This feed does not validate.
<br />
<b>Notice</b>: Function _load_textdomain_just_in_time was called <strong>in ...
In addition, interoperability with the widest range of feed readers could be improved by implementing the following recommendation.
help]
[<br />
<b>Notice</b>: Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>affiliates-manager</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
<br />
<b>Notice</b>: Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>it-l10n-ithemes-security-pro</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
<br />
<b>Notice</b>: Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>it-l10n-ithemes-security-pro</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
<br />
<b>Notice</b>: Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>woocommerce-gateway-paypal-express-checkout</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
<!DOCTYPE html><html lang="en-US" class="lt-ie10 lt-ie9 no-js" prefix="og: https://ogp.me/ns#" lang="en-us">
<![endif]--><!--[if IE 9]><html lang="en-US" class="lt-ie10 no-js" prefix="og: https://ogp.me/ns#" lang="en-us">
<![endif]--><!--[if gt IE 9]><!--><html lang="en-US" class="no-js" prefix="og: https://ogp.me/ns#" lang="en-us">
<!--<![endif]--><head><meta charset="utf-8"><link rel="preconnect" href="https://fonts.gstatic.com/" crossorigin /><script src="data:text/javascript;base64,V2ViRm9udENvbmZpZz17Z29vZ2xlOntmYW1pbGllczpbIkxpYnJlIEZyYW5rbGluOjMwMCwzMDBpLDQwMCw0MDBpLDYwMCw2MDBpLDgwMCw4MDBpOmxhdGluLGxhdGluLWV4dCJdfX07aWYodHlwZW9mIFdlYkZvbnQ9PT0ib2JqZWN0IiYmdHlwZW9mIFdlYkZvbnQubG9hZD09PSJmdW5jdGlvbiIpe1dlYkZvbnQubG9hZChXZWJGb250Q29uZmlnKX0=" defer></script><script data-optimized="1" src="https://www.ssla.co.uk/wp-content/plugins/litespeed-cache/assets/js/webfontloader.min.js" defer></script><link data-optimized="2" rel="stylesheet" href="https://www.ssla.co.uk/wp-content/litespeed/css/5a6793ecf7db821bc387411782f5131a.css?ver=34820" /><meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"><meta name="viewport" content="width=device-width,initial-scale=1"><meta name="msapplication-tap-highlight" content="no"><meta name="generator" content="Webnode 2"><meta name="apple-mobile-web-app-capable" content="yes"><meta name="apple-mobile-web-app-status-bar-style" content="black"><meta name="format-detection" content="telephone=no"><meta name="google-site-verification" content="PMYbq1w5vSmZYbanaTzAGAULVY13Mn9rWvoNe6oeb1A" /><meta property="og:url" content="https://www.ssla.co.uk/"><meta property="og:title" content="ssla-co-uk"><meta property="og:type" content="article"><meta property="og:description" content="High performance data acquisition"><meta property="og:site_name" content="ssla-co-uk"><meta property="og:image" content="https://ssla.co.uk/_files/200000001-807d78177b/700/default.png"><meta property="og:article:published_time" content="2018-06-19T00:00:00+0200"><link rel="canonical" href="https://www.ssla.co.uk/"><link rel="icon" href="https://www.ssla.co.uk/wp-content/themes/ssla/favicon.png" type="image/png" sizes="16x16">
<script src="data:text/javascript;base64,KGZ1bmN0aW9uKGkscyxvLGcscixhLG0pe2kuR29vZ2xlQW5hbHl0aWNzT2JqZWN0PXI7aVtyXT1pW3JdfHxmdW5jdGlvbigpeyhpW3JdLnE9aVtyXS5xfHxbXSkucHVzaChhcmd1bWVudHMpfSxpW3JdLmw9MSpuZXcgRGF0ZSgpO2E9cy5jcmVhdGVFbGVtZW50KG8pLG09cy5nZXRFbGVtZW50c0J5VGFnTmFtZShvKVswXTthLmFzeW5jPTE7YS5zcmM9ZzttLnBhcmVudE5vZGUuaW5zZXJ0QmVmb3JlKGEsbSl9KSh3aW5kb3csZG9jdW1lbnQsJ3NjcmlwdCcsJy8vd3d3Lmdvb2dsZS1hbmFseXRpY3MuY29tL2FuYWx5dGljcy5qcycsJ2dhJyk7Z2EoJ2NyZWF0ZScsJ1VBLTc5NzcwNS02JywnYXV0bycseyJuYW1lIjoid25kX2hlYWRlciJ9KTtnYSgnd25kX2hlYWRlci5zZXQnLCdkaW1lbnNpb24xJywnVzInKTtnYSgnd25kX2hlYWRlci5zZXQnLCdhbm9ueW1pemVJcCcsITApO2dhKCd3bmRfaGVhZGVyLnNlbmQnLCdwYWdldmlldycp" defer></script> <script src="https://www.googletagmanager.com/gtag/js?id=UA-122251477-1" defer data-deferred="1"></script> <script src="data:text/javascript;base64,d2luZG93LmRhdGFMYXllcj13aW5kb3cuZGF0YUxheWVyfHxbXTtmdW5jdGlvbiBndGFnKCl7ZGF0YUxheWVyLnB1c2goYXJndW1lbnRzKX0KZ3RhZygnanMnLG5ldyBEYXRlKCkpO2d0YWcoJ2NvbmZpZycsJ1VBLTEyMjI1MTQ3Ny0xJyk=" defer></script> <meta name='robots' content='index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1' /><title>what is regression in AI? why it is necessary in industries. | ssla.co.uk</title><meta name="description" content="Find the right Regression in AI for your project. We provide evaluation hardware software for ARM, RISC-V and x86 ISA boards ?" /><link rel="canonical" href="https://www.ssla.co.uk/regression-in-ai/" /><meta property="og:locale" content="en_US" /><meta property="og:type" content="article" /><meta property="og:title" content="what is regression in AI? why it is necessary in industries. | ssla.co.uk" /><meta property="og:description" content="Find the right Regression in AI for your project. We provide evaluation hardware software for ARM, RISC-V and x86 ISA boards ?" /><meta property="og:url" content="https://www.ssla.co.uk/regression-in-ai/" /><meta property="og:site_name" content="ssla.co.uk" /><meta property="article:publisher" content="http://www.facebook.com/ssla.rein.design" /><meta property="article:modified_time" content="2020-08-17T12:52:12+00:00" /><meta property="og:image" content="https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI-300x229.png" /><meta name="twitter:card" content="summary_large_image" /><meta name="twitter:site" content="@ssla_embedded" /><meta name="twitter:label1" content="Est. reading time" /><meta name="twitter:data1" content="6 minutes" /> <script type="application/ld+json" class="yoast-schema-graph">{"@context":"https://schema.org","@graph":[{"@type":"WebPage","@id":"https://www.ssla.co.uk/regression-in-ai/","url":"https://www.ssla.co.uk/regression-in-ai/","name":"what is regression in AI? why it is necessary in industries. | ssla.co.uk","isPartOf":{"@id":"https://www.ssla.co.uk/#website"},"primaryImageOfPage":{"@id":"https://www.ssla.co.uk/regression-in-ai/#primaryimage"},"image":{"@id":"https://www.ssla.co.uk/regression-in-ai/#primaryimage"},"thumbnailUrl":"https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI-300x229.png","datePublished":"2020-08-03T14:19:12+00:00","dateModified":"2020-08-17T12:52:12+00:00","description":"Find the right Regression in AI for your project. We provide evaluation hardware software for ARM, RISC-V and x86 ISA boards ?","breadcrumb":{"@id":"https://www.ssla.co.uk/regression-in-ai/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https://www.ssla.co.uk/regression-in-ai/"]}]},{"@type":"ImageObject","inLanguage":"en-US","@id":"https://www.ssla.co.uk/regression-in-ai/#primaryimage","url":"https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI.png","contentUrl":"https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI.png","width":688,"height":526,"caption":"regression in AI"},{"@type":"BreadcrumbList","@id":"https://www.ssla.co.uk/regression-in-ai/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https://www.ssla.co.uk/"},{"@type":"ListItem","position":2,"name":"Regression in AI"}]},{"@type":"WebSite","@id":"https://www.ssla.co.uk/#website","url":"https://www.ssla.co.uk/","name":"ssla.co.uk","description":"Embedded Linux hardware and software solution","publisher":{"@id":"https://www.ssla.co.uk/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https://www.ssla.co.uk/?s={search_term_string}"},"query-input":{"@type":"PropertyValueSpecification","valueRequired":true,"valueName":"search_term_string"}}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https://www.ssla.co.uk/#organization","name":"www.ssla.co.uk","url":"https://www.ssla.co.uk/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https://www.ssla.co.uk/#/schema/logo/image/","url":"https://www.ssla.co.uk/wp-content/uploads/2019/01/ssla_logo.gif","contentUrl":"https://www.ssla.co.uk/wp-content/uploads/2019/01/ssla_logo.gif","width":306,"height":72,"caption":"www.ssla.co.uk"},"image":{"@id":"https://www.ssla.co.uk/#/schema/logo/image/"},"sameAs":["http://www.facebook.com/ssla.rein.design","https://x.com/ssla_embedded","https://www.linkedin.com/company/ssla-co-uk/","https://www.pinterest.at/scadadevice/","https://www.youtube.com/watch?v=k9OrY2iSQ68&amp;amp;t=2s"]}]}</script> <link rel='dns-prefetch' href='//stats.wp.com' /><link rel='dns-prefetch' href='//fonts.googleapis.com' /><link rel='dns-prefetch' href='//www.youtube.com' /><link href='https://fonts.gstatic.com' crossorigin rel='preconnect' /><link rel="alternate" type="application/rss+xml" title="ssla.co.uk » Feed" href="https://www.ssla.co.uk/feed/" /><link rel="alternate" type="application/rss+xml" title="ssla.co.uk » Comments Feed" href="https://www.ssla.co.uk/comments/feed/" /><!--[if lt IE 9]><link rel='stylesheet' id='twentyseventeen-ie8-css' href='https://www.ssla.co.uk/wp-content/themes/ssla/assets/css/ie8.css' type='text/css' media='all' />
<![endif]--> <script type="text/javascript" src="https://www.ssla.co.uk/wp-includes/js/jquery/jquery.min.js" id="jquery-core-js"></script> <!--[if lt IE 9]> <script type="text/javascript" src="https://www.ssla.co.uk/wp-content/themes/ssla/assets/js/html5.js" id="html5-js"></script> <![endif]--> <script type="text/javascript" src="https://stats.wp.com/s-202519.js" id="woocommerce-analytics-js" defer="defer" data-wp-strategy="defer"></script> <link rel="https://api.w.org/" href="https://www.ssla.co.uk/wp-json/" /><link rel="alternate" title="JSON" type="application/json" href="https://www.ssla.co.uk/wp-json/wp/v2/pages/7237" /><meta name="generator" content="WordPress 6.8.1" /><meta name="generator" content="WooCommerce 9.8.4" /><link rel='shortlink' href='https://www.ssla.co.uk/?p=7237' /><link rel="alternate" title="oEmbed (JSON)" type="application/json+oembed" href="https://www.ssla.co.uk/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.ssla.co.uk%2Fregression-in-ai%2F" /><link rel="alternate" title="oEmbed (XML)" type="text/xml+oembed" href="https://www.ssla.co.uk/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.ssla.co.uk%2Fregression-in-ai%2F&format=xml" /> <script src="https://www.googletagmanager.com/gtag/js?id=AW-472720427" defer data-deferred="1"></script> <script src="data:text/javascript;base64,d2luZG93LmRhdGFMYXllcj13aW5kb3cuZGF0YUxheWVyfHxbXTtmdW5jdGlvbiBndGFnKCl7ZGF0YUxheWVyLnB1c2goYXJndW1lbnRzKX0KZ3RhZygnanMnLG5ldyBEYXRlKCkpO2d0YWcoJ2NvbmZpZycsJ0FXLTQ3MjcyMDQyNycp" defer></script> <script src="https://www.googletagmanager.com/gtag/js?id=AW-800223711" defer data-deferred="1"></script> <script src="data:text/javascript;base64,d2luZG93LmRhdGFMYXllcj13aW5kb3cuZGF0YUxheWVyfHxbXTtmdW5jdGlvbiBndGFnKCl7ZGF0YUxheWVyLnB1c2goYXJndW1lbnRzKX0KZ3RhZygnanMnLG5ldyBEYXRlKCkpO2d0YWcoJ2NvbmZpZycsJ0FXLTgwMDIyMzcxMScp" defer></script> <noscript><style>.woocommerce-product-gallery{ opacity: 1 !important; }</style></noscript><meta name="generator" content="Powered by WPBakery Page Builder - drag and drop page builder for WordPress."/>
<!--[if lte IE 9]><link rel="stylesheet" type="text/css" href="https://www.ssla.co.uk/wp-content/plugins/js_composer/assets/css/vc_lte_ie9.min.css" media="screen"><![endif]-->
<noscript><style type="text/css">.wpb_animate_when_almost_visible { opacity: 1; }</style></noscript>
<script src="data:text/javascript;base64,KGZ1bmN0aW9uKHcsZCxzLGwsaSl7d1tsXT13W2xdfHxbXTt3W2xdLnB1c2goeydndG0uc3RhcnQnOm5ldyBEYXRlKCkuZ2V0VGltZSgpLGV2ZW50OidndG0uanMnfSk7dmFyIGY9ZC5nZXRFbGVtZW50c0J5VGFnTmFtZShzKVswXSxqPWQuY3JlYXRlRWxlbWVudChzKSxkbD1sIT0nZGF0YUxheWVyJz8nJmw9JytsOicnO2ouYXN5bmM9ITA7ai5zcmM9J2h0dHBzOi8vd3d3Lmdvb2dsZXRhZ21hbmFnZXIuY29tL2d0bS5qcz9pZD0nK2krZGw7Zi5wYXJlbnROb2RlLmluc2VydEJlZm9yZShqLGYpfSkod2luZG93LGRvY3VtZW50LCdzY3JpcHQnLCdkYXRhTGF5ZXInLCdHVE0tUDczSzdTUycp" defer></script> </head><body class="wp-singular page-template-default page page-id-7237 wp-theme-ssla theme-ssla woocommerce-no-js has-header-image page-one-column colors-light wpb-js-composer js-comp-ver-5.5.2 vc_responsive"><div id="page" class="wnd-page color-none"><div id="wrapper"><header id="header"><div class="container"><div class="row"><div id="layout-section" class="section header header-01 claim-section cf design-03 wsection-black"><div class="section-fixed"><div class="section-inner"><div class="nav-line initial-state cf"><div class="logo logo-default brandon-grotesque wnd-logo-with-text wnd-image-vector"><div class="logo-content">
<a href="https://www.ssla.co.uk"><div class="embed-content"><div class="embed-content-cell">
<embed id="wnd_LogoBlock_87881_img" type="image/svg+xml" data-src="https://d1di2lzuh97fh2.cloudfront.net/files/3x/3x1/3x1agp.svg?ph=15d144db8f"></div></div><div class="text-content-outer">
<span class="text-content">SSLA</span></div>
</a></div></div><nav id="menu" role="navigation" aria-label="Top Menu"><div class="menu-main-container"><ul id="top-menu" class="level-1"><li id="menu-item-1970" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-1970"><a href="https://www.ssla.co.uk/">Home</a></li><li id="menu-item-42" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-42"><a href="https://www.ssla.co.uk/about-us/">About Us</a></li><li id="menu-item-263" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-263"><a href="https://www.ssla.co.uk/knowledgebase/">Knowledgebase</a></li><li id="menu-item-40" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-40"><a href="https://www.ssla.co.uk/download/">Download</a></li><li id="menu-item-490" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-490"><a href="https://www.ssla.co.uk/buy/">Store</a></li><li id="menu-item-583" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-583"><a href="https://www.ssla.co.uk/faq/">FAQ</a></li><li id="menu-item-619" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-619"><a href="https://www.ssla.co.uk/careers/">Careers</a></li><li id="menu-item-39" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-39"><a href="https://www.ssla.co.uk/contact-us/">Contact Us</a></li></ul></div></nav> <script type="application/javascript">var el=document.getElementById("menu");"undefined"!=typeof el&&(el.style.display="none")</script> <div id="menu-mobile" class="hidden">
<a href="#" id="menu-submit"><span></span>Menu</a></div></div></div></div></div></div></div></header><main id="main" role="main"><div class="section-wrapper cf"><div class="section-wrapper-content cf"><section class="section default-01 design-01 wsection-white"><div class="section-bg"><div class="section-bg-layer"></div><div class="section-bg-layer section-bg-overlay"></div></div><div class="section-inner"><div class="content cf wnd-no-cols"><div><div class="text cf design-01"><div class="container"><div class="vc_row vc_row-fluid boxed"><div class="wpb_column vc_column_container vc_col-sm-12"><div class="vc_column-inner "><div class="wpb_wrapper"><div class="wpb_text_column wpb_content_element " ><div class="wpb_wrapper"><h1 style="text-align: center;"><span style="font-weight: 400; color: #ff0000;">Regression in AI</span></h1><h3 style="text-align: left;"><span style="font-weight: 400; color: #000000;">What is Regression in AI?</span></h3><p><span style="font-weight: 400;">The mathematical approach to find the relationship between two or more variables is known as </span><b>Regression in AI </b><span style="font-weight: 400;">. Regression is widely used in <a href="https://www.ssla.co.uk/">Machine</a> Learning to predict the behavior of one variable depending upon the value of another variable.</span></p><p><span style="font-weight: 400;">Unlike the classification models, the regression models output numeric values. It also has continuous values for both dependent and independent variables, and for the </span><b>most part,</b><span style="font-weight: 400;"> Regression is classified as </span><b>supervised <a href="https://www.ssla.co.uk/about-us">learning</a></b><span style="font-weight: 400;">.</span></p><h3 style="text-align: left;"><span style="font-weight: 400; color: #000000;">Types of Regression in AI</span></h3><p><span style="font-weight: 400;">Each regression technique has some assumptions that you need to fulfil before using them. Here are a few of the types ranging from famous to less known; each of them has its own pros and cons.</span></p><ul><li style="font-weight: 400;"><span style="font-weight: 400;">Linear Regression: </span><span style="font-weight: 400;">Linear Regression is considered to be the simplest form of Regression. This type of Regression is applicable when the relationship between the dependent and independent variables is </span><b style="font-size: 1rem;">linear in nature</b><span style="font-weight: 400;">. The data is plotted on the graph, and a best-fitted line is calculated using the formula. This line is also known as the line of Regression. The predictions are then made on the basis of this line. </span></li></ul><p><span style="font-weight: 400;"><img data-lazyloaded="1" src="" fetchpriority="high" decoding="async" class="alignnone size-medium wp-image-7521" data-src="https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI-300x229.png" alt="regression in AI" width="300" height="229" data-srcset="https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI-300x229.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI-600x459.png 600w, https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI.png 688w" data-sizes="(max-width: 300px) 100vw, 300px" /><noscript><img fetchpriority="high" decoding="async" class="alignnone size-medium wp-image-7521" src="https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI-300x229.png" alt="regression in AI" width="300" height="229" srcset="https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI-300x229.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI-600x459.png 600w, https://www.ssla.co.uk/wp-content/uploads/2020/08/regression-in-AI.png 688w" sizes="(max-width: 300px) 100vw, 300px" /></noscript></span></p><p><span style="font-weight: 400;">The graph shows the linear regression model that is fitted on a data set represented by blue dots. For a simple linear regression, the equation is as follows</span></p><p><span style="font-weight: 400;">y=mx+c</span></p><p><span style="font-weight: 400;">Here ‘y’ is the dependent variable, ‘x’ is the independent variable, ‘c’ is the y-intercept of the line of Regression, and ‘m’ is the regression coefficient/slope of the line. If the number of independent co-efficient increases than the formula is as follows</span></p><p><span style="font-weight: 400;">y=</span><span style="font-weight: 400;">m</span><span style="font-weight: 400;">1 </span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">1</span><span style="font-weight: 400;">+</span><span style="font-weight: 400;">m</span><span style="font-weight: 400;">2</span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">2</span><span style="font-weight: 400;">+</span><span style="font-weight: 400;">m</span><span style="font-weight: 400;">3 </span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">3</span><span style="font-weight: 400;">…….</span><span style="font-weight: 400;">m</span><span style="font-weight: 400;">n </span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">n</span><span style="font-weight: 400;">+c</span></p><p><span style="font-weight: 400;">The slope of the line can be calculated using the simple slope formula</span></p><p><span style="font-weight: 400;">slope= </span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">2</span><span style="font-weight: 400;">–</span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">1</span><span style="font-weight: 400;">y</span><span style="font-weight: 400;">2</span><span style="font-weight: 400;">–</span><span style="font-weight: 400;">y</span><span style="font-weight: 400;">1</span></p><p><span style="font-weight: 400;">After calculating the ‘m’ and ‘c’ for the Regression, we calculate the </span><b>mean square error</b><span style="font-weight: 400;"> (</span><b>MSE</b><span style="font-weight: 400;">) and minimize it using gradient descent. MSE is given by</span></p><p><span style="font-weight: 400;">MSE= </span><span style="font-weight: 400;">1</span><span style="font-weight: 400;">2N</span><span style="font-weight: 400;">i=1</span><span style="font-weight: 400;">n</span><span style="font-weight: 400;">(</span><span style="font-weight: 400;">y</span><span style="font-weight: 400;">i</span><span style="font-weight: 400;"> –</span><span style="font-weight: 400;">(m</span><span style="font-weight: 400;">1 </span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">1</span><span style="font-weight: 400;">+</span><span style="font-weight: 400;">m</span><span style="font-weight: 400;">1 </span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">1</span><span style="font-weight: 400;">+</span><span style="font-weight: 400;">m</span><span style="font-weight: 400;">1 </span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">1</span><span style="font-weight: 400;">) )</span><span style="font-weight: 400;">2</span></p><p><span style="font-weight: 400;">Here ‘N’ is the number of data points, two is multiplied to facilitate when taking derivatives. This MSE is minimized, and the slope is adjusted using </span><b>gradient descent</b><span style="font-weight: 400;">.</span></p><ul><li style="font-weight: 400;"><span style="font-weight: 400;">Logistic Regression: </span><span style="font-size: 1rem;">Logistic Regression is used to predict the probability of a particular variable on the basis of <a href="https://www.ssla.co.uk/referral">independent</a> variables. This regression model is mainly used in classification problems like detecting spams email, diseases, and cancer detection. </span></li></ul><p><span style="font-weight: 400;">Mathematically, this model predicts the probability of an individual variable ‘Y’ on the basis of the independent variable ‘X’. The graphical representation of Logistic Regression is similar to that of a </span><b>sigmoid function</b><span style="font-weight: 400;">. There are generally three types of logistic Regression</span></p><ul><li style="font-weight: 400;"><span style="font-weight: 400;">Binary</span></li><li style="font-weight: 400;"><span style="font-weight: 400;">Multinomial</span></li><li style="font-weight: 400;"><span style="font-weight: 400;">Ordinal</span></li></ul><p><span style="font-weight: 400;">There is a minor difference between all three of these types. In binary logistic regression, there are two possible types of output, i.e., 0 or 1. It is more like a classification model, and 0 or 1 may represent yes/no, success/failure, etc. In multinomial and ordinal logistic Regression, there are three or more possible outcomes. The only difference is that the multinomial has an </span><b>unordered type</b><span style="font-weight: 400;"> and ordinal has </span><b>ordered type</b><span style="font-weight: 400;"> of outcome.</span></p><p><span style="font-weight: 400;">The mathematical formula for a simple binary logistic regression is given by </span></p><p><span style="font-weight: 400;">g</span><span style="font-weight: 400;">z</span><span style="font-weight: 400;">= </span><span style="font-weight: 400;">1</span><span style="font-weight: 400;">1+</span><span style="font-weight: 400;">e</span><span style="font-weight: 400;">-z</span></p><p><span style="font-weight: 400;">Here ‘z’ is the hypothesis, which is assumed to be </span></p><p><span style="font-weight: 400;">z=W*X+B</span></p><p><span style="font-weight: 400;">The cost function of this Regression is given as follows</span></p><p><span style="font-weight: 400;">cost</span><span style="font-weight: 400;">g</span><span style="font-weight: 400;">z</span><span style="font-weight: 400;">,y(actual)</span><span style="font-weight: 400;">= </span><span style="font-weight: 400;">{</span><span style="font-weight: 400;">–</span><span style="font-weight: 400;">log</span> <span style="font-weight: 400;">g</span><span style="font-weight: 400;">z</span><span style="font-weight: 400;"> if y=1</span><span style="font-weight: 400;"> </span><span style="font-weight: 400;">–</span><span style="font-weight: 400;">log</span> <span style="font-weight: 400;">1-g</span><span style="font-weight: 400;">z</span><span style="font-weight: 400;"> if y=0</span><span style="font-weight: 400;"> </span></p><ul><li style="font-weight: 400;"><span style="font-weight: 400;">Ridge Regression: </span><span style="font-weight: 400;">It is the type of Regression in which we add a </span><b style="font-size: 1rem;">plenty term</b><span style="font-weight: 400;"> equal to the summation of the square of the regression coefficients. This term is added to the cost function, and it helps us </span><b style="font-size: 1rem;">reduce</b><span style="font-weight: 400;"> the </span><b style="font-size: 1rem;">complexity</b><span style="font-weight: 400;"> of the model and also </span><b style="font-size: 1rem;">prevents</b><span style="font-weight: 400;"> the </span><b style="font-size: 1rem;">overfitting</b><span style="font-weight: 400;"> problem, which occurs due to simple Regression. Overfitting occurs when the model performs well for the training data, but the results on testing data are not satisfactory. </span></li></ul><p><span style="font-weight: 400;">Mathematically the cost function is expressed as </span></p><p><span style="font-weight: 400;">i=1</span><span style="font-weight: 400;">M</span><span style="font-weight: 400;">y</span><span style="font-weight: 400;">i</span><span style="font-weight: 400;">–</span><span style="font-weight: 400;">y</span><span style="font-weight: 400;">i</span><span style="font-weight: 400;">2</span><span style="font-weight: 400;">=</span><span style="font-weight: 400;">i=1</span><span style="font-weight: 400;">M</span><span style="font-weight: 400;">y</span><span style="font-weight: 400;">i</span><span style="font-weight: 400;">–</span><span style="font-weight: 400;">j=0</span><span style="font-weight: 400;">p</span><span style="font-weight: 400;">w</span><span style="font-weight: 400;">i</span><span style="font-weight: 400;">–</span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">ij</span><span style="font-weight: 400;">2</span><span style="font-weight: 400;">+</span><span style="font-weight: 400;">j=0</span><span style="font-weight: 400;">p</span><span style="font-weight: 400;">w</span><span style="font-weight: 400;">j</span><span style="font-weight: 400;">2</span></p><p><span style="font-weight: 400;">Here λ acts as the regularization parameter, which is always a positive number. It must be noted that there is no plenty applied to the intercept term. Only the summation of the square of the regression coefficient is affected by it. </span></p><p><span style="font-weight: 400;">Choosing the value for the regularization parameter (λ) is also very important. If we decide λ=0, then the plenty term will get excluded, and if the value of λ is kept high, then it will result in under-fitting. To find the optimal value, we plot the parameter against the different values of λ and select the minimum value for which the parameter is stable. </span></p><ul><li style="font-weight: 400;"><span style="font-weight: 400;">Support Vector Regression: </span><span style="font-weight: 400;">When a support vector <a href="https://www.ssla.co.uk/buy">machine</a> is used in the regression model, it becomes support vector regression (SVR). These types of regression models help us to define a </span><b style="font-size: 1rem;">boundary</b><span style="font-weight: 400;"> for an acceptable amount of </span><b style="font-size: 1rem;">error</b><span style="font-weight: 400;"> and find a </span><b style="font-size: 1rem;">hyperplane</b><span style="font-weight: 400;"> to fit the data. The SVR </span><b style="font-size: 1rem;">minimizes the coefficient</b><span style="font-weight: 400;"> rather than minimizing the </span><b style="font-size: 1rem;">squared error</b><span style="font-weight: 400;"> as done in other regression models. </span></li></ul><p><span style="font-weight: 400;">The cost function to minimize is </span></p><p><span style="font-weight: 400;">min(</span><span style="font-weight: 400;">1</span><span style="font-weight: 400;">2</span><span style="font-weight: 400;">|w|</span><span style="font-weight: 400;">2</span><span style="font-weight: 400;">)</span></p><p><span style="font-weight: 400;">Constraints are as follows</span></p><p><span style="font-weight: 400;">y</span><span style="font-weight: 400;">i</span><span style="font-weight: 400;">–</span><span style="font-weight: 400;">w</span><span style="font-weight: 400;">i</span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">i</span><span style="font-weight: 400;">≤e</span></p><p><span style="font-weight: 400;">We can also add a </span><b>slack variable</b><span style="font-weight: 400;"> to the cost function in order to obtain better results.</span></p><ul><li style="font-weight: 400;"><span style="font-weight: 400;">Decision Tree Regression: </span><span style="font-weight: 400;">The decision tree regression works on the principle of </span><b style="font-size: 1rem;">standard deviation</b><span style="font-weight: 400;">. In order to understand the standard deviation, we need to understand the variance. Variance is defined as the average of the squared distance of each value from the Mean value.</span></li></ul><p><span style="font-weight: 400;">By taking the square root of the variance the deviation can be calculated . In decision tree regression, the main aim is to reduce the standard deviation by segmenting the data into independent variables. </span></p><h3 style="text-align: left;"><span style="font-weight: 400; color: #000000;">How to choose the best model?</span></h3><p><span style="font-weight: 400;">There are many other models of Regression in AI other than the described above. But in order to choose the best one, we need to consider the following points</span></p><ul><li style="font-weight: 400;"><span style="font-weight: 400;">If the dependent variable is continuous and the resulting model has collinearity, then you should go for the ridge, lasso, or elastic net Regression. The final model can be selected on the basis of r-square error or RMSE. </span></li><li style="font-weight: 400;"><span style="font-weight: 400;">Support vector regression is the best choice when dealing with <a href="https://en.wikipedia.org/wiki/Artificial_intelligence">non-linear</a> models</span></li><li style="font-weight: 400;"><span style="font-weight: 400;">The cross-validation method is handy to eliminate the overfitting issue. Ridge and lasso models can also be used to reduce the overfitting problem</span></li><li style="font-weight: 400;"><span style="font-weight: 400;">For count data, it is a better choice to use negative binomial Regression</span></li><li style="font-weight: 400;"><span style="font-weight: 400;">Compare linear regression models for the same dataset</span></li><li style="font-weight: 400;"><span style="font-weight: 400;">Find a model with a more adjusted R2 value </span></li><li style="font-weight: 400;"><span style="font-weight: 400;">Errors of the model should be within a small bandwidth</span></li></ul></div></div><div class="vc_btn3-container red-button vc_btn3-inline" >
<a class="vc_general vc_btn3 vc_btn3-size-md vc_btn3-shape-rounded vc_btn3-style-modern vc_btn3-color-danger" href="https://www.ssla.co.uk/contact/" title="">Contact Us</a></div></div></div></div></div></div><div class="container"><div class="vc_row vc_row-fluid boxed"><div class="wpb_column vc_column_container vc_col-sm-12"><div class="vc_column-inner "><div class="wpb_wrapper"></div></div></div></div></div></div></div></div></div></section></div></div></main><div id="contact_footer"><div><h2>Refer our IoT solution and Earn with us</h2><p>Contact us and one of our specialist will call you back</p>
<a href="http://www.ssla.co.uk/referral/" class="button1r">Refer us</a>
<a href="https://www.ssla.co.uk/buy/" class="button3r">IoT Store</a>
<a href="https://www.ssla.co.uk/affiliate-home/affiliate-register/" class="button4r">Affiliate Program</a></div></div><footer id="footer" role="contentinfo"><div class="section-wrapper cf"><div class="section-wrapper-content cf"><div wn-border="top" wn-border-element="footer-line" class="section footer-01 design-01 wsection-gray"><div class="section-bg"><div class="section-bg-layer"></div><div class="section-bg-layer section-bg-overlay"></div></div><div class="section-inner"><div class="footer-line"><div class="footer-texts"><div class="copyright cf"><ul class="socials-footer"><li>
<a href="https://www.facebook.com/ssla.co.uk/" target="_blank"><i class="fa fa-facebook" aria-hidden="true"></i></a></li><li>
<a href="https://www.youtube.com/watch?v=k9OrY2iSQ68&t=2s" target="_blank"><i class="fa fa-youtube-play" aria-hidden="true"></i></a></li><li>
<a href="https://www.linkedin.com/company/ssla-co-uk" target="_blank"><i class="fa fa-linkedin" aria-hidden="true"></i></a></li><li>
<a href="https://twitter.com/ssla_embedded" target="_blank"><i class="fa fa-twitter" aria-hidden="true"></i></a></li><li>
<a href="https://www.quora.com/profile/Nicholas-Lenig" target="_blank"><i class="fa fa-quora" aria-hidden="true"></i></a></li><li>
<a href="https://www.reddit.com/user/nickolas_kd" target="_blank"><i class="fa fa-reddit" aria-hidden="true"></i></a></li></ul><span class="inline-text">
<span>
SSLA, VAT 172825594, Unit 24 Wilford Industrial Estate,Ruddington Lane Nottingham, UK, +447438823590 </span>
<span>
Sierra Software GmbH, Technologieservice für Hard-
und Software Unternehmen,Vorarlberg, Austria, +436765386877 </span>
</span></div><div class="system-footer cf"><div class="sf"></div></div></div><div class="lang-select cf"></div></div></div></div></div></div></footer></div></div><div id="fe_footer"><p style="text-align: center; margin: 0px; padding-top: 20px; color: white;">
© 2013 SSLA, An Engineering solutions company | All rights reserved | sales@ssla.co.uk | <a class="cookielink" href="https://www.ssla.co.uk/cookie-policy/">Cookie Policy</a></p></div> <script type="application/javascript">!function () {
if (0 == document.getElementsByClassName("wnd-cms").length) for (var e = document.getElementsByClassName("column-content"), t = 0; t < e.length; t++) {
var s = e[t].querySelector("div"), n = s.getElementsByClassName("text-content");
void 0 != n[0] && s.firstChild == s.lastChild && "" === n[0].innerText && (e[t].classList ? e[t].classList.add("column-empty") : (e[t].classList ? e[t].classList.contains("column-empty") : new RegExp("\\bcolumn-empty\\b").test(e[t].className)) && (e[t].className += " column-empty"))
}
}()</script> <script type="speculationrules">{"prefetch":[{"source":"document","where":{"and":[{"href_matches":"\/*"},{"not":{"href_matches":["\/wp-*.php","\/wp-admin\/*","\/wp-content\/uploads\/*","\/wp-content\/*","\/wp-content\/plugins\/*","\/wp-content\/themes\/ssla\/*","\/*\\?(.+)"]}},{"not":{"selector_matches":"a[rel~=\"nofollow\"]"}},{"not":{"selector_matches":".no-prefetch, .no-prefetch a"}}]},"eagerness":"conservative"}]}</script> <button type="button" aria-controls="rmp-container-8664" aria-label="Menu Trigger" id="rmp_menu_trigger-8664" class="rmp_menu_trigger rmp-menu-trigger-boring">
<span class="rmp-trigger-box">
<span class="responsive-menu-pro-inner"></span>
</span>
</button><div id="rmp-container-8664" class="rmp-container rmp-container rmp-slide-left"><div id="rmp-menu-title-8664" class="rmp-menu-title">
<span class="rmp-menu-title-link">
<span></span> </span></div><div id="rmp-menu-wrap-8664" class="rmp-menu-wrap"><ul id="rmp-menu-8664" class="rmp-menu" role="menubar" aria-label="Default Menu"><li id="rmp-menu-item-1970" class=" menu-item menu-item-type-post_type menu-item-object-page menu-item-home rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/" class="rmp-menu-item-link" role="menuitem" >Home</a></li><li id="rmp-menu-item-42" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/about-us/" class="rmp-menu-item-link" role="menuitem" >About Us</a></li><li id="rmp-menu-item-263" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/knowledgebase/" class="rmp-menu-item-link" role="menuitem" >Knowledgebase</a></li><li id="rmp-menu-item-40" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/download/" class="rmp-menu-item-link" role="menuitem" >Download</a></li><li id="rmp-menu-item-490" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/buy/" class="rmp-menu-item-link" role="menuitem" >Store</a></li><li id="rmp-menu-item-583" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/faq/" class="rmp-menu-item-link" role="menuitem" >FAQ</a></li><li id="rmp-menu-item-619" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/careers/" class="rmp-menu-item-link" role="menuitem" >Careers</a></li><li id="rmp-menu-item-39" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a href="https://www.ssla.co.uk/contact-us/" class="rmp-menu-item-link" role="menuitem" >Contact Us</a></li></ul></div><div id="rmp-search-box-8664" class="rmp-search-box"><form action="https://www.ssla.co.uk/" class="rmp-search-form" role="search">
<input type="search" name="s" title="Search" placeholder="Search" class="rmp-search-box"></form></div><div id="rmp-menu-additional-content-8664" class="rmp-menu-additional-content"></div></div> <script type="text/javascript" src="https://www.ssla.co.uk/wp-content/plugins/litespeed-cache/assets/js/instant_click.min.js" id="litespeed-cache-js"></script> <svg style="position: absolute; width: 0; height: 0; overflow: hidden;" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>
<symbol id="icon-behance" viewBox="0 0 37 32">
<path class="path1" d="M33 6.054h-9.125v2.214h9.125v-2.214zM28.5 13.661q-1.607 0-2.607 0.938t-1.107 2.545h7.286q-0.321-3.482-3.571-3.482zM28.786 24.107q1.125 0 2.179-0.571t1.357-1.554h3.946q-1.786 5.482-7.625 5.482-3.821 0-6.080-2.357t-2.259-6.196q0-3.714 2.33-6.17t6.009-2.455q2.464 0 4.295 1.214t2.732 3.196 0.902 4.429q0 0.304-0.036 0.839h-11.75q0 1.982 1.027 3.063t2.973 1.080zM4.946 23.214h5.286q3.661 0 3.661-2.982 0-3.214-3.554-3.214h-5.393v6.196zM4.946 13.625h5.018q1.393 0 2.205-0.652t0.813-2.027q0-2.571-3.393-2.571h-4.643v5.25zM0 4.536h10.607q1.554 0 2.768 0.25t2.259 0.848 1.607 1.723 0.563 2.75q0 3.232-3.071 4.696 2.036 0.571 3.071 2.054t1.036 3.643q0 1.339-0.438 2.438t-1.179 1.848-1.759 1.268-2.161 0.75-2.393 0.232h-10.911v-22.5z"></path>
</symbol>
<symbol id="icon-deviantart" viewBox="0 0 18 32">
<path class="path1" d="M18.286 5.411l-5.411 10.393 0.429 0.554h4.982v7.411h-9.054l-0.786 0.536-2.536 4.875-0.536 0.536h-5.375v-5.411l5.411-10.411-0.429-0.536h-4.982v-7.411h9.054l0.786-0.536 2.536-4.875 0.536-0.536h5.375v5.411z"></path>
</symbol>
<symbol id="icon-medium" viewBox="0 0 32 32">
<path class="path1" d="M10.661 7.518v20.946q0 0.446-0.223 0.759t-0.652 0.313q-0.304 0-0.589-0.143l-8.304-4.161q-0.375-0.179-0.634-0.598t-0.259-0.83v-20.357q0-0.357 0.179-0.607t0.518-0.25q0.25 0 0.786 0.268l9.125 4.571q0.054 0.054 0.054 0.089zM11.804 9.321l9.536 15.464-9.536-4.75v-10.714zM32 9.643v18.821q0 0.446-0.25 0.723t-0.679 0.277-0.839-0.232l-7.875-3.929zM31.946 7.5q0 0.054-4.58 7.491t-5.366 8.705l-6.964-11.321 5.786-9.411q0.304-0.5 0.929-0.5 0.25 0 0.464 0.107l9.661 4.821q0.071 0.036 0.071 0.107z"></path>
</symbol>
<symbol id="icon-slideshare" viewBox="0 0 32 32">
<path class="path1" d="M15.589 13.214q0 1.482-1.134 2.545t-2.723 1.063-2.723-1.063-1.134-2.545q0-1.5 1.134-2.554t2.723-1.054 2.723 1.054 1.134 2.554zM24.554 13.214q0 1.482-1.125 2.545t-2.732 1.063q-1.589 0-2.723-1.063t-1.134-2.545q0-1.5 1.134-2.554t2.723-1.054q1.607 0 2.732 1.054t1.125 2.554zM28.571 16.429v-11.911q0-1.554-0.571-2.205t-1.982-0.652h-19.857q-1.482 0-2.009 0.607t-0.527 2.25v12.018q0.768 0.411 1.58 0.714t1.446 0.5 1.446 0.33 1.268 0.196 1.25 0.071 1.045 0.009 1.009-0.036 0.795-0.036q1.214-0.018 1.696 0.482 0.107 0.107 0.179 0.161 0.464 0.446 1.089 0.911 0.125-1.625 2.107-1.554 0.089 0 0.652 0.027t0.768 0.036 0.813 0.018 0.946-0.018 0.973-0.080 1.089-0.152 1.107-0.241 1.196-0.348 1.205-0.482 1.286-0.616zM31.482 16.339q-2.161 2.661-6.643 4.5 1.5 5.089-0.411 8.304-1.179 2.018-3.268 2.643-1.857 0.571-3.25-0.268-1.536-0.911-1.464-2.929l-0.018-5.821v-0.018q-0.143-0.036-0.438-0.107t-0.42-0.089l-0.018 6.036q0.071 2.036-1.482 2.929-1.411 0.839-3.268 0.268-2.089-0.643-3.25-2.679-1.875-3.214-0.393-8.268-4.482-1.839-6.643-4.5-0.446-0.661-0.071-1.125t1.071 0.018q0.054 0.036 0.196 0.125t0.196 0.143v-12.393q0-1.286 0.839-2.196t2.036-0.911h22.446q1.196 0 2.036 0.911t0.839 2.196v12.393l0.375-0.268q0.696-0.482 1.071-0.018t-0.071 1.125z"></path>
</symbol>
<symbol id="icon-snapchat-ghost" viewBox="0 0 30 32">
<path class="path1" d="M15.143 2.286q2.393-0.018 4.295 1.223t2.92 3.438q0.482 1.036 0.482 3.196 0 0.839-0.161 3.411 0.25 0.125 0.5 0.125 0.321 0 0.911-0.241t0.911-0.241q0.518 0 1 0.321t0.482 0.821q0 0.571-0.563 0.964t-1.232 0.563-1.232 0.518-0.563 0.848q0 0.268 0.214 0.768 0.661 1.464 1.83 2.679t2.58 1.804q0.5 0.214 1.429 0.411 0.5 0.107 0.5 0.625 0 1.25-3.911 1.839-0.125 0.196-0.196 0.696t-0.25 0.83-0.589 0.33q-0.357 0-1.107-0.116t-1.143-0.116q-0.661 0-1.107 0.089-0.571 0.089-1.125 0.402t-1.036 0.679-1.036 0.723-1.357 0.598-1.768 0.241q-0.929 0-1.723-0.241t-1.339-0.598-1.027-0.723-1.036-0.679-1.107-0.402q-0.464-0.089-1.125-0.089-0.429 0-1.17 0.134t-1.045 0.134q-0.446 0-0.625-0.33t-0.25-0.848-0.196-0.714q-3.911-0.589-3.911-1.839 0-0.518 0.5-0.625 0.929-0.196 1.429-0.411 1.393-0.571 2.58-1.804t1.83-2.679q0.214-0.5 0.214-0.768 0-0.5-0.563-0.848t-1.241-0.527-1.241-0.563-0.563-0.938q0-0.482 0.464-0.813t0.982-0.33q0.268 0 0.857 0.232t0.946 0.232q0.321 0 0.571-0.125-0.161-2.536-0.161-3.393 0-2.179 0.482-3.214 1.143-2.446 3.071-3.536t4.714-1.125z"></path>
</symbol>
<symbol id="icon-yelp" viewBox="0 0 27 32">
<path class="path1" d="M13.804 23.554v2.268q-0.018 5.214-0.107 5.446-0.214 0.571-0.911 0.714-0.964 0.161-3.241-0.679t-2.902-1.589q-0.232-0.268-0.304-0.643-0.018-0.214 0.071-0.464 0.071-0.179 0.607-0.839t3.232-3.857q0.018 0 1.071-1.25 0.268-0.339 0.705-0.438t0.884 0.063q0.429 0.179 0.67 0.518t0.223 0.75zM11.143 19.071q-0.054 0.982-0.929 1.25l-2.143 0.696q-4.911 1.571-5.214 1.571-0.625-0.036-0.964-0.643-0.214-0.446-0.304-1.339-0.143-1.357 0.018-2.973t0.536-2.223 1-0.571q0.232 0 3.607 1.375 1.25 0.518 2.054 0.839l1.5 0.607q0.411 0.161 0.634 0.545t0.205 0.866zM25.893 24.375q-0.125 0.964-1.634 2.875t-2.42 2.268q-0.661 0.25-1.125-0.125-0.25-0.179-3.286-5.125l-0.839-1.375q-0.25-0.375-0.205-0.821t0.348-0.821q0.625-0.768 1.482-0.464 0.018 0.018 2.125 0.714 3.625 1.179 4.321 1.42t0.839 0.366q0.5 0.393 0.393 1.089zM13.893 13.089q0.089 1.821-0.964 2.179-1.036 0.304-2.036-1.268l-6.75-10.679q-0.143-0.625 0.339-1.107 0.732-0.768 3.705-1.598t4.009-0.563q0.714 0.179 0.875 0.804 0.054 0.321 0.393 5.455t0.429 6.777zM25.714 15.018q0.054 0.696-0.464 1.054-0.268 0.179-5.875 1.536-1.196 0.268-1.625 0.411l0.018-0.036q-0.411 0.107-0.821-0.071t-0.661-0.571q-0.536-0.839 0-1.554 0.018-0.018 1.339-1.821 2.232-3.054 2.679-3.643t0.607-0.696q0.5-0.339 1.161-0.036 0.857 0.411 2.196 2.384t1.446 2.991v0.054z"></path>
</symbol>
<symbol id="icon-vine" viewBox="0 0 27 32">
<path class="path1" d="M26.732 14.768v3.536q-1.804 0.411-3.536 0.411-1.161 2.429-2.955 4.839t-3.241 3.848-2.286 1.902q-1.429 0.804-2.893-0.054-0.5-0.304-1.080-0.777t-1.518-1.491-1.83-2.295-1.92-3.286-1.884-4.357-1.634-5.616-1.259-6.964h5.054q0.464 3.893 1.25 7.116t1.866 5.661 2.17 4.205 2.5 3.482q3.018-3.018 5.125-7.25-2.536-1.286-3.982-3.929t-1.446-5.946q0-3.429 1.857-5.616t5.071-2.188q3.179 0 4.875 1.884t1.696 5.313q0 2.839-1.036 5.107-0.125 0.018-0.348 0.054t-0.821 0.036-1.125-0.107-1.107-0.455-0.902-0.92q0.554-1.839 0.554-3.286 0-1.554-0.518-2.357t-1.411-0.804q-0.946 0-1.518 0.884t-0.571 2.509q0 3.321 1.875 5.241t4.768 1.92q1.107 0 2.161-0.25z"></path>
</symbol>
<symbol id="icon-vk" viewBox="0 0 35 32">
<path class="path1" d="M34.232 9.286q0.411 1.143-2.679 5.25-0.429 0.571-1.161 1.518-1.393 1.786-1.607 2.339-0.304 0.732 0.25 1.446 0.304 0.375 1.446 1.464h0.018l0.071 0.071q2.518 2.339 3.411 3.946 0.054 0.089 0.116 0.223t0.125 0.473-0.009 0.607-0.446 0.491-1.054 0.223l-4.571 0.071q-0.429 0.089-1-0.089t-0.929-0.393l-0.357-0.214q-0.536-0.375-1.25-1.143t-1.223-1.384-1.089-1.036-1.009-0.277q-0.054 0.018-0.143 0.063t-0.304 0.259-0.384 0.527-0.304 0.929-0.116 1.384q0 0.268-0.063 0.491t-0.134 0.33l-0.071 0.089q-0.321 0.339-0.946 0.393h-2.054q-1.268 0.071-2.607-0.295t-2.348-0.946-1.839-1.179-1.259-1.027l-0.446-0.429q-0.179-0.179-0.491-0.536t-1.277-1.625-1.893-2.696-2.188-3.768-2.33-4.857q-0.107-0.286-0.107-0.482t0.054-0.286l0.071-0.107q0.268-0.339 1.018-0.339l4.893-0.036q0.214 0.036 0.411 0.116t0.286 0.152l0.089 0.054q0.286 0.196 0.429 0.571 0.357 0.893 0.821 1.848t0.732 1.455l0.286 0.518q0.518 1.071 1 1.857t0.866 1.223 0.741 0.688 0.607 0.25 0.482-0.089q0.036-0.018 0.089-0.089t0.214-0.393 0.241-0.839 0.17-1.446 0-2.232q-0.036-0.714-0.161-1.304t-0.25-0.821l-0.107-0.214q-0.446-0.607-1.518-0.768-0.232-0.036 0.089-0.429 0.304-0.339 0.679-0.536 0.946-0.464 4.268-0.429 1.464 0.018 2.411 0.232 0.357 0.089 0.598 0.241t0.366 0.429 0.188 0.571 0.063 0.813-0.018 0.982-0.045 1.259-0.027 1.473q0 0.196-0.018 0.75t-0.009 0.857 0.063 0.723 0.205 0.696 0.402 0.438q0.143 0.036 0.304 0.071t0.464-0.196 0.679-0.616 0.929-1.196 1.214-1.92q1.071-1.857 1.911-4.018 0.071-0.179 0.179-0.313t0.196-0.188l0.071-0.054 0.089-0.045t0.232-0.054 0.357-0.009l5.143-0.036q0.696-0.089 1.143 0.045t0.554 0.295z"></path>
</symbol>
<symbol id="icon-search" viewBox="0 0 30 32">
<path class="path1" d="M20.571 14.857q0-3.304-2.348-5.652t-5.652-2.348-5.652 2.348-2.348 5.652 2.348 5.652 5.652 2.348 5.652-2.348 2.348-5.652zM29.714 29.714q0 0.929-0.679 1.607t-1.607 0.679q-0.964 0-1.607-0.679l-6.125-6.107q-3.196 2.214-7.125 2.214-2.554 0-4.884-0.991t-4.018-2.679-2.679-4.018-0.991-4.884 0.991-4.884 2.679-4.018 4.018-2.679 4.884-0.991 4.884 0.991 4.018 2.679 2.679 4.018 0.991 4.884q0 3.929-2.214 7.125l6.125 6.125q0.661 0.661 0.661 1.607z"></path>
</symbol>
<symbol id="icon-envelope-o" viewBox="0 0 32 32">
<path class="path1" d="M29.714 26.857v-13.714q-0.571 0.643-1.232 1.179-4.786 3.679-7.607 6.036-0.911 0.768-1.482 1.196t-1.545 0.866-1.83 0.438h-0.036q-0.857 0-1.83-0.438t-1.545-0.866-1.482-1.196q-2.821-2.357-7.607-6.036-0.661-0.536-1.232-1.179v13.714q0 0.232 0.17 0.402t0.402 0.17h26.286q0.232 0 0.402-0.17t0.17-0.402zM29.714 8.089v-0.438t-0.009-0.232-0.054-0.223-0.098-0.161-0.161-0.134-0.25-0.045h-26.286q-0.232 0-0.402 0.17t-0.17 0.402q0 3 2.625 5.071 3.446 2.714 7.161 5.661 0.107 0.089 0.625 0.527t0.821 0.67 0.795 0.563 0.902 0.491 0.768 0.161h0.036q0.357 0 0.768-0.161t0.902-0.491 0.795-0.563 0.821-0.67 0.625-0.527q3.714-2.946 7.161-5.661 0.964-0.768 1.795-2.063t0.83-2.348zM32 7.429v19.429q0 1.179-0.839 2.018t-2.018 0.839h-26.286q-1.179 0-2.018-0.839t-0.839-2.018v-19.429q0-1.179 0.839-2.018t2.018-0.839h26.286q1.179 0 2.018 0.839t0.839 2.018z"></path>
</symbol>
<symbol id="icon-close" viewBox="0 0 25 32">
<path class="path1" d="M23.179 23.607q0 0.714-0.5 1.214l-2.429 2.429q-0.5 0.5-1.214 0.5t-1.214-0.5l-5.25-5.25-5.25 5.25q-0.5 0.5-1.214 0.5t-1.214-0.5l-2.429-2.429q-0.5-0.5-0.5-1.214t0.5-1.214l5.25-5.25-5.25-5.25q-0.5-0.5-0.5-1.214t0.5-1.214l2.429-2.429q0.5-0.5 1.214-0.5t1.214 0.5l5.25 5.25 5.25-5.25q0.5-0.5 1.214-0.5t1.214 0.5l2.429 2.429q0.5 0.5 0.5 1.214t-0.5 1.214l-5.25 5.25 5.25 5.25q0.5 0.5 0.5 1.214z"></path>
</symbol>
<symbol id="icon-angle-down" viewBox="0 0 21 32">
<path class="path1" d="M19.196 13.143q0 0.232-0.179 0.411l-8.321 8.321q-0.179 0.179-0.411 0.179t-0.411-0.179l-8.321-8.321q-0.179-0.179-0.179-0.411t0.179-0.411l0.893-0.893q0.179-0.179 0.411-0.179t0.411 0.179l7.018 7.018 7.018-7.018q0.179-0.179 0.411-0.179t0.411 0.179l0.893 0.893q0.179 0.179 0.179 0.411z"></path>
</symbol>
<symbol id="icon-folder-open" viewBox="0 0 34 32">
<path class="path1" d="M33.554 17q0 0.554-0.554 1.179l-6 7.071q-0.768 0.911-2.152 1.545t-2.563 0.634h-19.429q-0.607 0-1.080-0.232t-0.473-0.768q0-0.554 0.554-1.179l6-7.071q0.768-0.911 2.152-1.545t2.563-0.634h19.429q0.607 0 1.080 0.232t0.473 0.768zM27.429 10.857v2.857h-14.857q-1.679 0-3.518 0.848t-2.929 2.134l-6.107 7.179q0-0.071-0.009-0.223t-0.009-0.223v-17.143q0-1.643 1.179-2.821t2.821-1.179h5.714q1.643 0 2.821 1.179t1.179 2.821v0.571h9.714q1.643 0 2.821 1.179t1.179 2.821z"></path>
</symbol>
<symbol id="icon-twitter" viewBox="0 0 30 32">
<path class="path1" d="M28.929 7.286q-1.196 1.75-2.893 2.982 0.018 0.25 0.018 0.75 0 2.321-0.679 4.634t-2.063 4.437-3.295 3.759-4.607 2.607-5.768 0.973q-4.839 0-8.857-2.589 0.625 0.071 1.393 0.071 4.018 0 7.161-2.464-1.875-0.036-3.357-1.152t-2.036-2.848q0.589 0.089 1.089 0.089 0.768 0 1.518-0.196-2-0.411-3.313-1.991t-1.313-3.67v-0.071q1.214 0.679 2.607 0.732-1.179-0.786-1.875-2.054t-0.696-2.75q0-1.571 0.786-2.911 2.161 2.661 5.259 4.259t6.634 1.777q-0.143-0.679-0.143-1.321 0-2.393 1.688-4.080t4.080-1.688q2.5 0 4.214 1.821 1.946-0.375 3.661-1.393-0.661 2.054-2.536 3.179 1.661-0.179 3.321-0.893z"></path>
</symbol>
<symbol id="icon-facebook" viewBox="0 0 19 32">
<path class="path1" d="M17.125 0.214v4.714h-2.804q-1.536 0-2.071 0.643t-0.536 1.929v3.375h5.232l-0.696 5.286h-4.536v13.554h-5.464v-13.554h-4.554v-5.286h4.554v-3.893q0-3.321 1.857-5.152t4.946-1.83q2.625 0 4.071 0.214z"></path>
</symbol>
<symbol id="icon-github" viewBox="0 0 27 32">
<path class="path1" d="M13.714 2.286q3.732 0 6.884 1.839t4.991 4.991 1.839 6.884q0 4.482-2.616 8.063t-6.759 4.955q-0.482 0.089-0.714-0.125t-0.232-0.536q0-0.054 0.009-1.366t0.009-2.402q0-1.732-0.929-2.536 1.018-0.107 1.83-0.321t1.679-0.696 1.446-1.188 0.946-1.875 0.366-2.688q0-2.125-1.411-3.679 0.661-1.625-0.143-3.643-0.5-0.161-1.446 0.196t-1.643 0.786l-0.679 0.429q-1.661-0.464-3.429-0.464t-3.429 0.464q-0.286-0.196-0.759-0.482t-1.491-0.688-1.518-0.241q-0.804 2.018-0.143 3.643-1.411 1.554-1.411 3.679 0 1.518 0.366 2.679t0.938 1.875 1.438 1.196 1.679 0.696 1.83 0.321q-0.696 0.643-0.875 1.839-0.375 0.179-0.804 0.268t-1.018 0.089-1.17-0.384-0.991-1.116q-0.339-0.571-0.866-0.929t-0.884-0.429l-0.357-0.054q-0.375 0-0.518 0.080t-0.089 0.205 0.161 0.25 0.232 0.214l0.125 0.089q0.393 0.179 0.777 0.679t0.563 0.911l0.179 0.411q0.232 0.679 0.786 1.098t1.196 0.536 1.241 0.125 0.991-0.063l0.411-0.071q0 0.679 0.009 1.58t0.009 0.973q0 0.321-0.232 0.536t-0.714 0.125q-4.143-1.375-6.759-4.955t-2.616-8.063q0-3.732 1.839-6.884t4.991-4.991 6.884-1.839zM5.196 21.982q0.054-0.125-0.125-0.214-0.179-0.054-0.232 0.036-0.054 0.125 0.125 0.214 0.161 0.107 0.232-0.036zM5.75 22.589q0.125-0.089-0.036-0.286-0.179-0.161-0.286-0.054-0.125 0.089 0.036 0.286 0.179 0.179 0.286 0.054zM6.286 23.393q0.161-0.125 0-0.339-0.143-0.232-0.304-0.107-0.161 0.089 0 0.321t0.304 0.125zM7.036 24.143q0.143-0.143-0.071-0.339-0.214-0.214-0.357-0.054-0.161 0.143 0.071 0.339 0.214 0.214 0.357 0.054zM8.054 24.589q0.054-0.196-0.232-0.286-0.268-0.071-0.339 0.125t0.232 0.268q0.268 0.107 0.339-0.107zM9.179 24.679q0-0.232-0.304-0.196-0.286 0-0.286 0.196 0 0.232 0.304 0.196 0.286 0 0.286-0.196zM10.214 24.5q-0.036-0.196-0.321-0.161-0.286 0.054-0.25 0.268t0.321 0.143 0.25-0.25z"></path>
</symbol>
<symbol id="icon-bars" viewBox="0 0 27 32">
<path class="path1" d="M27.429 24v2.286q0 0.464-0.339 0.804t-0.804 0.339h-25.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h25.143q0.464 0 0.804 0.339t0.339 0.804zM27.429 14.857v2.286q0 0.464-0.339 0.804t-0.804 0.339h-25.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h25.143q0.464 0 0.804 0.339t0.339 0.804zM27.429 5.714v2.286q0 0.464-0.339 0.804t-0.804 0.339h-25.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h25.143q0.464 0 0.804 0.339t0.339 0.804z"></path>
</symbol>
<symbol id="icon-google-plus" viewBox="0 0 41 32">
<path class="path1" d="M25.661 16.304q0 3.714-1.554 6.616t-4.429 4.536-6.589 1.634q-2.661 0-5.089-1.036t-4.179-2.786-2.786-4.179-1.036-5.089 1.036-5.089 2.786-4.179 4.179-2.786 5.089-1.036q5.107 0 8.768 3.429l-3.554 3.411q-2.089-2.018-5.214-2.018-2.196 0-4.063 1.107t-2.955 3.009-1.089 4.152 1.089 4.152 2.955 3.009 4.063 1.107q1.482 0 2.723-0.411t2.045-1.027 1.402-1.402 0.875-1.482 0.384-1.321h-7.429v-4.5h12.357q0.214 1.125 0.214 2.179zM41.143 14.125v3.75h-3.732v3.732h-3.75v-3.732h-3.732v-3.75h3.732v-3.732h3.75v3.732h3.732z"></path>
</symbol>
<symbol id="icon-linkedin" viewBox="0 0 27 32">
<path class="path1" d="M6.232 11.161v17.696h-5.893v-17.696h5.893zM6.607 5.696q0.018 1.304-0.902 2.179t-2.42 0.875h-0.036q-1.464 0-2.357-0.875t-0.893-2.179q0-1.321 0.92-2.188t2.402-0.866 2.375 0.866 0.911 2.188zM27.429 18.714v10.143h-5.875v-9.464q0-1.875-0.723-2.938t-2.259-1.063q-1.125 0-1.884 0.616t-1.134 1.527q-0.196 0.536-0.196 1.446v9.875h-5.875q0.036-7.125 0.036-11.554t-0.018-5.286l-0.018-0.857h5.875v2.571h-0.036q0.357-0.571 0.732-1t1.009-0.929 1.554-0.777 2.045-0.277q3.054 0 4.911 2.027t1.857 5.938z"></path>
</symbol>
<symbol id="icon-quote-right" viewBox="0 0 30 32">
<path class="path1" d="M13.714 5.714v12.571q0 1.857-0.723 3.545t-1.955 2.92-2.92 1.955-3.545 0.723h-1.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h1.143q1.893 0 3.232-1.339t1.339-3.232v-0.571q0-0.714-0.5-1.214t-1.214-0.5h-4q-1.429 0-2.429-1t-1-2.429v-6.857q0-1.429 1-2.429t2.429-1h6.857q1.429 0 2.429 1t1 2.429zM29.714 5.714v12.571q0 1.857-0.723 3.545t-1.955 2.92-2.92 1.955-3.545 0.723h-1.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h1.143q1.893 0 3.232-1.339t1.339-3.232v-0.571q0-0.714-0.5-1.214t-1.214-0.5h-4q-1.429 0-2.429-1t-1-2.429v-6.857q0-1.429 1-2.429t2.429-1h6.857q1.429 0 2.429 1t1 2.429z"></path>
</symbol>
<symbol id="icon-mail-reply" viewBox="0 0 32 32">
<path class="path1" d="M32 20q0 2.964-2.268 8.054-0.054 0.125-0.188 0.429t-0.241 0.536-0.232 0.393q-0.214 0.304-0.5 0.304-0.268 0-0.42-0.179t-0.152-0.446q0-0.161 0.045-0.473t0.045-0.42q0.089-1.214 0.089-2.196 0-1.804-0.313-3.232t-0.866-2.473-1.429-1.804-1.884-1.241-2.375-0.759-2.75-0.384-3.134-0.107h-4v4.571q0 0.464-0.339 0.804t-0.804 0.339-0.804-0.339l-9.143-9.143q-0.339-0.339-0.339-0.804t0.339-0.804l9.143-9.143q0.339-0.339 0.804-0.339t0.804 0.339 0.339 0.804v4.571h4q12.732 0 15.625 7.196 0.946 2.393 0.946 5.946z"></path>
</symbol>
<symbol id="icon-youtube" viewBox="0 0 27 32">
<path class="path1" d="M17.339 22.214v3.768q0 1.196-0.696 1.196-0.411 0-0.804-0.393v-5.375q0.393-0.393 0.804-0.393 0.696 0 0.696 1.196zM23.375 22.232v0.821h-1.607v-0.821q0-1.214 0.804-1.214t0.804 1.214zM6.125 18.339h1.911v-1.679h-5.571v1.679h1.875v10.161h1.786v-10.161zM11.268 28.5h1.589v-8.821h-1.589v6.75q-0.536 0.75-1.018 0.75-0.321 0-0.375-0.375-0.018-0.054-0.018-0.625v-6.5h-1.589v6.982q0 0.875 0.143 1.304 0.214 0.661 1.036 0.661 0.857 0 1.821-1.089v0.964zM18.929 25.857v-3.518q0-1.304-0.161-1.768-0.304-1-1.268-1-0.893 0-1.661 0.964v-3.875h-1.589v11.839h1.589v-0.857q0.804 0.982 1.661 0.982 0.964 0 1.268-0.982 0.161-0.482 0.161-1.786zM24.964 25.679v-0.232h-1.625q0 0.911-0.036 1.089-0.125 0.643-0.714 0.643-0.821 0-0.821-1.232v-1.554h3.196v-1.839q0-1.411-0.482-2.071-0.696-0.911-1.893-0.911-1.214 0-1.911 0.911-0.5 0.661-0.5 2.071v3.089q0 1.411 0.518 2.071 0.696 0.911 1.929 0.911 1.286 0 1.929-0.946 0.321-0.482 0.375-0.964 0.036-0.161 0.036-1.036zM14.107 9.375v-3.75q0-1.232-0.768-1.232t-0.768 1.232v3.75q0 1.25 0.768 1.25t0.768-1.25zM26.946 22.786q0 4.179-0.464 6.25-0.25 1.054-1.036 1.768t-1.821 0.821q-3.286 0.375-9.911 0.375t-9.911-0.375q-1.036-0.107-1.83-0.821t-1.027-1.768q-0.464-2-0.464-6.25 0-4.179 0.464-6.25 0.25-1.054 1.036-1.768t1.839-0.839q3.268-0.357 9.893-0.357t9.911 0.357q1.036 0.125 1.83 0.839t1.027 1.768q0.464 2 0.464 6.25zM9.125 0h1.821l-2.161 7.125v4.839h-1.786v-4.839q-0.25-1.321-1.089-3.786-0.661-1.839-1.161-3.339h1.893l1.268 4.696zM15.732 5.946v3.125q0 1.446-0.5 2.107-0.661 0.911-1.893 0.911-1.196 0-1.875-0.911-0.5-0.679-0.5-2.107v-3.125q0-1.429 0.5-2.089 0.679-0.911 1.875-0.911 1.232 0 1.893 0.911 0.5 0.661 0.5 2.089zM21.714 3.054v8.911h-1.625v-0.982q-0.946 1.107-1.839 1.107-0.821 0-1.054-0.661-0.143-0.429-0.143-1.339v-7.036h1.625v6.554q0 0.589 0.018 0.625 0.054 0.393 0.375 0.393 0.482 0 1.018-0.768v-6.804h1.625z"></path>
</symbol>
<symbol id="icon-dropbox" viewBox="0 0 32 32">
<path class="path1" d="M7.179 12.625l8.821 5.446-6.107 5.089-8.75-5.696zM24.786 22.536v1.929l-8.75 5.232v0.018l-0.018-0.018-0.018 0.018v-0.018l-8.732-5.232v-1.929l2.625 1.714 6.107-5.071v-0.036l0.018 0.018 0.018-0.018v0.036l6.125 5.071zM9.893 2.107l6.107 5.089-8.821 5.429-6.036-4.821zM24.821 12.625l6.036 4.839-8.732 5.696-6.125-5.089zM22.125 2.107l8.732 5.696-6.036 4.821-8.821-5.429z"></path>
</symbol>
<symbol id="icon-instagram" viewBox="0 0 27 32">
<path class="path1" d="M18.286 16q0-1.893-1.339-3.232t-3.232-1.339-3.232 1.339-1.339 3.232 1.339 3.232 3.232 1.339 3.232-1.339 1.339-3.232zM20.75 16q0 2.929-2.054 4.982t-4.982 2.054-4.982-2.054-2.054-4.982 2.054-4.982 4.982-2.054 4.982 2.054 2.054 4.982zM22.679 8.679q0 0.679-0.482 1.161t-1.161 0.482-1.161-0.482-0.482-1.161 0.482-1.161 1.161-0.482 1.161 0.482 0.482 1.161zM13.714 4.75q-0.125 0-1.366-0.009t-1.884 0-1.723 0.054-1.839 0.179-1.277 0.33q-0.893 0.357-1.571 1.036t-1.036 1.571q-0.196 0.518-0.33 1.277t-0.179 1.839-0.054 1.723 0 1.884 0.009 1.366-0.009 1.366 0 1.884 0.054 1.723 0.179 1.839 0.33 1.277q0.357 0.893 1.036 1.571t1.571 1.036q0.518 0.196 1.277 0.33t1.839 0.179 1.723 0.054 1.884 0 1.366-0.009 1.366 0.009 1.884 0 1.723-0.054 1.839-0.179 1.277-0.33q0.893-0.357 1.571-1.036t1.036-1.571q0.196-0.518 0.33-1.277t0.179-1.839 0.054-1.723 0-1.884-0.009-1.366 0.009-1.366 0-1.884-0.054-1.723-0.179-1.839-0.33-1.277q-0.357-0.893-1.036-1.571t-1.571-1.036q-0.518-0.196-1.277-0.33t-1.839-0.179-1.723-0.054-1.884 0-1.366 0.009zM27.429 16q0 4.089-0.089 5.661-0.179 3.714-2.214 5.75t-5.75 2.214q-1.571 0.089-5.661 0.089t-5.661-0.089q-3.714-0.179-5.75-2.214t-2.214-5.75q-0.089-1.571-0.089-5.661t0.089-5.661q0.179-3.714 2.214-5.75t5.75-2.214q1.571-0.089 5.661-0.089t5.661 0.089q3.714 0.179 5.75 2.214t2.214 5.75q0.089 1.571 0.089 5.661z"></path>
</symbol>
<symbol id="icon-flickr" viewBox="0 0 27 32">
<path class="path1" d="M22.286 2.286q2.125 0 3.634 1.509t1.509 3.634v17.143q0 2.125-1.509 3.634t-3.634 1.509h-17.143q-2.125 0-3.634-1.509t-1.509-3.634v-17.143q0-2.125 1.509-3.634t3.634-1.509h17.143zM12.464 16q0-1.571-1.107-2.679t-2.679-1.107-2.679 1.107-1.107 2.679 1.107 2.679 2.679 1.107 2.679-1.107 1.107-2.679zM22.536 16q0-1.571-1.107-2.679t-2.679-1.107-2.679 1.107-1.107 2.679 1.107 2.679 2.679 1.107 2.679-1.107 1.107-2.679z"></path>
</symbol>
<symbol id="icon-tumblr" viewBox="0 0 19 32">
<path class="path1" d="M16.857 23.732l1.429 4.232q-0.411 0.625-1.982 1.179t-3.161 0.571q-1.857 0.036-3.402-0.464t-2.545-1.321-1.696-1.893-0.991-2.143-0.295-2.107v-9.714h-3v-3.839q1.286-0.464 2.304-1.241t1.625-1.607 1.036-1.821 0.607-1.768 0.268-1.58q0.018-0.089 0.080-0.152t0.134-0.063h4.357v7.571h5.946v4.5h-5.964v9.25q0 0.536 0.116 1t0.402 0.938 0.884 0.741 1.455 0.25q1.393-0.036 2.393-0.518z"></path>
</symbol>
<symbol id="icon-dockerhub" viewBox="0 0 24 28">
<path class="path1" d="M1.597 10.257h2.911v2.83H1.597v-2.83zm3.573 0h2.91v2.83H5.17v-2.83zm0-3.627h2.91v2.829H5.17V6.63zm3.57 3.627h2.912v2.83H8.74v-2.83zm0-3.627h2.912v2.829H8.74V6.63zm3.573 3.627h2.911v2.83h-2.911v-2.83zm0-3.627h2.911v2.829h-2.911V6.63zm3.572 3.627h2.911v2.83h-2.911v-2.83zM12.313 3h2.911v2.83h-2.911V3zm-6.65 14.173c-.449 0-.812.354-.812.788 0 .435.364.788.812.788.447 0 .811-.353.811-.788 0-.434-.363-.788-.811-.788"></path>
<path class="path2" d="M28.172 11.721c-.978-.549-2.278-.624-3.388-.306-.136-1.146-.91-2.149-1.83-2.869l-.366-.286-.307.345c-.618.692-.8 1.845-.718 2.73.063.651.273 1.312.685 1.834-.313.183-.668.328-.985.434-.646.212-1.347.33-2.028.33H.083l-.042.429c-.137 1.432.065 2.866.674 4.173l.262.519.03.048c1.8 2.973 4.963 4.225 8.41 4.225 6.672 0 12.174-2.896 14.702-9.015 1.689.085 3.417-.4 4.243-1.968l.211-.4-.401-.223zM5.664 19.458c-.85 0-1.542-.671-1.542-1.497 0-.825.691-1.498 1.541-1.498.849 0 1.54.672 1.54 1.497s-.69 1.498-1.539 1.498z"></path>
</symbol>
<symbol id="icon-dribbble" viewBox="0 0 27 32">
<path class="path1" d="M18.286 26.786q-0.75-4.304-2.5-8.893h-0.036l-0.036 0.018q-0.286 0.107-0.768 0.295t-1.804 0.875-2.446 1.464-2.339 2.045-1.839 2.643l-0.268-0.196q3.286 2.679 7.464 2.679 2.357 0 4.571-0.929zM14.982 15.946q-0.375-0.875-0.946-1.982-5.554 1.661-12.018 1.661-0.018 0.125-0.018 0.375 0 2.214 0.786 4.223t2.214 3.598q0.893-1.589 2.205-2.973t2.545-2.223 2.33-1.446 1.777-0.857l0.661-0.232q0.071-0.018 0.232-0.063t0.232-0.080zM13.071 12.161q-2.143-3.804-4.357-6.75-2.464 1.161-4.179 3.321t-2.286 4.857q5.393 0 10.821-1.429zM25.286 17.857q-3.75-1.071-7.304-0.518 1.554 4.268 2.286 8.375 1.982-1.339 3.304-3.384t1.714-4.473zM10.911 4.625q-0.018 0-0.036 0.018 0.018-0.018 0.036-0.018zM21.446 7.214q-3.304-2.929-7.732-2.929-1.357 0-2.768 0.339 2.339 3.036 4.393 6.821 1.232-0.464 2.321-1.080t1.723-1.098 1.17-1.018 0.67-0.723zM25.429 15.875q-0.054-4.143-2.661-7.321l-0.018 0.018q-0.161 0.214-0.339 0.438t-0.777 0.795-1.268 1.080-1.786 1.161-2.348 1.152q0.446 0.946 0.786 1.696 0.036 0.107 0.116 0.313t0.134 0.295q0.643-0.089 1.33-0.125t1.313-0.036 1.232 0.027 1.143 0.071 1.009 0.098 0.857 0.116 0.652 0.107 0.446 0.080zM27.429 16q0 3.732-1.839 6.884t-4.991 4.991-6.884 1.839-6.884-1.839-4.991-4.991-1.839-6.884 1.839-6.884 4.991-4.991 6.884-1.839 6.884 1.839 4.991 4.991 1.839 6.884z"></path>
</symbol>
<symbol id="icon-skype" viewBox="0 0 27 32">
<path class="path1" d="M20.946 18.982q0-0.893-0.348-1.634t-0.866-1.223-1.304-0.875-1.473-0.607-1.563-0.411l-1.857-0.429q-0.536-0.125-0.786-0.188t-0.625-0.205-0.536-0.286-0.295-0.375-0.134-0.536q0-1.375 2.571-1.375 0.768 0 1.375 0.214t0.964 0.509 0.679 0.598 0.714 0.518 0.857 0.214q0.839 0 1.348-0.571t0.509-1.375q0-0.982-1-1.777t-2.536-1.205-3.25-0.411q-1.214 0-2.357 0.277t-2.134 0.839-1.589 1.554-0.598 2.295q0 1.089 0.339 1.902t1 1.348 1.429 0.866 1.839 0.58l2.607 0.643q1.607 0.393 2 0.643 0.571 0.357 0.571 1.071 0 0.696-0.714 1.152t-1.875 0.455q-0.911 0-1.634-0.286t-1.161-0.688-0.813-0.804-0.821-0.688-0.964-0.286q-0.893 0-1.348 0.536t-0.455 1.339q0 1.643 2.179 2.813t5.196 1.17q1.304 0 2.5-0.33t2.188-0.955 1.58-1.67 0.589-2.348zM27.429 22.857q0 2.839-2.009 4.848t-4.848 2.009q-2.321 0-4.179-1.429-1.375 0.286-2.679 0.286-2.554 0-4.884-0.991t-4.018-2.679-2.679-4.018-0.991-4.884q0-1.304 0.286-2.679-1.429-1.857-1.429-4.179 0-2.839 2.009-4.848t4.848-2.009q2.321 0 4.179 1.429 1.375-0.286 2.679-0.286 2.554 0 4.884 0.991t4.018 2.679 2.679 4.018 0.991 4.884q0 1.304-0.286 2.679 1.429 1.857 1.429 4.179z"></path>
</symbol>
<symbol id="icon-foursquare" viewBox="0 0 23 32">
<path class="path1" d="M17.857 7.75l0.661-3.464q0.089-0.411-0.161-0.714t-0.625-0.304h-12.714q-0.411 0-0.688 0.304t-0.277 0.661v19.661q0 0.125 0.107 0.018l5.196-6.286q0.411-0.464 0.679-0.598t0.857-0.134h4.268q0.393 0 0.661-0.259t0.321-0.527q0.429-2.321 0.661-3.411 0.071-0.375-0.205-0.714t-0.652-0.339h-5.25q-0.518 0-0.857-0.339t-0.339-0.857v-0.75q0-0.518 0.339-0.848t0.857-0.33h6.179q0.321 0 0.625-0.241t0.357-0.527zM21.911 3.786q-0.268 1.304-0.955 4.759t-1.241 6.25-0.625 3.098q-0.107 0.393-0.161 0.58t-0.25 0.58-0.438 0.589-0.688 0.375-1.036 0.179h-4.839q-0.232 0-0.393 0.179-0.143 0.161-7.607 8.821-0.393 0.446-1.045 0.509t-0.866-0.098q-0.982-0.393-0.982-1.75v-25.179q0-0.982 0.679-1.83t2.143-0.848h15.857q1.696 0 2.268 0.946t0.179 2.839zM21.911 3.786l-2.821 14.107q0.071-0.304 0.625-3.098t1.241-6.25 0.955-4.759z"></path>
</symbol>
<symbol id="icon-wordpress" viewBox="0 0 32 32">
<path class="path1" d="M2.268 16q0-2.911 1.196-5.589l6.554 17.946q-3.5-1.696-5.625-5.018t-2.125-7.339zM25.268 15.304q0 0.339-0.045 0.688t-0.179 0.884-0.205 0.786-0.313 1.054-0.313 1.036l-1.357 4.571-4.964-14.75q0.821-0.054 1.571-0.143 0.339-0.036 0.464-0.33t-0.045-0.554-0.509-0.241l-3.661 0.179q-1.339-0.018-3.607-0.179-0.214-0.018-0.366 0.089t-0.205 0.268-0.027 0.33 0.161 0.295 0.348 0.143l1.429 0.143 2.143 5.857-3 9-5-14.857q0.821-0.054 1.571-0.143 0.339-0.036 0.464-0.33t-0.045-0.554-0.509-0.241l-3.661 0.179q-0.125 0-0.411-0.009t-0.464-0.009q1.875-2.857 4.902-4.527t6.563-1.67q2.625 0 5.009 0.946t4.259 2.661h-0.179q-0.982 0-1.643 0.723t-0.661 1.705q0 0.214 0.036 0.429t0.071 0.384 0.143 0.411 0.161 0.375 0.214 0.402 0.223 0.375 0.259 0.429 0.25 0.411q1.125 1.911 1.125 3.786zM16.232 17.196l4.232 11.554q0.018 0.107 0.089 0.196-2.25 0.786-4.554 0.786-2 0-3.875-0.571zM28.036 9.411q1.696 3.107 1.696 6.589 0 3.732-1.857 6.884t-4.982 4.973l4.196-12.107q1.054-3.018 1.054-4.929 0-0.75-0.107-1.411zM16 0q3.25 0 6.214 1.268t5.107 3.411 3.411 5.107 1.268 6.214-1.268 6.214-3.411 5.107-5.107 3.411-6.214 1.268-6.214-1.268-5.107-3.411-3.411-5.107-1.268-6.214 1.268-6.214 3.411-5.107 5.107-3.411 6.214-1.268zM16 31.268q3.089 0 5.92-1.214t4.875-3.259 3.259-4.875 1.214-5.92-1.214-5.92-3.259-4.875-4.875-3.259-5.92-1.214-5.92 1.214-4.875 3.259-3.259 4.875-1.214 5.92 1.214 5.92 3.259 4.875 4.875 3.259 5.92 1.214z"></path>
</symbol>
<symbol id="icon-stumbleupon" viewBox="0 0 34 32">
<path class="path1" d="M18.964 12.714v-2.107q0-0.75-0.536-1.286t-1.286-0.536-1.286 0.536-0.536 1.286v10.929q0 3.125-2.25 5.339t-5.411 2.214q-3.179 0-5.42-2.241t-2.241-5.42v-4.75h5.857v4.679q0 0.768 0.536 1.295t1.286 0.527 1.286-0.527 0.536-1.295v-11.071q0-3.054 2.259-5.214t5.384-2.161q3.143 0 5.393 2.179t2.25 5.25v2.429l-3.482 1.036zM28.429 16.679h5.857v4.75q0 3.179-2.241 5.42t-5.42 2.241q-3.161 0-5.411-2.223t-2.25-5.366v-4.786l2.339 1.089 3.482-1.036v4.821q0 0.75 0.536 1.277t1.286 0.527 1.286-0.527 0.536-1.277v-4.911z"></path>
</symbol>
<symbol id="icon-digg" viewBox="0 0 37 32">
<path class="path1" d="M5.857 5.036h3.643v17.554h-9.5v-12.446h5.857v-5.107zM5.857 19.661v-6.589h-2.196v6.589h2.196zM10.964 10.143v12.446h3.661v-12.446h-3.661zM10.964 5.036v3.643h3.661v-3.643h-3.661zM16.089 10.143h9.518v16.821h-9.518v-2.911h5.857v-1.464h-5.857v-12.446zM21.946 19.661v-6.589h-2.196v6.589h2.196zM27.071 10.143h9.5v16.821h-9.5v-2.911h5.839v-1.464h-5.839v-12.446zM32.911 19.661v-6.589h-2.196v6.589h2.196z"></path>
</symbol>
<symbol id="icon-spotify" viewBox="0 0 27 32">
<path class="path1" d="M20.125 21.607q0-0.571-0.536-0.911-3.446-2.054-7.982-2.054-2.375 0-5.125 0.607-0.75 0.161-0.75 0.929 0 0.357 0.241 0.616t0.634 0.259q0.089 0 0.661-0.143 2.357-0.482 4.339-0.482 4.036 0 7.089 1.839 0.339 0.196 0.589 0.196 0.339 0 0.589-0.241t0.25-0.616zM21.839 17.768q0-0.714-0.625-1.089-4.232-2.518-9.786-2.518-2.732 0-5.411 0.75-0.857 0.232-0.857 1.143 0 0.446 0.313 0.759t0.759 0.313q0.125 0 0.661-0.143 2.179-0.589 4.482-0.589 4.982 0 8.714 2.214 0.429 0.232 0.679 0.232 0.446 0 0.759-0.313t0.313-0.759zM23.768 13.339q0-0.839-0.714-1.25-2.25-1.304-5.232-1.973t-6.125-0.67q-3.643 0-6.5 0.839-0.411 0.125-0.688 0.455t-0.277 0.866q0 0.554 0.366 0.929t0.92 0.375q0.196 0 0.714-0.143 2.375-0.661 5.482-0.661 2.839 0 5.527 0.607t4.527 1.696q0.375 0.214 0.714 0.214 0.518 0 0.902-0.366t0.384-0.92zM27.429 16q0 3.732-1.839 6.884t-4.991 4.991-6.884 1.839-6.884-1.839-4.991-4.991-1.839-6.884 1.839-6.884 4.991-4.991 6.884-1.839 6.884 1.839 4.991 4.991 1.839 6.884z"></path>
</symbol>
<symbol id="icon-soundcloud" viewBox="0 0 41 32">
<path class="path1" d="M14 24.5l0.286-4.304-0.286-9.339q-0.018-0.179-0.134-0.304t-0.295-0.125q-0.161 0-0.286 0.125t-0.125 0.304l-0.25 9.339 0.25 4.304q0.018 0.179 0.134 0.295t0.277 0.116q0.393 0 0.429-0.411zM19.286 23.982l0.196-3.768-0.214-10.464q0-0.286-0.232-0.429-0.143-0.089-0.286-0.089t-0.286 0.089q-0.232 0.143-0.232 0.429l-0.018 0.107-0.179 10.339q0 0.018 0.196 4.214v0.018q0 0.179 0.107 0.304 0.161 0.196 0.411 0.196 0.196 0 0.357-0.161 0.161-0.125 0.161-0.357zM0.625 17.911l0.357 2.286-0.357 2.25q-0.036 0.161-0.161 0.161t-0.161-0.161l-0.304-2.25 0.304-2.286q0.036-0.161 0.161-0.161t0.161 0.161zM2.161 16.5l0.464 3.696-0.464 3.625q-0.036 0.161-0.179 0.161-0.161 0-0.161-0.179l-0.411-3.607 0.411-3.696q0-0.161 0.161-0.161 0.143 0 0.179 0.161zM3.804 15.821l0.446 4.375-0.446 4.232q0 0.196-0.196 0.196-0.179 0-0.214-0.196l-0.375-4.232 0.375-4.375q0.036-0.214 0.214-0.214 0.196 0 0.196 0.214zM5.482 15.696l0.411 4.5-0.411 4.357q-0.036 0.232-0.25 0.232-0.232 0-0.232-0.232l-0.375-4.357 0.375-4.5q0-0.232 0.232-0.232 0.214 0 0.25 0.232zM7.161 16.018l0.375 4.179-0.375 4.393q-0.036 0.286-0.286 0.286-0.107 0-0.188-0.080t-0.080-0.205l-0.357-4.393 0.357-4.179q0-0.107 0.080-0.188t0.188-0.080q0.25 0 0.286 0.268zM8.839 13.411l0.375 6.786-0.375 4.393q0 0.125-0.089 0.223t-0.214 0.098q-0.286 0-0.321-0.321l-0.321-4.393 0.321-6.786q0.036-0.321 0.321-0.321 0.125 0 0.214 0.098t0.089 0.223zM10.518 11.875l0.339 8.357-0.339 4.357q0 0.143-0.098 0.241t-0.241 0.098q-0.321 0-0.357-0.339l-0.286-4.357 0.286-8.357q0.036-0.339 0.357-0.339 0.143 0 0.241 0.098t0.098 0.241zM12.268 11.161l0.321 9.036-0.321 4.321q-0.036 0.375-0.393 0.375-0.339 0-0.375-0.375l-0.286-4.321 0.286-9.036q0-0.161 0.116-0.277t0.259-0.116q0.161 0 0.268 0.116t0.125 0.277zM19.268 24.411v0 0zM15.732 11.089l0.268 9.107-0.268 4.268q0 0.179-0.134 0.313t-0.313 0.134-0.304-0.125-0.143-0.321l-0.25-4.268 0.25-9.107q0-0.196 0.134-0.321t0.313-0.125 0.313 0.125 0.134 0.321zM17.5 11.429l0.25 8.786-0.25 4.214q0 0.196-0.143 0.339t-0.339 0.143-0.339-0.143-0.161-0.339l-0.214-4.214 0.214-8.786q0.018-0.214 0.161-0.357t0.339-0.143 0.33 0.143 0.152 0.357zM21.286 20.214l-0.25 4.125q0 0.232-0.161 0.393t-0.393 0.161-0.393-0.161-0.179-0.393l-0.107-2.036-0.107-2.089 0.214-11.357v-0.054q0.036-0.268 0.214-0.429 0.161-0.125 0.357-0.125 0.143 0 0.268 0.089 0.25 0.143 0.286 0.464zM41.143 19.875q0 2.089-1.482 3.563t-3.571 1.473h-14.036q-0.232-0.036-0.393-0.196t-0.161-0.393v-16.054q0-0.411 0.5-0.589 1.518-0.607 3.232-0.607 3.482 0 6.036 2.348t2.857 5.777q0.946-0.393 1.964-0.393 2.089 0 3.571 1.482t1.482 3.589z"></path>
</symbol>
<symbol id="icon-codepen" viewBox="0 0 32 32">
<path class="path1" d="M3.857 20.875l10.768 7.179v-6.411l-5.964-3.982zM2.75 18.304l3.446-2.304-3.446-2.304v4.607zM17.375 28.054l10.768-7.179-4.804-3.214-5.964 3.982v6.411zM16 19.25l4.857-3.25-4.857-3.25-4.857 3.25zM8.661 14.339l5.964-3.982v-6.411l-10.768 7.179zM25.804 16l3.446 2.304v-4.607zM23.339 14.339l4.804-3.214-10.768-7.179v6.411zM32 11.125v9.75q0 0.732-0.607 1.143l-14.625 9.75q-0.375 0.232-0.768 0.232t-0.768-0.232l-14.625-9.75q-0.607-0.411-0.607-1.143v-9.75q0-0.732 0.607-1.143l14.625-9.75q0.375-0.232 0.768-0.232t0.768 0.232l14.625 9.75q0.607 0.411 0.607 1.143z"></path>
</symbol>
<symbol id="icon-twitch" viewBox="0 0 32 32">
<path class="path1" d="M16 7.75v7.75h-2.589v-7.75h2.589zM23.107 7.75v7.75h-2.589v-7.75h2.589zM23.107 21.321l4.518-4.536v-14.196h-21.321v18.732h5.821v3.875l3.875-3.875h7.107zM30.214 0v18.089l-7.75 7.75h-5.821l-3.875 3.875h-3.875v-3.875h-7.107v-20.679l1.946-5.161h26.482z"></path>
</symbol>
<symbol id="icon-meanpath" viewBox="0 0 27 32">
<path class="path1" d="M23.411 15.036v2.036q0 0.429-0.241 0.679t-0.67 0.25h-3.607q-0.429 0-0.679-0.25t-0.25-0.679v-2.036q0-0.429 0.25-0.679t0.679-0.25h3.607q0.429 0 0.67 0.25t0.241 0.679zM14.661 19.143v-4.464q0-0.946-0.58-1.527t-1.527-0.58h-2.375q-1.214 0-1.714 0.929-0.5-0.929-1.714-0.929h-2.321q-0.946 0-1.527 0.58t-0.58 1.527v4.464q0 0.393 0.375 0.393h0.982q0.393 0 0.393-0.393v-4.107q0-0.429 0.241-0.679t0.688-0.25h1.679q0.429 0 0.679 0.25t0.25 0.679v4.107q0 0.393 0.375 0.393h0.964q0.393 0 0.393-0.393v-4.107q0-0.429 0.25-0.679t0.679-0.25h1.732q0.429 0 0.67 0.25t0.241 0.679v4.107q0 0.393 0.393 0.393h0.982q0.375 0 0.375-0.393zM25.179 17.429v-2.75q0-0.946-0.589-1.527t-1.536-0.58h-4.714q-0.946 0-1.536 0.58t-0.589 1.527v7.321q0 0.375 0.393 0.375h0.982q0.375 0 0.375-0.375v-3.214q0.554 0.75 1.679 0.75h3.411q0.946 0 1.536-0.58t0.589-1.527zM27.429 6.429v19.143q0 1.714-1.214 2.929t-2.929 1.214h-19.143q-1.714 0-2.929-1.214t-1.214-2.929v-19.143q0-1.714 1.214-2.929t2.929-1.214h19.143q1.714 0 2.929 1.214t1.214 2.929z"></path>
</symbol>
<symbol id="icon-pinterest-p" viewBox="0 0 23 32">
<path class="path1" d="M0 10.661q0-1.929 0.67-3.634t1.848-2.973 2.714-2.196 3.304-1.393 3.607-0.464q2.821 0 5.25 1.188t3.946 3.455 1.518 5.125q0 1.714-0.339 3.357t-1.071 3.161-1.786 2.67-2.589 1.839-3.375 0.688q-1.214 0-2.411-0.571t-1.714-1.571q-0.179 0.696-0.5 2.009t-0.42 1.696-0.366 1.268-0.464 1.268-0.571 1.116-0.821 1.384-1.107 1.545l-0.25 0.089-0.161-0.179q-0.268-2.804-0.268-3.357 0-1.643 0.384-3.688t1.188-5.134 0.929-3.625q-0.571-1.161-0.571-3.018 0-1.482 0.929-2.786t2.357-1.304q1.089 0 1.696 0.723t0.607 1.83q0 1.179-0.786 3.411t-0.786 3.339q0 1.125 0.804 1.866t1.946 0.741q0.982 0 1.821-0.446t1.402-1.214 1-1.696 0.679-1.973 0.357-1.982 0.116-1.777q0-3.089-1.955-4.813t-5.098-1.723q-3.571 0-5.964 2.313t-2.393 5.866q0 0.786 0.223 1.518t0.482 1.161 0.482 0.813 0.223 0.545q0 0.5-0.268 1.304t-0.661 0.804q-0.036 0-0.304-0.054-0.911-0.268-1.616-1t-1.089-1.688-0.58-1.929-0.196-1.902z"></path>
</symbol>
<symbol id="icon-periscope" viewBox="0 0 24 28">
<path class="path1" d="M12.285,1C6.696,1,2.277,5.643,2.277,11.243c0,5.851,7.77,14.578,10.007,14.578c1.959,0,9.729-8.728,9.729-14.578 C22.015,5.643,17.596,1,12.285,1z M12.317,16.551c-3.473,0-6.152-2.611-6.152-5.664c0-1.292,0.39-2.472,1.065-3.438 c0.206,1.084,1.18,1.906,2.352,1.906c1.322,0,2.393-1.043,2.393-2.333c0-0.832-0.447-1.561-1.119-1.975 c0.467-0.105,0.955-0.161,1.46-0.161c3.133,0,5.81,2.611,5.81,5.998C18.126,13.94,15.449,16.551,12.317,16.551z"></path>
</symbol>
<symbol id="icon-get-pocket" viewBox="0 0 31 32">
<path class="path1" d="M27.946 2.286q1.161 0 1.964 0.813t0.804 1.973v9.268q0 3.143-1.214 6t-3.259 4.911-4.893 3.259-5.973 1.205q-3.143 0-5.991-1.205t-4.902-3.259-3.268-4.911-1.214-6v-9.268q0-1.143 0.821-1.964t1.964-0.821h25.161zM15.375 21.286q0.839 0 1.464-0.589l7.214-6.929q0.661-0.625 0.661-1.518 0-0.875-0.616-1.491t-1.491-0.616q-0.839 0-1.464 0.589l-5.768 5.536-5.768-5.536q-0.625-0.589-1.446-0.589-0.875 0-1.491 0.616t-0.616 1.491q0 0.911 0.643 1.518l7.232 6.929q0.589 0.589 1.446 0.589z"></path>
</symbol>
<symbol id="icon-vimeo" viewBox="0 0 32 32">
<path class="path1" d="M30.518 9.25q-0.179 4.214-5.929 11.625-5.946 7.696-10.036 7.696-2.536 0-4.286-4.696-0.786-2.857-2.357-8.607-1.286-4.679-2.804-4.679-0.321 0-2.268 1.357l-1.375-1.75q0.429-0.375 1.929-1.723t2.321-2.063q2.786-2.464 4.304-2.607 1.696-0.161 2.732 0.991t1.446 3.634q0.786 5.125 1.179 6.661 0.982 4.446 2.143 4.446 0.911 0 2.75-2.875 1.804-2.875 1.946-4.393 0.232-2.482-1.946-2.482-1.018 0-2.161 0.464 2.143-7.018 8.196-6.821 4.482 0.143 4.214 5.821z"></path>
</symbol>
<symbol id="icon-reddit-alien" viewBox="0 0 32 32">
<path class="path1" d="M32 15.107q0 1.036-0.527 1.884t-1.42 1.295q0.214 0.821 0.214 1.714 0 2.768-1.902 5.125t-5.188 3.723-7.143 1.366-7.134-1.366-5.179-3.723-1.902-5.125q0-0.839 0.196-1.679-0.911-0.446-1.464-1.313t-0.554-1.902q0-1.464 1.036-2.509t2.518-1.045q1.518 0 2.589 1.125 3.893-2.714 9.196-2.893l2.071-9.304q0.054-0.232 0.268-0.375t0.464-0.089l6.589 1.446q0.321-0.661 0.964-1.063t1.411-0.402q1.107 0 1.893 0.777t0.786 1.884-0.786 1.893-1.893 0.786-1.884-0.777-0.777-1.884l-5.964-1.321-1.857 8.429q5.357 0.161 9.268 2.857 1.036-1.089 2.554-1.089 1.482 0 2.518 1.045t1.036 2.509zM7.464 18.661q0 1.107 0.777 1.893t1.884 0.786 1.893-0.786 0.786-1.893-0.786-1.884-1.893-0.777q-1.089 0-1.875 0.786t-0.786 1.875zM21.929 25q0.196-0.196 0.196-0.464t-0.196-0.464q-0.179-0.179-0.446-0.179t-0.464 0.179q-0.732 0.75-2.161 1.107t-2.857 0.357-2.857-0.357-2.161-1.107q-0.196-0.179-0.464-0.179t-0.446 0.179q-0.196 0.179-0.196 0.455t0.196 0.473q0.768 0.768 2.116 1.214t2.188 0.527 1.625 0.080 1.625-0.080 2.188-0.527 2.116-1.214zM21.875 21.339q1.107 0 1.884-0.786t0.777-1.893q0-1.089-0.786-1.875t-1.875-0.786q-1.107 0-1.893 0.777t-0.786 1.884 0.786 1.893 1.893 0.786z"></path>
</symbol>
<symbol id="icon-hashtag" viewBox="0 0 32 32">
<path class="path1" d="M17.696 18.286l1.143-4.571h-4.536l-1.143 4.571h4.536zM31.411 9.286l-1 4q-0.125 0.429-0.554 0.429h-5.839l-1.143 4.571h5.554q0.268 0 0.446 0.214 0.179 0.25 0.107 0.5l-1 4q-0.089 0.429-0.554 0.429h-5.839l-1.446 5.857q-0.125 0.429-0.554 0.429h-4q-0.286 0-0.464-0.214-0.161-0.214-0.107-0.5l1.393-5.571h-4.536l-1.446 5.857q-0.125 0.429-0.554 0.429h-4.018q-0.268 0-0.446-0.214-0.161-0.214-0.107-0.5l1.393-5.571h-5.554q-0.268 0-0.446-0.214-0.161-0.214-0.107-0.5l1-4q0.125-0.429 0.554-0.429h5.839l1.143-4.571h-5.554q-0.268 0-0.446-0.214-0.179-0.25-0.107-0.5l1-4q0.089-0.429 0.554-0.429h5.839l1.446-5.857q0.125-0.429 0.571-0.429h4q0.268 0 0.446 0.214 0.161 0.214 0.107 0.5l-1.393 5.571h4.536l1.446-5.857q0.125-0.429 0.571-0.429h4q0.268 0 0.446 0.214 0.161 0.214 0.107 0.5l-1.393 5.571h5.554q0.268 0 0.446 0.214 0.161 0.214 0.107 0.5z"></path>
</symbol>
<symbol id="icon-chain" viewBox="0 0 30 32">
<path class="path1" d="M26 21.714q0-0.714-0.5-1.214l-3.714-3.714q-0.5-0.5-1.214-0.5-0.75 0-1.286 0.571 0.054 0.054 0.339 0.33t0.384 0.384 0.268 0.339 0.232 0.455 0.063 0.491q0 0.714-0.5 1.214t-1.214 0.5q-0.268 0-0.491-0.063t-0.455-0.232-0.339-0.268-0.384-0.384-0.33-0.339q-0.589 0.554-0.589 1.304 0 0.714 0.5 1.214l3.679 3.696q0.482 0.482 1.214 0.482 0.714 0 1.214-0.464l2.625-2.607q0.5-0.5 0.5-1.196zM13.446 9.125q0-0.714-0.5-1.214l-3.679-3.696q-0.5-0.5-1.214-0.5-0.696 0-1.214 0.482l-2.625 2.607q-0.5 0.5-0.5 1.196 0 0.714 0.5 1.214l3.714 3.714q0.482 0.482 1.214 0.482 0.75 0 1.286-0.554-0.054-0.054-0.339-0.33t-0.384-0.384-0.268-0.339-0.232-0.455-0.063-0.491q0-0.714 0.5-1.214t1.214-0.5q0.268 0 0.491 0.063t0.455 0.232 0.339 0.268 0.384 0.384 0.33 0.339q0.589-0.554 0.589-1.304zM29.429 21.714q0 2.143-1.518 3.625l-2.625 2.607q-1.482 1.482-3.625 1.482-2.161 0-3.643-1.518l-3.679-3.696q-1.482-1.482-1.482-3.625 0-2.196 1.571-3.732l-1.571-1.571q-1.536 1.571-3.714 1.571-2.143 0-3.643-1.5l-3.714-3.714q-1.5-1.5-1.5-3.643t1.518-3.625l2.625-2.607q1.482-1.482 3.625-1.482 2.161 0 3.643 1.518l3.679 3.696q1.482 1.482 1.482 3.625 0 2.196-1.571 3.732l1.571 1.571q1.536-1.571 3.714-1.571 2.143 0 3.643 1.5l3.714 3.714q1.5 1.5 1.5 3.643z"></path>
</symbol>
<symbol id="icon-thumb-tack" viewBox="0 0 21 32">
<path class="path1" d="M8.571 15.429v-8q0-0.25-0.161-0.411t-0.411-0.161-0.411 0.161-0.161 0.411v8q0 0.25 0.161 0.411t0.411 0.161 0.411-0.161 0.161-0.411zM20.571 21.714q0 0.464-0.339 0.804t-0.804 0.339h-7.661l-0.911 8.625q-0.036 0.214-0.188 0.366t-0.366 0.152h-0.018q-0.482 0-0.571-0.482l-1.357-8.661h-7.214q-0.464 0-0.804-0.339t-0.339-0.804q0-2.196 1.402-3.955t3.17-1.759v-9.143q-0.929 0-1.607-0.679t-0.679-1.607 0.679-1.607 1.607-0.679h11.429q0.929 0 1.607 0.679t0.679 1.607-0.679 1.607-1.607 0.679v9.143q1.768 0 3.17 1.759t1.402 3.955z"></path>
</symbol>
<symbol id="icon-arrow-left" viewBox="0 0 43 32">
<path class="path1" d="M42.311 14.044c-0.178-0.178-0.533-0.356-0.711-0.356h-33.778l10.311-10.489c0.178-0.178 0.356-0.533 0.356-0.711 0-0.356-0.178-0.533-0.356-0.711l-1.6-1.422c-0.356-0.178-0.533-0.356-0.889-0.356s-0.533 0.178-0.711 0.356l-14.578 14.933c-0.178 0.178-0.356 0.533-0.356 0.711s0.178 0.533 0.356 0.711l14.756 14.933c0 0.178 0.356 0.356 0.533 0.356s0.533-0.178 0.711-0.356l1.6-1.6c0.178-0.178 0.356-0.533 0.356-0.711s-0.178-0.533-0.356-0.711l-10.311-10.489h33.778c0.178 0 0.533-0.178 0.711-0.356 0.356-0.178 0.533-0.356 0.533-0.711v-2.133c0-0.356-0.178-0.711-0.356-0.889z"></path>
</symbol>
<symbol id="icon-arrow-right" viewBox="0 0 43 32">
<path class="path1" d="M0.356 17.956c0.178 0.178 0.533 0.356 0.711 0.356h33.778l-10.311 10.489c-0.178 0.178-0.356 0.533-0.356 0.711 0 0.356 0.178 0.533 0.356 0.711l1.6 1.6c0.178 0.178 0.533 0.356 0.711 0.356s0.533-0.178 0.711-0.356l14.756-14.933c0.178-0.356 0.356-0.711 0.356-0.889s-0.178-0.533-0.356-0.711l-14.756-14.933c0-0.178-0.356-0.356-0.533-0.356s-0.533 0.178-0.711 0.356l-1.6 1.6c-0.178 0.178-0.356 0.533-0.356 0.711s0.178 0.533 0.356 0.711l10.311 10.489h-33.778c-0.178 0-0.533 0.178-0.711 0.356-0.356 0.178-0.533 0.356-0.533 0.711v2.311c0 0.178 0.178 0.533 0.356 0.711z"></path>
</symbol>
<symbol id="icon-play" viewBox="0 0 22 28">
<path d="M21.625 14.484l-20.75 11.531c-0.484 0.266-0.875 0.031-0.875-0.516v-23c0-0.547 0.391-0.781 0.875-0.516l20.75 11.531c0.484 0.266 0.484 0.703 0 0.969z"></path>
</symbol>
<symbol id="icon-pause" viewBox="0 0 24 28">
<path d="M24 3v22c0 0.547-0.453 1-1 1h-8c-0.547 0-1-0.453-1-1v-22c0-0.547 0.453-1 1-1h8c0.547 0 1 0.453 1 1zM10 3v22c0 0.547-0.453 1-1 1h-8c-0.547 0-1-0.453-1-1v-22c0-0.547 0.453-1 1-1h8c0.547 0 1 0.453 1 1z"></path>
</symbol>
</defs>
</svg> <script data-no-optimize="1">!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?module.exports=e():"function"==typeof define&&define.amd?define(e):(t="undefined"!=typeof globalThis?globalThis:t||self).LazyLoad=e()}(this,function(){"use strict";function e(){return(e=Object.assign||function(t){for(var e=1;e<arguments.length;e++){var n,a=arguments[e];for(n in a)Object.prototype.hasOwnProperty.call(a,n)&&(t[n]=a[n])}return t}).apply(this,arguments)}function i(t){return e({},it,t)}function o(t,e){var n,a="LazyLoad::Initialized",i=new t(e);try{n=new CustomEvent(a,{detail:{instance:i}})}catch(t){(n=document.createEvent("CustomEvent")).initCustomEvent(a,!1,!1,{instance:i})}window.dispatchEvent(n)}function l(t,e){return t.getAttribute(gt+e)}function c(t){return l(t,bt)}function s(t,e){return function(t,e,n){e=gt+e;null!==n?t.setAttribute(e,n):t.removeAttribute(e)}(t,bt,e)}function r(t){return s(t,null),0}function u(t){return null===c(t)}function d(t){return c(t)===vt}function f(t,e,n,a){t&&(void 0===a?void 0===n?t(e):t(e,n):t(e,n,a))}function _(t,e){nt?t.classList.add(e):t.className+=(t.className?" ":"")+e}function v(t,e){nt?t.classList.remove(e):t.className=t.className.replace(new RegExp("(^|\\s+)"+e+"(\\s+|$)")," ").replace(/^\s+/,"").replace(/\s+$/,"")}function g(t){return t.llTempImage}function b(t,e){!e||(e=e._observer)&&e.unobserve(t)}function p(t,e){t&&(t.loadingCount+=e)}function h(t,e){t&&(t.toLoadCount=e)}function n(t){for(var e,n=[],a=0;e=t.children[a];a+=1)"SOURCE"===e.tagName&&n.push(e);return n}function m(t,e){(t=t.parentNode)&&"PICTURE"===t.tagName&&n(t).forEach(e)}function a(t,e){n(t).forEach(e)}function E(t){return!!t[st]}function I(t){return t[st]}function y(t){return delete t[st]}function A(e,t){var n;E(e)||(n={},t.forEach(function(t){n[t]=e.getAttribute(t)}),e[st]=n)}function k(a,t){var i;E(a)&&(i=I(a),t.forEach(function(t){var e,n;e=a,(t=i[n=t])?e.setAttribute(n,t):e.removeAttribute(n)}))}function L(t,e,n){_(t,e.class_loading),s(t,ut),n&&(p(n,1),f(e.callback_loading,t,n))}function w(t,e,n){n&&t.setAttribute(e,n)}function x(t,e){w(t,ct,l(t,e.data_sizes)),w(t,rt,l(t,e.data_srcset)),w(t,ot,l(t,e.data_src))}function O(t,e,n){var a=l(t,e.data_bg_multi),i=l(t,e.data_bg_multi_hidpi);(a=at&&i?i:a)&&(t.style.backgroundImage=a,n=n,_(t=t,(e=e).class_applied),s(t,ft),n&&(e.unobserve_completed&&b(t,e),f(e.callback_applied,t,n)))}function N(t,e){!e||0<e.loadingCount||0<e.toLoadCount||f(t.callback_finish,e)}function C(t,e,n){t.addEventListener(e,n),t.llEvLisnrs[e]=n}function M(t){return!!t.llEvLisnrs}function z(t){if(M(t)){var e,n,a=t.llEvLisnrs;for(e in a){var i=a[e];n=e,i=i,t.removeEventListener(n,i)}delete t.llEvLisnrs}}function R(t,e,n){var a;delete t.llTempImage,p(n,-1),(a=n)&&--a.toLoadCount,v(t,e.class_loading),e.unobserve_completed&&b(t,n)}function T(o,r,c){var l=g(o)||o;M(l)||function(t,e,n){M(t)||(t.llEvLisnrs={});var a="VIDEO"===t.tagName?"loadeddata":"load";C(t,a,e),C(t,"error",n)}(l,function(t){var e,n,a,i;n=r,a=c,i=d(e=o),R(e,n,a),_(e,n.class_loaded),s(e,dt),f(n.callback_loaded,e,a),i||N(n,a),z(l)},function(t){var e,n,a,i;n=r,a=c,i=d(e=o),R(e,n,a),_(e,n.class_error),s(e,_t),f(n.callback_error,e,a),i||N(n,a),z(l)})}function G(t,e,n){var a,i,o,r,c;t.llTempImage=document.createElement("IMG"),T(t,e,n),E(c=t)||(c[st]={backgroundImage:c.style.backgroundImage}),o=n,r=l(a=t,(i=e).data_bg),c=l(a,i.data_bg_hidpi),(r=at&&c?c:r)&&(a.style.backgroundImage='url("'.concat(r,'")'),g(a).setAttribute(ot,r),L(a,i,o)),O(t,e,n)}function D(t,e,n){var a;T(t,e,n),a=e,e=n,(t=It[(n=t).tagName])&&(t(n,a),L(n,a,e))}function V(t,e,n){var a;a=t,(-1<yt.indexOf(a.tagName)?D:G)(t,e,n)}function F(t,e,n){var a;t.setAttribute("loading","lazy"),T(t,e,n),a=e,(e=It[(n=t).tagName])&&e(n,a),s(t,vt)}function j(t){t.removeAttribute(ot),t.removeAttribute(rt),t.removeAttribute(ct)}function P(t){m(t,function(t){k(t,Et)}),k(t,Et)}function S(t){var e;(e=At[t.tagName])?e(t):E(e=t)&&(t=I(e),e.style.backgroundImage=t.backgroundImage)}function U(t,e){var n;S(t),n=e,u(e=t)||d(e)||(v(e,n.class_entered),v(e,n.class_exited),v(e,n.class_applied),v(e,n.class_loading),v(e,n.class_loaded),v(e,n.class_error)),r(t),y(t)}function $(t,e,n,a){var i;n.cancel_on_exit&&(c(t)!==ut||"IMG"===t.tagName&&(z(t),m(i=t,function(t){j(t)}),j(i),P(t),v(t,n.class_loading),p(a,-1),r(t),f(n.callback_cancel,t,e,a)))}function q(t,e,n,a){var i,o,r=(o=t,0<=pt.indexOf(c(o)));s(t,"entered"),_(t,n.class_entered),v(t,n.class_exited),i=t,o=a,n.unobserve_entered&&b(i,o),f(n.callback_enter,t,e,a),r||V(t,n,a)}function H(t){return t.use_native&&"loading"in HTMLImageElement.prototype}function B(t,i,o){t.forEach(function(t){return(a=t).isIntersecting||0<a.intersectionRatio?q(t.target,t,i,o):(e=t.target,n=t,a=i,t=o,void(u(e)||(_(e,a.class_exited),$(e,n,a,t),f(a.callback_exit,e,n,t))));var e,n,a})}function J(e,n){var t;et&&!H(e)&&(n._observer=new IntersectionObserver(function(t){B(t,e,n)},{root:(t=e).container===document?null:t.container,rootMargin:t.thresholds||t.threshold+"px"}))}function K(t){return Array.prototype.slice.call(t)}function Q(t){return t.container.querySelectorAll(t.elements_selector)}function W(t){return c(t)===_t}function X(t,e){return e=t||Q(e),K(e).filter(u)}function Y(e,t){var n;(n=Q(e),K(n).filter(W)).forEach(function(t){v(t,e.class_error),r(t)}),t.update()}function t(t,e){var n,a,t=i(t);this._settings=t,this.loadingCount=0,J(t,this),n=t,a=this,Z&&window.addEventListener("online",function(){Y(n,a)}),this.update(e)}var Z="undefined"!=typeof window,tt=Z&&!("onscroll"in window)||"undefined"!=typeof navigator&&/(gle|ing|ro)bot|crawl|spider/i.test(navigator.userAgent),et=Z&&"IntersectionObserver"in window,nt=Z&&"classList"in document.createElement("p"),at=Z&&1<window.devicePixelRatio,it={elements_selector:".lazy",container:tt||Z?document:null,threshold:300,thresholds:null,data_src:"src",data_srcset:"srcset",data_sizes:"sizes",data_bg:"bg",data_bg_hidpi:"bg-hidpi",data_bg_multi:"bg-multi",data_bg_multi_hidpi:"bg-multi-hidpi",data_poster:"poster",class_applied:"applied",class_loading:"litespeed-loading",class_loaded:"litespeed-loaded",class_error:"error",class_entered:"entered",class_exited:"exited",unobserve_completed:!0,unobserve_entered:!1,cancel_on_exit:!0,callback_enter:null,callback_exit:null,callback_applied:null,callback_loading:null,callback_loaded:null,callback_error:null,callback_finish:null,callback_cancel:null,use_native:!1},ot="src",rt="srcset",ct="sizes",lt="poster",st="llOriginalAttrs",ut="loading",dt="loaded",ft="applied",_t="error",vt="native",gt="data-",bt="ll-status",pt=[ut,dt,ft,_t],ht=[ot],mt=[ot,lt],Et=[ot,rt,ct],It={IMG:function(t,e){m(t,function(t){A(t,Et),x(t,e)}),A(t,Et),x(t,e)},IFRAME:function(t,e){A(t,ht),w(t,ot,l(t,e.data_src))},VIDEO:function(t,e){a(t,function(t){A(t,ht),w(t,ot,l(t,e.data_src))}),A(t,mt),w(t,lt,l(t,e.data_poster)),w(t,ot,l(t,e.data_src)),t.load()}},yt=["IMG","IFRAME","VIDEO"],At={IMG:P,IFRAME:function(t){k(t,ht)},VIDEO:function(t){a(t,function(t){k(t,ht)}),k(t,mt),t.load()}},kt=["IMG","IFRAME","VIDEO"];return t.prototype={update:function(t){var e,n,a,i=this._settings,o=X(t,i);{if(h(this,o.length),!tt&&et)return H(i)?(e=i,n=this,o.forEach(function(t){-1!==kt.indexOf(t.tagName)&&F(t,e,n)}),void h(n,0)):(t=this._observer,i=o,t.disconnect(),a=t,void i.forEach(function(t){a.observe(t)}));this.loadAll(o)}},destroy:function(){this._observer&&this._observer.disconnect(),Q(this._settings).forEach(function(t){y(t)}),delete this._observer,delete this._settings,delete this.loadingCount,delete this.toLoadCount},loadAll:function(t){var e=this,n=this._settings;X(t,n).forEach(function(t){b(t,e),V(t,n,e)})},restoreAll:function(){var e=this._settings;Q(e).forEach(function(t){U(t,e)})}},t.load=function(t,e){e=i(e);V(t,e)},t.resetStatus=function(t){r(t)},Z&&function(t,e){if(e)if(e.length)for(var n,a=0;n=e[a];a+=1)o(t,n);else o(t,e)}(t,window.lazyLoadOptions),t});!function(e,t){"use strict";function a(){t.body.classList.add("litespeed_lazyloaded")}function n(){console.log("[LiteSpeed] Start Lazy Load Images"),d=new LazyLoad({elements_selector:"[data-lazyloaded]",callback_finish:a}),o=function(){d.update()},e.MutationObserver&&new MutationObserver(o).observe(t.documentElement,{childList:!0,subtree:!0,attributes:!0})}var d,o;e.addEventListener?e.addEventListener("load",n,!1):e.attachEvent("onload",n)}(window,document);</script><script data-optimized="1" src="https://www.ssla.co.uk/wp-content/litespeed/js/dab52888ab4891a65369f36c1f496000.js?ver=34820" defer></script></body></html>
<!-- Page optimized by LiteSpeed Cache @2025-05-09 21:58:05 -->
<!-- Page cached by LiteSpeed Cache 7.1 on 2025-05-09 21:58:05 -->