{detail:{instance:i}})}catch(t){(n=document.createEvent("CustomEvent")).initCustomEvent(a,!1,!1,{instance:i})}window.dispatchEvent(n)}function l(t,e){return t.getAttribute(gt+e)}function c(t){return l(t,bt)}function s(t,e){return function(t,e,n){e=gt+e;null!==n?t.setAttribute(e,n):t.removeAttribute(e)}(t,bt,e)}function r(t){return s(t,null),0}function u(t){return null===c(t)}function d(t){return c(t)===vt}function f(t,e,n,a){t&&(void 0===a?void 0===n?t(e):t(e,n):t(e,n,a))}function _(t,e){nt?t.classList.add(e):t.className+=(t.className?" ":"")+e}function v(t,e){nt?t.classList.remove(e):t.className=t.className.replace(new RegExp("(^|\\s+)"+e+"(\\s+|$)")," ").replace(/^\s+/,"").replace(/\s+$/,"")}function g(t){return t.llTempImage}function b(t,e){!e||(e=e._observer)&&e.unobserve(t)}function p(t,e){t&&(t.loadingCount+=e)}function h(t,e){t&&(t.toLoadCount=e)}function n(t){for(var e,n=[],a=0;e=t.children[a];a+=1)"SOURCE"===e.tagName&&n.push(e);return n}function m(t,e){(t=t.parentNode)&&"PICTURE"===t.tagName&&n(t).forEach(e)}function a(t,e){n(t).forEach(e)}function E(t){return!!t[st]}function I(t){return t[st]}function y(t){return delete t[st]}function A(e,t){var n;E(e)||(n={},t.forEach(function(t){n[t]=e.getAttribute(t)}),e[st]=n)}function k(a,t){var i;E(a)&&(i=I(a),t.forEach(function(t){var e,n;e=a,(t=i[n=t])?e.setAttribute(n,t):e.removeAttribute(n)}))}function L(t,e,n){_(t,e.class_loading),s(t,ut),n&&(p(n,1),f(e.callback_loading,t,n))}function w(t,e,n){n&&t.setAttribute(e,n)}function x(t,e){w(t,ct,l(t,e.data_sizes)),w(t,rt,l(t,e.data_srcset)),w(t,ot,l(t,e.data_src))}function O(t,e,n){var a=l(t,e.data_bg_multi),i=l(t,e.data_bg_multi_hidpi);(a=at&&i?i:a)&&(t.style.backgroundImage=a,n=n,_(t=t,(e=e).class_applied),s(t,ft),n&&(e.unobserve_completed&&b(t,e),f(e.callback_applied,t,n)))}function N(t,e){!e||0<e.loadingCount||0<e.toLoadCount||f(t.callback_finish,e)}function C(t,e,n){t.addEventListener(e,n),t.llEvLisnrs[e]=n}function M(t){return!!t.llEvLisnrs}function z(t){if(M(t)){var e,n,a=t.llEvLisnrs;for(e in a){var i=a[e];n=e,i=i,t.removeEventListener(n,i)}delete t.llEvLisnrs}}function R(t,e,n){var a;delete t.llTempImage,p(n,-1),(a=n)&&--a.toLoadCount,v(t,e.class_loading),e.unobserve_completed&&b(t,n)}function T(o,r,c){var l=g(o)||o;M(l)||function(t,e,n){M(t)||(t.llEvLisnrs={});var a="VIDEO"===t.tagName?"loadeddata":"load";C(t,a,e),C(t,"error",n)}(l,function(t){var e,n,a,i;n=r,a=c,i=d(e=o),R(e,n,a),_(e,n.class_loaded),s(e,dt),f(n.callback_loaded,e,a),i||N(n,a),z(l)},function(t){var e,n,a,i;n=r,a=c,i=d(e=o),R(e,n,a),_(e,n.class_error),s(e,_t),f(n.callback_error,e,a),i||N(n,a),z(l)})}function G(t,e,n){var a,i,o,r,c;t.llTempImage=document.createElement("IMG"),T(t,e,n),E(c=t)||(c[st]={backgroundImage:c.style.backgroundImage}),o=n,r=l(a=t,(i=e).data_bg),c=l(a,i.data_bg_hidpi),(r=at&&c?c:r)&&(a.style.backgroundImage='url("'.concat(r,'")'),g(a).setAttribute(ot,r),L(a,i,o)),O(t,e,n)}function D(t,e,n){var a;T(t,e,n),a=e,e=n,(t=It[(n=t).tagName])&&(t(n,a),L(n,a,e))}function V(t,e,n){var a;a=t,(-1<yt.indexOf(a.tagName)?D:G)(t,e,n)}function F(t,e,n){var a;t.setAttribute("loading","lazy"),T(t,e,n),a=e,(e=It[(n=t).tagName])&&e(n,a),s(t,vt)}function j(t){t.removeAttribute(ot),t.removeAttribute(rt),t.removeAttribute(ct)}function P(t){m(t,function(t){k(t,Et)}),k(t,Et)}function S(t){var e;(e=At[t.tagName])?e(t):E(e=t)&&(t=I(e),e.style.backgroundImage=t.backgroundImage)}function U(t,e){var n;S(t),n=e,u(e=t)||d(e)||(v(e,n.class_entered),v(e,n.class_exited),v(e,n.class_applied),v(e,n.class_loading),v(e,n.class_loaded),v(e,n.class_error)),r(t),y(t)}function $(t,e,n,a){var i;n.cancel_on_exit&&(c(t)!==ut||"IMG"===t.tagName&&(z(t),m(i=t,function(t){j(t)}),j(i),P(t),v(t,n.class_loading),p(a,-1),r(t),f(n.callback_cancel,t,e,a)))}function q(t,e,n,a){var i,o,r=(o=t,0<=pt.indexOf(c(o)));s(t,"entered"),_(t,n.class_entered),v(t,n.class_exited),i=t,o=a,n.unobserve_entered&&b(i,o),f(n.callback_enter,t,e,a),r||V(t,n,a)}function H(t){return t.use_native&&"loading"in HTMLImageElement.prototype}function B(t,i,o){t.forEach(function(t){return(a=t).isIntersecting||0<a.intersectionRatio?q(t.target,t,i,o):(e=t.target,n=t,a=i,t=o,void(u(e)||(_(e,a.class_exited),$(e,n,a,t),f(a.callback_exit,e,n,t))));var e,n,a})}function J(e,n){var t;et&&!H(e)&&(n._observer=new IntersectionObserver(function(t){B(t,e,n)},{root:(t=e).container===document?null:t.container,rootMargin:t.thresholds||t.threshold+"px"}))}function K(t){return Array.prototype.slice.call(t)}function Q(t){return t.container.querySelectorAll(t.elements_selector)}function W(t){return c(t)===_t}function X(t,e){return e=t||Q(e),K(e).filter(u)}function Y(e,t){var n;(n=Q(e),K(n).filter(W)).forEach(function(t){v(t,e.class_error),r(t)}),t.update()}function t(t,e){var n,a,t=i(t);this._settings=t,this.loadingCount=0,J(t,this),n=t,a=this,Z&&window.addEventListener("online",function(){Y(n,a)}),this.update(e)}var Z="undefined"!=typeof window,tt=Z&&!("onscroll"in window)||"undefined"!=typeof navigator&&/(gle|ing|ro)bot|crawl|spider/i.test(navigator.userAgent),et=Z&&"IntersectionObserver"in window,nt=Z&&"classList"in document.createElement("p"),at=Z&&1<window.devicePixelRatio,it={elements_selector:".lazy",container:tt||Z?document:null,threshold:300,thresholds:null,data_src:"src",data_srcset:"srcset",data_sizes:"sizes",data_bg:"bg",data_bg_hidpi:"bg-hidpi",data_bg_multi:"bg-multi",data_bg_multi_hidpi:"bg-multi-hidpi",data_poster:"poster",class_applied:"applied",class_loading:"litespeed-loading",class_loaded:"litespeed-loaded",class_error:"error",class_entered:"entered",class_exited:"exited",unobserve_completed:!0,unobserve_entered:!1,cancel_on_exit:!0,callback_enter:null,callback_exit:null,callback_applied:null,callback_loading:null,callback_loaded:null,callback_error:null,callback_finish:null,callback_cancel:null,use_native:!1},ot="src",rt="srcset",ct="sizes",lt="poster",st="llOriginalAttrs",ut="loading",dt="loaded",ft="applied",_t="error",vt="native",gt="data-",bt="ll-status",pt=[ut,dt,ft,_t],ht=[ot],mt=[ot,lt],Et=[ot,rt,ct],It={IMG:function(t,e){m(t,function(t){A(t,Et),x(t,e)}),A(t,Et),x(t,e)},IFRAME:function(t,e){A(t,ht),w(t,ot,l(t,e.data_src))},VIDEO:function(t,e){a(t,function(t){A(t,ht),w(t,ot,l(t,e.data_src))}),A(t,mt),w(t,lt,l(t,e.data_poster)),w(t,ot,l(t,e.data_src)),t.load()}},yt=["IMG","IFRAME","VIDEO"],At={IMG:P,IFRAME:function(t){k(t,ht)},VIDEO:function(t){a(t,function(t){k(t,ht)}),k(t,mt),t.load()}},kt=["IMG","IFRAME","VIDEO"];return t.prototype={update:function(t){var e,n,a,i=this._settings,o=X(t,i);{if(h(this,o.length),!tt&&et)return H(i)?(e=i,n=this,o.forEach(function(t){-1!==kt.indexOf(t.tagName)&&F(t,e,n)}),void h(n,0)):(t=this._observer,i=o,t.disconnect(),a=t,void i.forEach(function(t){a.observe(t)}));this.loadAll(o)}},destroy:function(){this._observer&&this._observer.disconnect(),Q(this._settings).forEach(function(t){y(t)}),delete this._observer,delete this._settings,delete this.loadingCount,delete this.toLoadCount},loadAll:function(t){var e=this,n=this._settings;X(t,n).forEach(function(t){b(t,e),V(t,n,e)})},restoreAll:function(){var e=this._settings;Q(e).forEach(function(t){U(t,e)})}},t.load=function(t,e){e=i(e);V(t,e)},t.resetStatus=function(t){r(t)},Z&&function(t,e){if(e)if(e.length)for(var n,a=0;n=e[a];a+=1)o(t,n);else o(t,e)}(t,window.lazyLoadOptions),t});!function(e,t){"use strict";function a(){t.body.classList.add("litespeed_lazyloaded")}function n(){console.log("[LiteSpeed] Start Lazy Load Images"),d=new LazyLoad({elements_selector:"[data-lazyloaded]",callback_finish:a}),o=function(){d.update()},e.MutationObserver&&new MutationObserver(o).observe(t.documentElement,{childList:!0,subtree:!0,attributes:!0})}var d,o;e.addEventListener?e.addEventListener("load",n,!1):e.attachEvent("onload",n)}(window,document);</script><script data-optimized="1" src="https://www.ssla.co.uk/wp-content/litespeed/js/3e080b5b5a9035a9d20b0441f99fc92f.js?ver=34820" defer></script></body></html>
<!-- Page optimized by LiteSpeed Cache @2025-05-10 00:35:32 -->
<!-- Page cached by LiteSpeed Cache 7.1 on 2025-05-10 00:35:32 -->